Reducing Subspaces of Toeplitz Operators on N_ϕ-type Quotient Modules on the Torus

WU YAN1,2 AND XU XIAN-MIN2

(1. School of Mathematical Sciences, Fudan University, Shanghai, 200433)
(2. Institute of Mathematics, Jiaxing University, Jiaxing, Zhejiang, 314001)

Communicated by Ji You-qing

Abstract: In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol $S_\psi(z)$ on N_ϕ has at least m non-trivial minimal reducing subspaces, where m is the dimension of $H^2(\Gamma_\omega) \ominus \varphi(\omega)H^2(\Gamma_\omega)$. Moreover, the restriction of $S_\psi(z)$ on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift M_z.

Key words: module, N_ϕ-type quotient module, the analytic Toeplitz operator, reducing subspace, finite Blaschke product

2000 MR subject classification: 47B35, 47A15

Document code: A

Article ID: 1674-5647(2009)01-0019-11

1 Introduction

Let D denote the open unit disk in the complex plane \mathbb{C} and T^2 be cartesian product of two copies of T, where T is the unit circle. It is well known that T^2, as usually is endowed with the rotation invariant Lebesgue measure, is the distinguished boundary of D^2. Let $dm(z)dm(\omega)$ denote the normalized Lebesgue measure on T and $dm(z)dm(\omega)$ be the product measure on the torus T^2. The Bergman space is denoted by $L^2_\omega(D)$ and Bergman shift is denoted by M_z. Let $H^2(I^2)$ be the Hardy space on the two dimensional torus T^2. We denote by z and ω the coordinate functions. Shift operators T_z and T_ω on $H^2(I^2)$ are defined by $T_zf = zf$ and $T_\omega f = \omega f$ for $f \in H^2(I^2)$. Clearly, both T_z and T_ω have infinite multiplicity. A closed subspace M of $H^2(I^2)$ is called a submodule (over the algebra $H^\infty(D^2)$), if it is invariant under multiplications by functions $H^\infty(D^2)$. Equivalently, M is a submodule if it is invariant for both T_z and T_ω. The quotient space $N : H^2(I^2) \ominus M$ is called a quotient module. Clearly, $T_z^* N \subset N$ and $T_\omega^* N \subset N$. In the study here, it is necessary to distinguish the classical Hardy space in the variable z and that in the variable ω, for which we denote

*Received date: Oct. 29, 2007.
Foundation item: The NSF (10671083) of China.
Lemma 2.2 Let \(\varphi(\omega) \) be a one variable non-constant inner function and \(\{ \lambda_k(\omega) : k = 1, 2, \cdots, m \} \) be an orthonormal basis of \(H^2(\Gamma_\omega) \odot \varphi(\omega)H^2(\Gamma_\omega) \), and

\[
\epsilon_j(z, \omega) = \frac{\omega^j + \omega^{j-1}z + \cdots + z^j}{\sqrt{j+1}} \quad (j = 0, 1, \cdots).
\]

Let

\[
E_{k,j} = \lambda_k(\omega)\epsilon_j(z, \varphi(\omega)).
\]

Then \(\{ E_{k,j} : k = 1, 2, \cdots, m; j = 0, 1, \cdots \} \) is an orthonormal basis for \(N_\varphi \).

Lemma 2.3 Suppose that

\[
\varphi(\omega) = \omega, \quad \psi(z) = z \prod_{l=1}^{N-1} \frac{z - \alpha_l}{1 - \alpha_l z} \quad (|\alpha_l| > 0, \ \alpha_l \neq \alpha_k \forall l \neq k, \ 1 \leq l, k \leq N - 1).
\]
Then there exists a unique unit vector e such that
\[e \in \ker T_{\psi(z)}^* \cap \ker T_{\psi(\omega)}^* \cap N_\varphi = \ker S_{\psi(z)}^* \cap \ker S_{\psi(\omega)}^*, \quad (2.1) \]
\[(\psi(z) + \psi(\omega))e \in N_\varphi. \quad (2.2) \]

