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Abstract. It was proved by Bahouri ef al. [9] that the Schrodinger equation on
the Heisenberg group H¢, involving the sublaplacian, is an example of a totally
non-dispersive evolution equation: for this reason global dispersive estimates
cannot hold. This paper aims at establishing local dispersive estimates on H?
for the linear Schrodinger equation, by a refined study of the Schrodinger ker-
nel S; on H?. The sharpness of these estimates is discussed through several
examples. Our approach, based on the explicit formula of the heat kernel on
H" derived by Gaveau [19], is achieved by combining complex analysis and
Fourier-Heisenberg tools. As a by-product of our results we establish local Stri-
chartz estimates and prove that the kernel S; concentrates on quantized hori-
zontal hyperplanes of H.
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1 Introduction

1.1 Setting of the problem
It is well-known that the solution to the free Schrédinger equation on R"
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can be explicitly written with a convolution kernel for £ #0

u(t, ) =ug*x———- (1.1)

The proof of this explicit representation stems by a combination of Fourier and
complex analysis arguments, from the expression of the heat kernel on R". More
precisely, taking the partial Fourier transform of (S) with respect to the variable
x and integrating in time the resulting ODE, we get

i(t,§) ="' 9),
where for any function ¢ € L' (IR") we have defined
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The heart of the matter to prove (1.1) then consists in computing in the sense of
distributions the inverse Fourier transform of the complex Gaussian
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The proof of formula (1.2) is based on two observations: first, that for any x in
R", the two maps
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