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Abstract. The inverse Lax-Wendroff (ILW) procedure is a numerical boundary
treatment technique, which allows finite difference schemes and other schemes
to achieve stability and high order accuracy when using cartesian meshes to
solve boundary value problems defined on complex computational domain. In
this short survey we summarize the main ingredients of the ILW procedure,
discuss its applicability and stability properties, and provide possible direc-
tions of its future development.
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1 Introduction

Finite difference methods are widely used to solve partial differential equations
(PDEs). For example, to solve a hyperbolic equation

ut+ux =0, 0≤ x≤1 (1.1)

with the initial condition u(x,0)=u0(x) and the boundary condition

u(0,t)= g(t), (1.2)
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a finite difference scheme approximates (1.1) on a spatial grid

0= x0< x1< ···< xN =1 (1.3)

and, for simplicity, we assume a uniform grid with the mesh size ∆x= xj+1−xj.
For example, we could use the following finite difference scheme:

un+1
j = aun

j−2+bun
j−1+cun

j +dun
j+1 (1.4)

with suitably chosen constants a,b,c and d (which depend on λ= ∆t
∆x ), approxi-

mating the PDE (1.1) to third order accuracy. Here and below, un
j is the numerical

approximation at the grid point x = xj and at time t = tn, and we assume, for

simplicity, a constant time step size ∆t= tn+1−tn.
The first difficulty associated with the boundary conditions of schemes such

as (1.4) is the wide stencil, e.g., for the scheme (1.4) the stencil consists of four
points {xj−2,xj−1,xj,xj+1}. Notice that the scheme (1.4) cannot be used to com-

pute un+1
1 and un+1

N , if we only have the information of un
j for 0≤ j≤N. We would

need to either define the “ghost point” values un
−1 and un

N+1 and then use the
scheme (1.4), or we could use a different scheme than (1.4) for the computation of

un+1
1 and un+1

N . In either case, we must analyze the stability and accuracy of the
resulting approximations.

For a higher order finite difference scheme, the stencil is wider, and hence
the number of such “abnormal” points near the boundary will be larger, causing
more complications in either of the two approaches above.

The second difficulty associated with the boundary conditions of schemes
such as (1.4) is the possibility that the boundary of the computational domain
may not coincide with the grid points. For example, instead of the grid points
defined in (1.3), we could imagine that the first grid point x0 is not at x= 0, for
example x0=0.4∆x. Such a configuration will make it difficult to apply the given
boundary condition (1.2) which is defined at x= 0. Of course, one might argue
that such choice of grid points seems artificial. But even in one space dimension,
such scenarios cannot be avoided if we are computing a moving (in time) domain
with a fixed spatial grid. In two or higher dimensions, such scenarios will always
happen if we are attempting to solve a PDE defined in a domain with complex
geometry using cartesian meshes.

One of the major problems associated with the second difficulty is the possible
appearance of small cells near the boundary, in the sense that the distance from
the first grid point x0 and the physical boundary x=0 is very small in comparison
with the mesh size ∆x. For many explicit schemes, the ratio of time step size over
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the spatial mesh size must be bounded for stability, thus we might need a very
small time step ∆t to ensure stability due to the fact that x0−0 ≪ ∆x. This is
referred to as the “cut-cell problem” in the literature, which would need special
techniques such as the h-box method in [4, 15] to fix.

If a boundary problem has certain symmetry or anti-symmetry, that is, if we
know the solution is an even or an odd function with respect to the boundary,
then we can use reflecting or symmetric boundary conditions to define the nu-
merical solution at ghost points. For example, if we know u is an even function
with respect to x=0, we can define the grid points symmetrically

··· , x−2=−
3

2
∆x, x−1=−

1

2
∆x, x0=

1

2
∆x, x1=

3

2
∆x, ···

and then define the ghost point values as

··· , u−2=u1, u−1=u0, ··· .

Similarly, if we know u is an odd function with respect to x=0, we can define the
ghost point values as

··· , u−2=−u1, u−1=−u0, ··· .

However, in two or three spatial dimensions, such reflecting or symmetry bound-
ary conditions can only be easily implemented on straight line (plane) bound-
aries. For curved boundaries, it is very difficult to implement such boundary
conditions without using body-fitted meshes.