Lemma 2.4 \[3\] Suppose that φ is the inner function. Then the boundary value of φ is the measurable transformation on T, m_φ^{-1} is the measure on T. And the Radon-Nikodym derivative of m_φ^{-1} is equal to Poisson’s kernel, i.e.,
\[\frac{dm(\varphi^{-1}(t))}{dm(t)} = p_\alpha(t) = \text{Re} \left(\frac{t + a}{t - a} \right) \quad \left(a = \int_0^{2\pi} \varphi(e^{i\theta})dm(\theta) \right). \]

Lemma 2.5 Suppose that $\lambda \in D$ and $\eta_\lambda = \frac{\lambda - z}{1 - \lambda z}$. Then the Toeplitz operator S_{η_λ} on N_φ is unitary equivalent to S_z, i.e., $S_{\eta_\lambda} \cong S_z$.

Proof. There exists a unitary transformation (see [2]),
\[W_1 : L_2^2(D) \rightarrow L_2^2(D), \]
\[W_1(h) = (1 - |\lambda|^2)h \circ \eta_\lambda \cdot \tilde{k}_\lambda \quad \left(\tilde{k}_\lambda = \frac{1}{(1 - \lambda z)^2} \right) \]
such that
\[W_1 M_{\eta_\lambda} W_1^* = M_z. \]

Let
\[W_2 = I \otimes W_1. \]

Then it is clear that W_2 is the unitary transformation on $(H^2(\Gamma_\omega) \oplus \varphi(\omega)H^2(\Gamma_\omega)) \otimes L_2^2(D)$. What’s more,
\[W_2(I \otimes M_{\eta_\lambda}) = (I \otimes W_1)(I \otimes M_{\eta_\lambda}) \]
\[= I \otimes (W_1 M_{\eta_\lambda}) \]
\[= I \otimes (M_z W_1) \]
\[= (I \otimes M_z)(I \otimes W_1) \]
\[= (I \otimes M_z) W_2. \]

Thus
\[I \otimes M_{\eta_\lambda} \cong I \otimes M_z. \]

By Lemma 2.2, there exists a unitary operator U such that
\[US_z = (I \otimes M_z)U. \]

By the function calculus, it is well known that
\[US_{\eta_\lambda} U^* = U_{\eta_\lambda}(S_z)U^* \]
\[= \eta_\lambda(U S_z U^*) \]
\[= \eta_\lambda(I \otimes M_z) \]
\[= I \otimes M_{\eta_\lambda}. \]
Let
\[W_3 = U^*W_2U. \]
Then
\[
W_3S_{\eta_\lambda}W_3^* = U^*W_2US_{\eta_\lambda}U^*W_2^*U \\
= U^*W_2(I \otimes M_{\eta_\lambda})W_2^*U \\
= U^*(I \otimes M_{\eta_\lambda})U \\
= S_z.
\]
Therefore
\[S_{\eta_\lambda} \cong S_z. \]
The proof is completed.

Lemma 2.6 Suppose that \(\psi \) is a finite Blaschke product and \(\psi_\lambda = \psi \circ \eta_\lambda \). If \(S_{\psi_\lambda} \) has at least a non-trivial reducing subspace on which the restriction of \(S_{\psi_\lambda} \) is unitary equivalent to the Bergman shift, then \(S_{\psi} \) also has at least a non-trivial reducing subspace on which the restriction of \(S_{\psi} \) is unitary equivalent to the Bergman shift.

Proof. Let \(M \) be the non-trivial reducing subspace of \(S_{\psi_\lambda} \) and there exists a unitary transformation \(W: M \rightarrow L^2_\alpha(D) \) such that
\[WS_{\psi_\lambda}|_M = MZW. \]
Because
\[\eta_\lambda \circ \eta_\lambda(\omega) = \omega, \]
we have
\[\psi = \psi_\lambda \circ \eta_\lambda. \]
By Lemma 2.5,
\[W_3S_{\eta_\lambda}W_3^* = S_z. \]
By the function calculus,
\[
W_3S_{\psi}W_3^* = W_3S_{\psi_\lambda \circ \eta_\lambda}W_3^* \\
= W_3\psi_\lambda(S_{\eta_\lambda})W_3^* \\
= \psi_\lambda(W_3S_{\eta_\lambda}W_3^*) \\
= \psi_\lambda(S_z) \\
= S_{\psi_\lambda},
\]
i.e.,
\[S_{\psi} \cong S_{\psi_\lambda}. \]
Let
\[M_1 = W_3^*M. \]
Then \(M_1 \) is the non-trivial reducing subspace of \(S_{\psi} \). Let
\[W_4 = WW_3. \]
It is easy to prove that
\[W_4S_\psi|_{M_1} = M_zW_4, \]
i.e.,
\[S_\psi|_{M_1} \equiv M_z. \]
The proof is completed.

