On Jumped Wenger Graphs

Li-Ping Wang^{1,2,*}, Daqing Wan³, Weiqiong Wang⁴ and Haiyan Zhou⁵

¹ State Key Laboratory of Information Security, Institute of Information Engineering, CAS, China.

² School of Cyber Security, University of Chinese Academy of Sciences, China.

³ Department of Mathematics, University of California, Irvine, CA, USA.

⁴ School of Science, Chan'an University, Xi'an, China.

⁵ School of Mathematics, Nanjing Normal University, Nanjing, China.

Received 14 October 2021; Accepted 12 November 2021

Abstract. We introduce a new infinite class of bipartite graphs, called jumped Wenger graphs, which has a similar structure with Wenger graphs. We give a tight upper bound of the diameter for these graphs and the exact diameter for some special graphs. We also determine the girth of the jumped Wenger graphs.

AMS subject classifications: 05C

Key words: Wenger graphs, diameter, girth, algebraic graph theory.

1 Introduction

Recently, researchers started to focus on a class of bipartite graphs related to Wenger graphs because of their nice graph theoretic properties [1, 2, 4, 5, 7–10]. Let us to describe these graphs first.

Let \mathbb{F}_q be a finite field of order $q = p^e$, where p is a prime and e is a positive integer. Let m be a positive integer and let $\mathfrak{P} = \mathbb{F}_q^{m+1}$ and $\mathfrak{L} = \mathbb{F}_q^{m+1}$ be two copies of the (m+1)-dimensional vector space over \mathbb{F}_q , which are called the point set and the line set respectively. Let $\mathfrak{G} = (V, E)$ be the bipartite graph with vertex

^{*}Corresponding author. *Email address:* wangliping@iie.ac.cn (L.-P. Wang)

set $V = \mathfrak{P} \cup \mathfrak{L}$ and edge set *E*, defined as follow. Given the polynomial functions $f_i(x) \in \mathbb{F}_q[x], 2 \le i \le m+1$, there is an edge from a point $P = (p_1, p_2, \dots, p_{m+1}) \in \mathfrak{P}$ to a line $L = [l_1, l_2, \dots, l_{m+1}] \in \mathfrak{L}$, denoted by *PL*, if the following *m* equalities hold:

$$l_{2}+p_{2}=l_{1}f_{2}(p_{1}),$$

$$l_{3}+p_{3}=l_{1}f_{3}(p_{1}),$$

.....

$$l_{m+1}+p_{m+1}=l_{1}f_{m+1}(p_{1}).$$

If $(1, f_2(x), ..., f_{m+1}(x)) = (1, x, x^2, ..., x^m)$, such graphs are called Wenger graphs [2]. If $(1, f_2(x), ..., f_{m+1}(x)) = (1, x, x^p, ..., x^{p^{m-1}})$, this class of graphs is called linearized Wenger graphs [1]. In this paper, we focus on the more general case when

$$(1, f_2(x), \dots, f_{m+1}(x)) = (1, x, x^2, \dots, x^{i-1}, x^{i+1}, \dots, x^{j-1}, x^{j+1}, \dots, x^{m+2}), \quad 1 \le i < j \le m+2,$$

which is called the jumped Wenger graphs with jump points at x^i and x^j , denoted by $J_m(q,i,j)$. In particular, if j = m+2, that is,

$$(1, f_2(x), \dots, f_{m+1}(x)) = (1, x, \dots, x^{i-1}, x^{i+1}, \dots, x^m, x^{m+1}),$$

the graphs have only one jump point at x^i . If i = m+1 and j = m+2, the graphs become Wenger graphs, denoted by $W_m(q)$.

The following properties are immediate, see [1].

Proposition 1.1. *The jumped Wenger graph* $J_m(q,i,j)$ *for* $1 \le i < j \le m+2$ *is* q*-regular.*

Proposition 1.2. *If* m+2 < q, the jumped Wenger graph $J_m(q,i,j)$, for $1 \le i < j \le m+1$, *is connected.*

The organization of this article is as follows. In Section 2 we give an upper bound of the diameter of a jumped Wenger graph $J_m(q,i,j)$ for any integers i,j, $1 \le i < j \le m+2$ and the exact diameter for some special jumped Wenger graphs, such as (i,j) = (m,m+2), (m+1,m+2) or (m,m+1). In Section 3, we determine the girth of a jumped Wenger graph $J_m(q,i,j)$ for $1 \le i < j \le m+2$. Finally, in Section 4 we present our conclusions.

2 The diameter of jumped Wenger graphs

Recall that a sequence of distinct vertices v_1, \dots, v_s in a simple connected graph $\mathfrak{G} = (V, E)$ defines a path of length s - 1 if $(v_i, v_{i+1}) \in E$ for every $i, 1 \leq i \leq s - 1$. For