Dirichlet Eigenvalue Problem of Degenerate Elliptic Operators with Non-Smooth Coefficients

Hua Chen^{1,*}, Hong-Ge Chen² and Jin-Ning Li¹

¹ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.

² Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Received 24 June 2021; Accepted 12 August 2021

Dedicated to Professor Chao-Jiang Xu on the occasion of his 65th birthday

Abstract. The aim of this review is to introduce some recent results in eigenvalues problems for a class of degenerate elliptic operators with non-smooth coefficients, we present the explicit estimates of the lower bound and upper bound for its Dirichlet eigenvalues.

AMS subject classifications: 35P15, 35J70

Key words: Dirichlet eigenvalues, weighted Sobolev spaces, degenerate elliptic operators, homogeneous dimension.

1 Introduction

Eigenvalue problem is an important research topic in spectral theory and has widely applications in physics. For the classical elliptic operators, the pioneer research work obtained by Weyl [52] in 1911 gave the following remarkable asymptotic formula describing the distribution of large eigenvalues of the Dirichlet

^{*}Corresponding author. *Email addresses:* chenhua@whu.edu.cn (H. Chen), hongge_chen@whu.edu.cn (H.G. Chen), lijinning@whu.edu.cn (J.N. Li)

Laplacian Δ in a bounded domain $\Omega \subset \mathbb{R}^n$:

$$\lambda_k \sim (2\pi)^2 |B_1|^{-\frac{2}{n}} \left(\frac{k}{|\Omega|}\right)^{\frac{2}{n}} \quad \text{as} \quad k \to +\infty,$$
(1.1)

where $|B_1|$ is the volume of the unit ball in \mathbb{R}^n and $|\Omega|$ is the volume of Ω . This formula was conjectured independently by Sommerfeld [50] and Lorentz [40] in 1910. Then in 1961, Pólya [47] proved that the above asymptotic relation (1.1) is in fact a one-sided inequality if Ω is a plane domain which tiles \mathbb{R}^2 (his proof also works in \mathbb{R}^n) and he conjectured that, for any domain in \mathbb{R}^n , we have

$$\lambda_k \ge (2\pi)^2 |B_1|^{-\frac{2}{n}} \left(\frac{k}{|\Omega|}\right)^{\frac{2}{n}}$$
 for any $k \ge 1.$ (1.2)

The Polya's conjecture has attracted a lot of attention in the estimation of eigenvalues. Lieb [38] proved an inequality like (1.2) for any domain in \mathbb{R}^n but with a constant \tilde{C}_n that differs from the constant $(2\pi)^2 |B_1|^{-2/n}$ by a factor. Later in 1983, Li and Yau [37] gave the following lower bound of λ_k by a simple approach:

$$\sum_{j=1}^{k} \lambda_j \ge \frac{n}{n+2} (2\pi)^2 |B_1|^{-\frac{2}{n}} \cdot k^{1+\frac{2}{n}} \cdot |\Omega|^{-\frac{2}{n}} \quad \text{for any} \quad k \ge 1.$$
(1.3)

On the other hand, for the upper bounds of Dirichlet eigenvalues of Laplacian, under some conditions Kröger [34] obtained that

$$\sum_{j=1}^{k} \lambda_j \le \frac{n}{n+2} (2\pi)^2 |B_1|^{-\frac{2}{n}} \cdot k^{1+\frac{2}{n}} \cdot |\Omega|^{-\frac{2}{n}} + C_0 k^{1+\frac{1}{n}}$$
(1.4)

holds for sufficient large k, where C_0 is a positive constant depending on Ω . For more results on the upper bound estimates of the ratio $\frac{\lambda_{k+1}}{\lambda_1}$, one can see the papers [12,13,24,35] as well as the references therein. Other related results in eigenvalue problems for the non-degenerate elliptic operators, one can refer to [26,36,42].

Degenerate elliptic operators have been intensively studied in the late 1960s and is still an active research field. The Hörmander type operator

$$\Delta_X := -\sum_{j=1}^m X_j^* X_j$$

(also called the finitely degenerate elliptic operator) generated by a system of smooth vector fields $X = (X_1, ..., X_m)$ with Hörmander's condition is an important