Lemma 2.7 [1] Suppose that \(\psi(z) \) is the finite Blaschke product having zeros with multiplicity greater than one and \(\eta_\lambda = \frac{\lambda - z}{1 - \lambda z} \). Let \(\psi_\lambda(z) = (\eta_\lambda \circ \psi)(z) \). Then there exists a \(\lambda \in D \) such that \(\psi_\lambda(z) \) has distinct zeros.

3 Principal Results and Proofs

In this section we give our main results.

Theorem 3.1 Suppose that \(\varphi(\omega) \) be a one variable non-constant inner function, and
\[
\psi(z) = z \prod_{l=1}^{N-1} \frac{z - \alpha_l}{1 - \alpha_l z}, \quad (|\alpha_l| > 0, \alpha_l \neq \alpha_k \ (\forall l \neq k), \ 1 \leq l, k \leq N - 1).
\]
Then there exists a unique unit vector \(e' \) such that
\[
e' \in \ker T_{\psi(z)}^* \cap \ker T_{\varphi(\omega)}^* \cap N_\varphi = \ker S_{\psi(z)}^* \cap \ker S_{\varphi(\omega)}^*.
\]
(3.1)

Proof. Picking the unit vector \(e \) in Lemma 2.3, then we have
\[e \in H^2(T^2) \ominus [z-\omega] = N_\omega. \]
By Lemma 2.1, \(\{e_j(z, \omega) : j \geq 0\} \) is an orthonormal basis for \(H^2(T^2) \ominus [z-\omega] \). Then there exists a sequence of constant numbers \(\{k_j\} \), such that
\[
e_j(z, \omega) = \frac{z - \alpha_j}{1 - \alpha_j z}.
\]
Let
\[
e'(z, \omega) = \lambda_1(\omega)e(z, \varphi(\omega)).
\]
Then obviously
\[
e'(z, \omega) = \sum_{j=0}^{\infty} k_j(\lambda_1(\omega)e_j(z, \varphi(\omega))) = \sum_{j=0}^{\infty} k_jE_{\varphi(\omega)} \in N_\varphi
\]
(3.3)
and
\[\|e'\|^2 = \sum_{j=0}^{\infty} |k_j|^2 = \|e\|^2 = 1. \]
Because
\[e \in \ker T_{\psi(z)}^* \iff T_{\psi(z)}^*e(z, \omega) = 0, \]
i.e.,
\[\int_T \int_T |T_{\psi(z)}^*e(z, \omega)|^2 dm(z) dm(\omega) = 0, \]
then
\[
\|T^*_\psi(z) e(z, \varphi(\omega))\|^2 = \int_T \int_T |T^*_\psi(z) e(z, \varphi(\omega))|^2 dm(z) dm(\omega) \quad \text{(let } t = \varphi(\omega))
\]
\[
= \int_T \int_T |T^*_\psi(z, t)|^2 \frac{dm(\varphi^{-1}(t))}{dm(t)} dm(z) dm(t).
\]
Let
\[a = \int_0^{2\pi} \varphi(e^{i\theta}) dm(\theta).
\]
Then by Lemma 2.4,
\[
\left| \frac{dm(\varphi^{-1}(t))}{dm(t)} \right| = |p_a(t)| = |\operatorname{Re}\left(\frac{t + a}{t - a} \right)|
\]
\[
\leq \left| \frac{t + a}{t - a} \right| \leq \frac{1 + |a|}{1 - |a|}
\]
\[
\leq \int_T \int_T |T^*_\psi(z, t)|^2 \frac{1 + |a|}{1 - |a|} dm(z) dm(t)
\]
\[
\leq \frac{1 + |a|}{1 - |a|} \int_T \int_T |T^*_\psi(z, t)|^2 dm(z) dm(t)
\]
\[
= 0.
\]
Thus
\[
T^*_\psi(z) e(z, \varphi(\omega)) = 0.
\]
Then
\[
T^*_\psi(z) e'(z, \omega) = T^*_\psi(z) (\lambda_1(\omega) e(z, \varphi(\omega))) = \lambda_1(\omega) T^*_\psi(z) e(z, \varphi(\omega)) = 0. \quad (3.4)
\]
By (3.3) and (3.4),
\[e' \in \ker T^*_\psi(z) \cap N_{\varphi}.
\]
We have
\[
T^*_\psi(z) |_{N_{\varphi}} = T^*_\psi(\varphi(\omega)) |_{N_{\varphi}}.
\]
In fact, because \(\psi \in A(D)\), it is easy to prove that
\[
\psi(z) - \psi(\varphi(\omega)) \in [z-\varphi(\omega)] = M_{\varphi},
\]
and it is well known that \(\psi \in H^\infty(D^2)\). Then for any \(g \in H^2(T^2)\), \((\psi(z) - \psi(\varphi(\omega)))g \in M_{\varphi}\).
Therefore,
\[
\langle (T^*_\psi(z) - T^*_\psi(\varphi(\omega))) f, g \rangle = \langle f, (\psi(z) - \psi(\varphi(\omega)))g \rangle = 0, \quad \forall f, g \in N_{\varphi},
\]
i.e.,
\[
T^*_\psi(z) |_{N_{\varphi}} = T^*_\psi(\varphi(\omega)) |_{N_{\varphi}}.
\]
Then
\[e' \in \ker T^*_\psi(z) \cap \ker T^*_\psi(\varphi(\omega)) \cap N_{\varphi}.
\]
Let
\[\psi_0(z) = \prod_{i=1}^{N-1} z - \alpha_i. \]

