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Abstract. We develop in this paper a lifting method for Fokker-Planck equa-
tions with drift-admitting jumps, such that high-order finite difference schemes
can be constructed directly based on grids with pure solution points. To illus-
trate the idea, we present as an example the construction of a fifth-order finite
difference scheme. The validity of the scheme is demonstrated by conduct-
ing numerical experiments for the cases with drift admitting one jump and
two jumps, respectively. Additionally, by introducing a splitting technique, we
show that the lifting method can be extended to high dimensions. In particu-
lar, a two-dimensional case is studied in details to show the effectiveness of the
extension.
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1 Introduction

Fokker-Planck equations with drift-admitting jumps are used as models in many
science and engineering fields. For instance, they can be used to describe the
dynamics of the propagators (or transition probability distributions) of some sto-
chastic processes. To be more specific, let us consider the following one-dimensi-
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onal Langevin equation

v̇(t)=α(v)+
√

2βξ(t), (1.1)

where the dot stands for the time derivative, the drift term α(v) is piecewise-
smooth that may contain finitely many discontinuities, and the Gaussian white
noise ξ(t) with strength β>0 satisfies the conditions of the zero mean 〈ξ(t)〉=0
and the correlation 〈ξ(t)ξ(s)〉=δ(t−s). Here δ represents the Dirac delta function.
For the initial condition v(0)= v0, we may denote the propagator of the process
by p(v,t|v0,0), which is governed by the well-known Fokker-Planck equation

∂tp(v,t|v0,0)=−∂v[α(v)p]+β∂2
v p (1.2)

with the initial value condition

p(v,0|v0,0)=δ(v−v0). (1.3)

The simplest case corresponds to the so-called Brownian motion with pure dry
friction [7], where the drift depends only on the sign of v. In that case, the prop-
agator is available in closed analytic form [2, 11, 14]. For other cases with two-
value drift [11, 13] or piecewise-linear drift [1, 3, 6, 14], some analytic results are
also available. However, in most cases it is impractical to solve Eq. (1.2) analyt-
ically. Thus, it is necessitated to develop some effective numerical methods to
investigate the underlying dynamics.

Due to the discontinuous drift α(v), the propagator p is nonsmooth at dis-
continuous points. Thus it is difficult to develop high-order numerical methods
for Eq. (1.2), especially for finite difference methods. To construct an effective
numerical scheme, the continuity conditions of p and the flux

f (v,t|v0,0)=−α(v)p+β∂v p (1.4)

should be imposed appropriately at each discontinuous point of the drift. To the
best of our knowledge, there are only a few numerical results considering the
case with discontinuous drift. For the pure dry friction case studied in [12], the
Fokker-Planck equation was transformed to a Schrödinger equation with a delta
potential, and then studied numerically by solving a corresponding Brinkman hi-
erarchy. Schemes with second-order convergence rate were designed for Eq. (1.2)
in [15] by using an immersed interface method or in [16] by a finite volume
method. By using grids staggered by flux points and solution points, a second-
order finite difference scheme was developed for Eq. (1.2) in [4]. Later on, the
scheme was improved to be of fifth-order accuracy in [5]. It is noted that an inter-
polation step from solution points to flux points is needed for the finite difference
schemes developed in [4, 5].