One commonly used numerical boundary condition treatment is through suit-
able extrapolation, namely build an interpolating polynomial using several grid
point values inside the computational domain, and then read its values at the
ghost points to serve as the ghost point values of the numerical solution. This
approach has been analyzed for stability in e.g. [23–25, 40]. In general, suitable
extrapolation leads to stable approximations at the outflow boundary for hyper-
bolic equations (e.g. near x = 1 for the PDE (1.1)), but care must be taken if it
is used near the inflow boundary (e.g. near x = 0 for the PDE (1.1)) to ensure
stability.

In this survey we will briefly describe and summarize a class of boundary
condition treatments, termed the inverse Lax-Wendroff (ILW) procedure, initially
developed in [18, 41], which can be applied to many boundary value problems
resulting in stable and high order accurate approximations. For a handbook entry
of the ILW procedure (development until 2017) we refer to [39].
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As related earlier work, we would like to mention [12, 13], which initialized
the idea of converting spatial derivative near the boundary to temporal deriva-
tives for solving one-dimensional linear hyperbolic initial-boundary value prob-
lems. We would also like to mention the embedded boundary method for solv-
ing the wave equation with Dirichlet or Neumann boundary conditions by using
finite difference methods on cartesian grids [1, 23–25, 35]. In [40] the authors ap-
plied this method to hyperbolic conservation laws and obtained a second order
accurate scheme. Baeza et al. [2, 3] extended the approach from second order to
fifth order using Lagrange extrapolation with a filter for the detection of discon-
tinuities.

We should mention that a commonly used method of using finite difference
schemes to solve problems in complex geometry is to generate a boundary fit-
ted mesh which allows the given boundary conditions to be imposed directly.
As a result, the governing equations are often transformed into a new differen-
tial form in a curvilinear coordinate system, e.g. [21]. If the domain is relatively
simple, a smooth mapping can be found to transform the whole domain. How-
ever, in more complex cases, composite overlapping meshes are needed to fit
the physical boundaries, while these meshes are connected via interpolation, see
e.g. [9,16,17,37]. The drawback of this approach is the difficulty in generating the
body-conforming grids, especially if the boundary changes with time. We will
not discuss this approach in this survey paper.

2 The basic idea

The basic idea of the ILW procedure can be best described by the following simple
example, namely solving (1.1) with the boundary condition (1.2). Our task is to
define suitably a value un

−1 at the ghost point x−1, after which the scheme (1.4)

can be used to compute un+1
1 .

Before describing the basic ideas of the ILW procedure, let us first look at the
tradition Lax-Wendroff (LW) procedure [26]. To solve the PDE (1.1), we start from
a Taylor expansion in time

un+1
j =uj+(ut)j∆t+

1

2
(utt)j∆t2+··· ,

where we have omitted the time level n superscripts on the right-hand side. We
then replace the time derivatives by the spatial derivatives through repeatedly
using the PDE (1.1)

(ut)j=−(ux)j,
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(utt)j=−
(

(ux)t

)

j
=−

(

(ut)x

)

j
=(uxx)j

etc. We then obtain

un+1
j =uj−(ux)j∆t+

1

2
(uxx)j∆t2+··· (2.1)

and each spatial derivative in (2.1) can be approximated by a suitable finite dif-
ference, e.g. on second order level we can use

(ux)j≈
uj+1−uj−1

2∆x
, (uxx)j ≈

uj+1−2uj+uj−1

∆x2
,

to obtain the classical second order (in space and time) LW scheme

un+1
j =un

j −
λ

2

(

un
j+1−un

j−1

)

+
λ2

2

(

un
j+1−un

j +un
j−1

)

,

where λ= ∆t
∆x .

We now look at the basic idea of the ILW procedure, by switching the roles of
x and t in the traditional LW procedure (hence the word “inverse”). Suppose we
are solving (1.1) with the boundary condition (1.2), and suppose the boundary
x= 0 is of distance a∆x from the nearby grid point xj (with a constant a, which
may not be an integer, and can be either positive or negative depending upon
whether xj is inside or outside the computational domain). The ILW procedure
to determine uj is as follows: We perform a Taylor expansion in space

uj =u(0,t)+ux(0,t)a∆x+
1

2
uxx(0,t)(a∆x)2+

1

6
uxxx(0,t)(a∆x)3+··· . (2.2)