By the fact that
\[T_z^* e' = T_{\varphi(\omega)}^* e', \]
moreover the conclusion (3.2) is equivalent to the following:
\[[\psi_0(z) - \psi_0(\varphi(\omega))] e' = [\psi(z) - \psi(\varphi(\omega))] T_z^* e'. \]
(3.5)

In fact,
\[(\psi(z) + \psi(\varphi(\omega))) e' \in N_0 \]
\[\iff (T_z^* - T_{\varphi(\omega)}^*)(\psi(z) + \psi(\varphi(\omega))) e' = 0 \]
\[\iff [\psi_0(z) - \psi_0(\varphi(\omega))] e' = [\psi(z) - \psi(\varphi(\omega))] T_z^* e'. \]

Similarly, by (2.2), we have
\[[\psi_0(z) - \psi_0(\omega)] e(z, \omega) = [\psi(z) - \psi(\omega)] T_z^* e(z, \omega). \]

So
\[\|[\psi_0(z) - \psi_0(\omega)] e(z, \omega) - [\psi(z) - \psi(\omega)] T_z^* e(z, \omega)\|^2 \]
\[= \int_T \int_T \|[\psi_0(z) - \psi_0(\omega)] e(z, \omega) - [\psi(z) - \psi(\omega)] T_z^* e(z, \omega)\|^2 \, dm(z) \, dm(\omega) \]
\[= 0. \]

