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Abstract. We investigate some geometric properties of the curl operator, based
on its diagonalization and its expression as a non-local symmetry of the pseudo-
derivative (−∆)1/2 among divergence-free vector fields with finite energy. In
this context, we introduce the notion of spin-definite fields, i.e. eigenvectors of
(−∆)−1/2curl. The two spin-definite components of a general 3D incompress-
ible flow untangle the right-handed motion from the left-handed one. Having
observed that the non-linearity of Navier-Stokes has the structure of a cross-
product and its weak (distributional) form is a determinant that involves the
vorticity, the velocity and a test function, we revisit the conservation of energy
and the balance of helicity in a geometrical fashion. We show that in the case of
a finite-time blow-up, both spin-definite components of the flow will explode
simultaneously and with equal rates, i.e. singularities in 3D are the result of
a conflict of spin, which is impossible in the poorer geometry of 2D flows. We
investigate the role of the local and non-local determinants
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and their spin-definite counterparts, which drive the enstrophy and, more gen-
erally, are responsible for the regularity of the flow and the emergence of sin-
gularities or quasi-singularities. As such, they are at the core of turbulence
phenomena.
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1 Introduction

The initial value problem for the Navier-Stokes system for incompressible fluids
is usually written as


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∂u

∂t
+(u·∇)u−ν∆u=−∇p, divu=0,

u|t=0=u0.
(1.1)

Here u= u(t,x) is a time-dependent vector field on R3, the viscosity ν is a posi-
tive parameter (expressed in Stokes, i.e. L2

T
−1) and u0 is a given divergence-free

vector field.
In 1934, Leray [58] proved the existence of global weak solutions in L∞

t L2
x∩

L2
t Ḣ1

x. In 3D, the question of their uniqueness remains elusive and is intimately
connected to deciding whether the weak solutions enjoy a higher regularity. Well-
posedness in various function spaces has been studied thoroughly and culmi-
nates in Koch and Tataru’s result [52] if the data u0 is small in the largest (i.e. less

constraining) function space (called BMO−1) that is scale and translation invari-
ant and on which the heat flow remains locally uniformly in L2

t,x.
The set of singular times may or not be empty, but it is a compact subset of

R+, whose Hausdorff measure of dimension 1
2 is zero. The celebrated theorem of

Caffarelli et al. [17] ensures that singularities form a subset of space-time whose
parabolic Hausdorff measure of dimension 1 vanishes too (see also Arnold and
Craig [2]).

Note that Eq. (1.1) corresponds to an Eulerian point of view, i.e. it describes
the movement of the fluid in a fixed reference frame. The natural question of
tracking individual fluid particles, i.e. the Lagrangian point of view, is equivalent
to the existence of a flow ξ :R+×Rd→Rd
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)

, ξ(0,x)= x. (1.2)