We then replace the spatial derivatives by the time derivatives through repeatedly
using the PDE (1.1)

ux =−ut, ux(0,t)=−ut(0,t)=−g′(t),

uxx =(−ut)x =−(ux)t =utt, uxx(0,t)=utt(0,t)= g′′(t),

uxxx =(utt)x =(ux)tt =−uttt, uxxx(0,t)=−uttt(0,t)=−g′′′(t),

etc. Notice that, since the boundary condition g(t) is given, we can obtain its
derivatives g′(t), g′′(t), g′′′(t) etc. either analytically (if g(t) is given by a formula),
or by a very accurate finite difference approximation (if g(t) is only given at some
or all values of t but not by a formula). Finally, by (2.2), we have the third order
approximation of uj as

uj = g(t)−a∆xg′(t)+
1

2
(a∆x)2g′′(t)−

1

6
(a∆x)3g′′′(t) (2.3)
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and we can certainly go to any higher order of accuracy as we wish. Notice
that we have used only the PDE (1.1) and the given boundary condition (1.2)
repeatedly to obtain the approximation (2.3), hence it is very easy to prove, by
the GKS (Gustafsson, Kreiss and Sundström) analysis [14], that the scheme (1.4)
using the ghost values un

−1 obtained through (2.3) with j=−1, a=−1 is a stable
scheme under the same time step restriction as that for the internal scheme (1.4)
with periodic boundary conditions.

3 Steady state Hamilton-Jacobi equations

If we are interested in obtaining steady state solution of the Hamilton-Jacobi
equation

H(φx,φy)= f (x,y) (3.1)

together with suitable boundary conditions, we can use a Runge-Kutta or other
time-stepping methods to march in time for the time dependent PDE

φt+H(φx,φy)= f (x,y) (3.2)

until steady state is reached, but that is usually rather slow. One class of ef-
fective numerical methods to speed this up is the fast sweeping method [7, 50],
which uses Gauss-Seidel sweeping with different directions alternatively to reach
steady state faster than explicit time stepping. For high order finite difference fast
sweeping methods [49], the first few points near an inflow boundary cannot be
computed by the scheme. For example, if we are solving (3.1) over the domain

0≤ x≤1, 0≤y≤1

and assuming Hu > 0, Hv > 0 for the Hamiltonian H(u,v), the suitable boundary
condition to prescribe is

φ(0,y)= g1(y), φ(x,0)= g2(x). (3.3)

We use a uniform spatial grid

0= x0< x1< ···< xN =1, 0= xy<y1< ···<yN =1

with uniform mesh sizes ∆x=xi+1−xi and ∆y=yj+1−yj for simplicity, and third
order upwind biased approximations to the partial derivatives

(φx)i,j≈
a1φi−2,j+b1φi−1,j+c1φi,j+d1φi+1,j

∆x
,

(φy)i,j≈
a2φi,j−2+b2φi,j−1+c2φi,j+d2φi,j+1

∆y
, (3.4)
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where the coefficients ak,bk,ck and dk are either constants or they could nonlin-
early depend on φ for a weighted essentially non-oscillatory (WENO) approxi-
mation [19], then the scheme (3.4) cannot be used to compute φ1,j and φi,1 with
only the given boundary condition (3.3)

φ0,j= g1(yj), φi,0= g2(xi).

We could either use a lower order scheme to compute φ1,j and φi,1, resulting in
degeneration of accuracy throughout the computational domain (as errors will
propagate into the computational domain through sweeping), or we could pre-
scribe also φ1,j and φi,1 by the exact solution if this information is available (how-
ever, of course they are not in general available).

In [18], a Lax-Wendroff procedure is designed to overcome this difficulty,
which is explained as follows. Consider Taylor expansion in x

φ(x1,yj)=φ(0,yj)+∆xφx(0,yj)+
∆x2

2
φxx(0,yj)+O(∆x3)

hence our desired approximation for the third order scheme is

φ1,j=φ(0,yj)+∆xφx(0,yj)+
∆x2

2
φxx(0,yj).

We already have φ(0,yj) = g(yj). The PDE (3.1), evaluated at the point (0,yj),
becomes

H
(

φx(0,yj),g
′(yj)

)

= f (0,yj), (3.5)

in which the only unknown quantity is φx(0,yj). Solving this (usually nonlinear)
equation should give us φx(0,yj). Notice that the assumption Hu > 0 guarantees
that the nonlinear algebraic equation (3.5) has a unique solution. This is the only
nonlinear algebraic equation to solve in the Lax-Wendroff procedure, as we can
see below, all higher order terms satisfy linear equations.