Then
\[\|[\psi_0(z) - \psi_0(\varphi(\omega))] e(z, \varphi(\omega)) - [\psi(z) - \psi(\varphi(\omega))] T_z^* e(z, \varphi(\omega))\|^2 \]
\[= \int_T \int_T \|[\psi_0(z) - \psi_0(\varphi(\omega))] e(z, \varphi(\omega)) - [\psi(z) - \psi(\varphi(\omega))] T_z^* e(z, \varphi(\omega))\|^2 \, dm(z) \, dm(\omega) \]
(by t = \varphi(\omega))
\[= \int_T \int_T \|[\psi_0(z) - \psi_0(t)] e(z, t) - [\psi(z) - \psi(t)] T_z^* e(z, t)\|^2 \, dm(t) \, dm(z) \, dm(t) \]
\[= \int_T \int_T \|[\psi_0(z) - \psi_0(t)] e(z, t) - [\psi(z) - \psi(t)] T_z^* e(z, t)\|^2 p_0(t) \, dm(z) \, dm(t) \]
\[\leq \frac{1 + |a|}{1 - |a|} \int_T \int_T \|[\psi_0(z) - \psi_0(t)] e(z, t) - [\psi(z) - \psi(t)] T_z^* e(z, t)\|^2 \, dm(z) \, dm(t) \]
\[= 0. \]

Therefore,
\[[\psi_0(z) - \psi_0(\varphi(\omega))] e(z, \varphi(\omega)) = [\psi(z) - \psi(\varphi(\omega))] T_z^* e(z, \varphi(\omega)). \]

Multiplied by \(\lambda_1(\omega) \), we can obtain the conclusion (3.5). The proof is completed.

Remark It is different from Lemma 2.3, \(e' \) in the theorem is not unique. We can let
\[e' = \lambda_1(\omega) e(z, \varphi(\omega)), \]
where \(\lambda_1(\omega) \) is any element of the orthonormal basis of \(H^2(I_\omega) \oplus \varphi(\omega) H^2(I_\omega) \) in Lemma 2.1.
Theorem 3.2 Suppose that $\varphi(\omega)$ be a one variable non-constant inner function, and
\[\psi(z) = z \prod_{l=1}^{N-1} \frac{z - \alpha_l}{1 - \alpha_l z} \quad (|\alpha_l| > 0, \alpha_l \neq \alpha_k (\forall l \neq k), \, 1 \leq l, k \leq N - 1). \]

Pick e' in Theorem 3.1. Then
\[M_{e'} = \text{span}\{p'_n(\psi)e' : n \geq 0\}, \]
where
\[p'_n(\psi) = \psi^n(z) + \psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi(z)\psi^{n-1}(\varphi(\omega)) + \psi^n(\varphi(\omega)) \]
is a non-trivial minimal reducing subspace of $S_{\psi(\omega)}$. Moreover $S_{\psi(\omega)}|_{M_{e'}}$ is unitary equivalent to Bergman shift M_z.

Proof.
\[T^*_n p'_n(\psi)e' - T^*_0 p'_n(\psi)e' \]
\[= T^*_n [\psi^n(z) + \psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi(z)\psi^{n-1}(\varphi(\omega)) + \psi^n(\varphi(\omega))]e' \]
\[- T^*_0 [\psi^n(z) + \psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi(z)\psi^{n-1}(\varphi(\omega)) + \psi^n(\varphi(\omega))]e' \]
\[= [\psi_0(z)\psi^n(z) + \psi_0(z)\psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi_0(z)\psi(z)\psi^{n-1}(\varphi(\omega)) + \psi_0(z)\psi^n(\varphi(\omega))]T^*_n e' \]
\[- [\psi^n(z)T^*_n e' + \psi^{n-1}(z)\psi(\varphi(\omega))e' + \cdots + \psi(z)\psi_0(\varphi(\omega))\psi^{n-1}(\varphi(\omega))e'] \]
\[= \psi_0(z)\psi^n(z)T^*_n e' + \psi^n(z)\psi^{n-1}(z)\psi(\varphi(\omega))e' + \cdots + \psi(z)\psi_0(\varphi(\omega))\psi^{n-1}(\varphi(\omega))e'] \]
\[= p'_n(\psi)(\psi_0(z) - \psi_0(\varphi(\omega)))e' + (\psi^n(\varphi(\omega)) - \psi^n(z))T^*_n e' \]
(by (3.5))
\[= p'_n(\psi)(\psi(z) - \psi(\varphi(\omega)))T^*_n e' + (\psi^n(\varphi(\omega)) - \psi^n(z))T^*_n e' \]
\[= (\psi^n(z) - \psi^n(\varphi(\omega)))T^*_n e' + (\psi^n(\varphi(\omega)) - \psi^n(z))T^*_n e' \]
\[= 0. \]
We have
\[(T^*_n - T^*_0 p'_n(\psi)e' = 0. \]
So
\[p'_n(\psi)e' \in N_{\varphi}. \]

