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Abstract. The inverse Lax-Wendroff (ILW) procedure is a numerical boundary
treatment technique, which allows finite difference schemes and other schemes
to achieve stability and high order accuracy when using cartesian meshes to
solve boundary value problems defined on complex computational domain. In
this short survey we summarize the main ingredients of the ILW procedure,
discuss its applicability and stability properties, and provide possible direc-
tions of its future development.
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1 Introduction

Finite difference methods are widely used to solve partial differential equations
(PDEs). For example, to solve a hyperbolic equation

ut+ux =0, 0≤ x≤1 (1.1)

with the initial condition u(x,0)=u0(x) and the boundary condition

u(0,t)= g(t), (1.2)
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a finite difference scheme approximates (1.1) on a spatial grid

0= x0< x1< ···< xN =1 (1.3)

and, for simplicity, we assume a uniform grid with the mesh size ∆x= xj+1−xj.
For example, we could use the following finite difference scheme:

un+1
j = aun

j−2+bun
j−1+cun

j +dun
j+1 (1.4)

with suitably chosen constants a,b,c and d (which depend on λ= ∆t
∆x ), approxi-

mating the PDE (1.1) to third order accuracy. Here and below, un
j is the numerical

approximation at the grid point x = xj and at time t = tn, and we assume, for

simplicity, a constant time step size ∆t= tn+1−tn.
The first difficulty associated with the boundary conditions of schemes such

as (1.4) is the wide stencil, e.g., for the scheme (1.4) the stencil consists of four
points {xj−2,xj−1,xj,xj+1}. Notice that the scheme (1.4) cannot be used to com-

pute un+1
1 and un+1

N , if we only have the information of un
j for 0≤ j≤N. We would

need to either define the “ghost point” values un
−1 and un

N+1 and then use the
scheme (1.4), or we could use a different scheme than (1.4) for the computation of

un+1
1 and un+1

N . In either case, we must analyze the stability and accuracy of the
resulting approximations.

For a higher order finite difference scheme, the stencil is wider, and hence
the number of such “abnormal” points near the boundary will be larger, causing
more complications in either of the two approaches above.

The second difficulty associated with the boundary conditions of schemes
such as (1.4) is the possibility that the boundary of the computational domain
may not coincide with the grid points. For example, instead of the grid points
defined in (1.3), we could imagine that the first grid point x0 is not at x= 0, for
example x0=0.4∆x. Such a configuration will make it difficult to apply the given
boundary condition (1.2) which is defined at x= 0. Of course, one might argue
that such choice of grid points seems artificial. But even in one space dimension,
such scenarios cannot be avoided if we are computing a moving (in time) domain
with a fixed spatial grid. In two or higher dimensions, such scenarios will always
happen if we are attempting to solve a PDE defined in a domain with complex
geometry using cartesian meshes.

One of the major problems associated with the second difficulty is the possible
appearance of small cells near the boundary, in the sense that the distance from
the first grid point x0 and the physical boundary x=0 is very small in comparison
with the mesh size ∆x. For many explicit schemes, the ratio of time step size over