To obtain φxx(0,yj), we first take the derivative with respect to y on the original
PDE (3.1), and then evaluate it at the point (0,yj), which yields

Hu

(

φx(0,yj),g
′(yj)

)

φxy(0,yj)+Hv

(

φx(0,yj),g
′(yj)

)

g′′(yj)= fy(0,yj). (3.6)

In this equation the only unknown quantity is φxy(0,yj), hence we obtain easily
its value since, by assumption, Hu>0.

We then take the derivative with respect to x on the original PDE (3.1), and
evaluate it at the point (0,yj) to obtain

Hu

(

φx(0,yj),g
′(yj)

)

φxx(0,yj)+Hv

(

φx(0,yj),g
′(yj)

)

φxy(0,yj)= fx(0,yj).
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This time, the only unknown quantity is φxx(0,yj), which we can obtain readily
from this equality.

It is clear that this procedure can be carried out to any desired order of accu-
racy. Also, the inflow boundary can be any piece of a smooth curve and does not
need to be aligned with the mesh points: we only need to change the x and y par-
tial derivatives to normal and tangential derivatives with respect to the bound-
ary. Then, the original PDE and its normal and tangential derivatives will give
us equations relating a desired normal derivative in terms of the function and its
tangential derivatives along the boundary, which are given by the boundary con-
dition. We refer to [18, 46] for more details and numerical experimental results.

This Lax-Wendroff procedure works extremely well and allows us to compute
steady state solutions of the Hamilton-Jacobi equations defined in complex geom-
etry (e.g. in a circle) using rectangular meshes not aligned with the computational
domain boundary. This procedure has also been applied to fast sweeping discon-
tinuous Galerkin methods for solving steady state solutions of Hamilton-Jacobi
equations [27, 48], with excellent convergence of only a few sweeps independent
of the mesh sizes.

4 Time dependent hyperbolic equations

The same idea we mentioned in Section 2 can be used to solve multi-dimensional
hyperbolic conservation law systems, e.g.

ut+ f (u)x+g(u)y =0,

where, for systems, we assume hyperbolicity, namely ξ1 f ′(u)+ξ2g′(u) is diag-
onalizable with real eigenvalues and a complete set of eigenvectors for any real
coefficients (ξ1,ξ2). See [41]. The main ingredients can be summarized as follows:

1. Perform a Taylor expansion in the normal direction (relative to the bound-
ary) to link the point at which the solution value is desired to a point on the
computational boundary.

2. The inflow boundary is treated by the ILW procedure, via repeatedly using
the PDE and its tangential and normal derivatives (relative to the bound-
ary), to rewrite a desired normal derivative in terms of the values of the
function as well as its tangential and temporal derivatives along the bound-
ary, which are all given by the inflow boundary condition.
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3. Suitable extrapolation can be used near the outflow boundary. Such ex-
trapolation can be based either on standard polynomial extrapolation or
on WENO extrapolation [20]. Suitable WENO extrapolation procedures for
ILW have been discussed in, e.g., [34, 38].

4. For hyperbolic systems, the boundary can contain both inflow and outflow
components. The ILW procedure for the incoming characteristic variables
and the extrapolation for the outgoing characteristic variables are then com-
bined to deal with the boundary condition.

One difficulty of the ILW procedure, especially for nonlinear systems in multi-
ple-dimensions, is that the algebra becomes very heavy for higher order deriva-
tives.

In [44], a simplified version of this inverse Lax-Wendroff procedure (SILW)
is proposed. The standard ILW procedure is used only to compute the first or-
der normal derivative, subsequent higher order normal derivatives are then ob-
tained by standard extrapolation with suitable order of accuracy. This SILW pro-
cedure worked well for the computational examples in [44], in which the physical
boundaries are aligned with the mesh points. For such cases and for the fifth or-
der WENO schemes, this SILW procedure provides stable and accurate results for
the very demanding detonation problems [44].