Also,
\[S_{\psi(\omega)}(p'_n(\psi)e') \]
\[= q(\psi)p'_n(\psi)e' \]
\[= q(\psi)\psi^n(z) + \psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi(z)\psi^{n-1}(\varphi(\omega)) + \psi^n(\varphi(\omega))e' \]
\[= q(\psi^{n+1}(z) + \psi^n(z)\psi(\varphi(\omega)) + \cdots + \psi(z)\psi^{n-1}(\varphi(\omega)) + \psi(z)\psi^n(\varphi(\omega)))e' \]
of these minimal reducing subspaces is unitary equivalent to the Bergman shift
\[\dim(H)\]
Hence by (3.6) and (3.7),
\[M_{e'} = \frac{n+1}{n+2} p_{n+1}'(\psi)e' \in M_{e'}, \]
and
\[S_{\psi(z)}(p_{n}'(\psi)e') = q\psi(z)p_{n}'(\psi)e'\]
\[= q\psi(z)\psi^n(z) + \psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi(\varphi(\omega))e' \]
\[= q\psi(z)\psi^n(z) + \psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi(\varphi(\omega))e' + \psi^n(\varphi(\omega))T_{\psi(z)}^*e' \]
(by (3.1))
\[= q\psi(z)\psi^n(z) + \psi^{n-1}(z)\psi(\varphi(\omega)) + \cdots + \psi(\varphi(\omega))e' \]
\[= p_{n-1}'(\psi)e' \in M_{e'}. \] (3.7)
Hence by (3.6) and (3.7), \(M_{e'}\) is the non-trivial reducing subspace of \(S_{\psi(z)}\). Because \(|\psi(z)| = |\psi(\varphi(\omega))| = 1\ a.e. on \(T^2\),
then
\[p_{n}'(\psi)p_{n}'(\psi) = \left\{ \begin{array}{ll}
\sum_{k+l=n-m, k \leq n} c_{k,l} \psi^k(z)\psi^l(\varphi(\omega)), & \text{if } m > n; \\
\sum_{-n \leq k \leq n, k \neq 0} c_k \psi^k(z)\psi^{-k}(\varphi(\omega)) + (n+1), & \text{if } m = n \\end{array} \right. \text{ a.e. on } T^2. \]
Since \(e' \in \ker T_{\psi(z)}^* \cap \ker T_{\psi(\varphi(\omega))}^* \cap N_{e'}\), it is easy to check
\[(p_{n}'(\psi)e', p_{m}'(\psi)e') = \left\{ \begin{array}{ll}
0, & \text{if } m \neq n; \\
n+1, & \text{if } m = n. \end{array} \right. \]
Therefore, \(\left\{ \frac{p_{n}'(\psi)e'}{\sqrt{n+1}} : n = 0, 1, \cdots \right\} \) is an orthonormal basis for \(M_{e'}\). By (3.6) we can define a unitary transformation
\[W_1 : M_{e'} \to L^2_0(D), \]
\[\frac{p_{n}'(\psi)e'}{\sqrt{n+1}} \to \sqrt{n+1}z^n \]
such that
\[W_1S_{\psi(z)}|_{M_{e'}} = M_nW_1. \]
Hence
\[S_{\psi(z)}|_{M_{e'}} \cong M_n. \]
The proof is completed.

Corollary 3.1 Suppose that \(\varphi(\omega)\) be a one variable non-constant inner function, and
\[\psi(z) = z \prod_{|a_l| > 0, \alpha_l \neq \alpha_k (\forall l \neq k), 1 \leq l, k \leq N-1} \frac{z - a_l}{1 - \alpha_l z} \]
Then the Toeplitz operator \(S_{\psi(z)}\) has at least \(m\) non-trivial minimal reducing subspaces \((m = \dim(H^2(\Gamma_0) \otimes \varphi(\omega)H^2(\Gamma_0))\) and \(m\) may be \(+\infty\). Moreover, the restriction of \(S_{\psi(z)}\) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift \(M_n\).
Theorem 3.3 Suppose that \(\psi(z) \) is a common finite Blaschke product. Then \(S_\psi(z) \) has at least a non-trivial minimal reducing subspace on which the restriction of \(S_\psi(z) \) is unitary equivalent to the Bergman shift.

Proof. Suppose that \(\psi(z) \) is a finite Blaschke product of order \(N \). If \(\psi(z) \) is the finite Blaschke product having zero with multiplicity greater than one, then, by Lemma 2.7, there exists a \(\lambda_0 \in D \) such that \(\psi_{\lambda_0}(z) \) has distinct zeros, where

\[
\psi_{\lambda_0}(z) = (\eta_{\lambda_0} \circ \psi)(z), \quad \eta_{\lambda_0}(z) = \frac{\lambda_0 - z}{1 - \lambda_0 z}.
\]

If \(\psi_{\lambda_0}(0) \neq 0 \), let \(\psi_{\lambda_1}(z) = (\psi_{\eta_{\lambda_0}})(z) \). Suppose that \(\lambda_1 \) satisfies the condition

\[
\psi_{\lambda_0}(\lambda_1) = 0.
\]

Then

\[
\psi_{\lambda_1}(0) = \psi_{\lambda_0}(\eta_{\lambda_1}(0)) = \psi_{\lambda_0}(1) = 0.
\]

Hence \(\psi_{\lambda_1}(z) \) is the case in Theorem 3.2. Therefore, \(S_\psi_{\lambda_1}(z) \) has at least a reducing subspace, denoted by \(M \) and

\[
W_1S_{\psi_{\lambda_0}}|_M = MzW_1.
\]

By \(\eta_{\lambda} \circ \eta_{\lambda}(\omega) = \omega \) and function calculus, one has

\[
S_{\psi(z)} = S_{\psi_{\eta_{\lambda_0}} \circ \psi_{\lambda_0}(z)} = \eta_{\lambda_0}(S_{\psi_{\lambda_0}}(z)) = \frac{\lambda_0 - S_{\psi_{\lambda_0}}(z)}{1 - \lambda_0 S_{\psi_{\lambda_0}}(z)}.
\]

So \(M \) is the reducing subspace of \(S_{\psi(z)} \). We have

\[
W_1S_{\psi(z)}W_1^* = W_1S_{\psi_{\eta_{\lambda_0}} \circ \psi_{\lambda_0}(z)}W_1^* = W_1 \eta_{\lambda_0}(S_{\psi_{\lambda_0}})W_1^* = \eta_{\lambda_0}(W_1S_{\psi_{\lambda_0}}W_1^*) = \eta_{\lambda_0}(Mz) = M_{\eta_{\lambda_0}}.
\]

By [1], there exists a unitary transformation \(W_2 \) such that

\[
W_2M_{\eta_{\lambda_0}}W_2^* = Mz.
\]

Define a unitary transformation:

\[
W : M \to L^2_\omega(D)W = W_2W_1.
\]

Therefore,

\[
WS_{\psi(W)^*} = W_2W_1S_{\psi(W)^*W_1^*} = W_2M_{\eta_{\lambda_0}}W_2^* = Mz,
\]

i.e.,

\[
S_{\psi}|_M \cong Mz.
\]

Corollary 3.2 Suppose that \(\varphi(\omega) \) be a one variable non-constant inner function and \(\psi(z) \) is a common finite Blaschke product. Then \(S_{\psi(z)} \) has at least \(m \) non-trivial minimal reducing
subspaces \((m = \dim(H^2(\Gamma_\omega) \ominus \varphi(\omega)H^2(\Gamma_\omega)))\) and \(m\) may be \(+\infty\). Moreover, the restriction of \(S_{\psi(z)}\) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift \(M_z\).

Proof. It can be easily obtained by Corollary 3.1 and Theorem 3.3.

Acknowledgements The first author would like to thank Prof. Yan Congquan and Prof. Hu Jiuyun for their helpful discussions and suggestions.

References