While stability is guaranteed for the original ILW procedure as can be easily
analyzed by the GKS theory [14], analysis must be performed to find out how
many normal derivatives must be performed in the SILW procedure to guaran-
tee stability under the same time step restriction as that for the internal scheme,
regardless of the relative location of the first grid point to the boundary (i.e. free
from the “cut-cell” problem). In [45], a rigorous stability analysis using the GKS
theory as well as a simplified eigenvalue analysis has been performed, for a class
of central compact schemes developed in [32], Such analysis has also performed
for upwind-biased finite difference schemes (prototypes of WENO schemes with
linear weights) in [29]. We refer to [29, 45] for the detailed analysis and conclu-
sions, which give very important guidance on how many terms to be retained
by the ILW procedure in practical computation, to minimize the cost and yet to
guarantee stability.

When solving nonlinear conservation laws

ut+ f (u)x =0,

if the boundary condition is given at the left boundary x=0

u(0,t)= g(t),
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then the ILW procedure is to obtain ux(0,t) through the PDE

ux(0,t)=−
ut(0,t)

f ′(u(0,t))
=−

g′(t)

f ′(g(t))
.

This works well if f ′(g(t))> 0 (to justify giving a boundary condition at the left
boundary x=0), but it causes problems if f ′(g(t)) is very close to zero or is zero
(close to or at the sonic points). This makes the computation using ILW or SILW
procedures difficult for transonic boundaries, i.e. boundary where the inflow
boundary becomes an outflow boundary, or vice versa, during the time interval
of computation.

In [34], an alternative procedure is introduced to obtain the values of f (u)
(instead of u) at the ghost points by the ILW procedure. Then, we would need
f (u)x at x=0, which can be readily obtained as

(

f (u)x

)

|(0,t)=−ut(0,t)=−g′(t).

The remaining higher spatial derivatives of f (u) are obtained by extrapolation.
This alternative procedure works well at or near sonic points, allowing a smooth
transition from inflow to outflow boundaries, especially for systems.

An important issue for conservation laws is numerical conservation. While
this is straightforward for finite volume schemes, the very definition of conserva-
tion is not clear for finite difference schemes.

For a conservative finite difference scheme

un+1
j =un

j −
∆t

∆x

(

f̂ j+ 1
2
− f̂ j− 1

2

)

, (4.1)

where uj is an approximation to the point value of the solution u(x,t) at x= xj,
the locally conserved variable appears to be uj∆x (in the sense that its change
over time is purely due to the net inflow and outflow through the cell boundaries
x= xj−1/2 and x= xj+1/2), and the conserved total “mass” appears to be

S̃=
N

∑
j=0

uj∆x, (4.2)

in the sense that
S̃n+1= S̃n−∆t

(

f̂N+ 1
2
− f̂− 1

2

)

and, with periodic or compactly supported boundary conditions, f̂N+1/2= f̂−1/2

and we have total “mass” conservation

S̃n+1= S̃n.
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In fact, the local “mass” is related to the true local mass by

uj∆x= ūj∆x+O(∆x3),

where

ūj=
1

∆x

∫ x
j+ 1

2

x
j− 1

2

u(x,t)dx

is the cell average. It would appear that the local “mass” is only a third order
approximation to the true local mass ūj∆x in smooth regions, however the total

“mass” S̃, as defined in (4.2), is equal to the true total mass S

S=
∫ b

a
u(x,t)dx (4.3)

for any N-th degree trigonometric polynomial (assuming N is even for conve-
nience)

u(x)=

N
2

∑
k=− N

2

akeikx. (4.4)

That is,

S̃=
N

∑
j=0

uj∆x=
N

∑
j=0

ūj∆x=S,

if the point values uj and the cell averages ūj are both from an N-th degree
trigonometric polynomial (4.4). Therefore, a conservative finite difference scheme
(4.1) conserves the total “mass” S̃ as defined in (4.2), which is a spectrally accu-
rate approximation to the true total mass S as defined in (4.3), for any smooth
periodic or compactly supported solutions.

However, if the solution is not periodic or compactly supported, then we only
have

S̃=
N

∑
j=0

uj∆x=
N

∑
j=0

ūj∆x+O(∆x2)=S+O(∆x2). (4.5)

That is, the total “mass” S̃, as defined in (4.2), is only a second order approxi-
mation to the true total mass S for non-periodic functions. Therefore, if a finite
difference scheme conserves the total “mass” S̃ (subject to net inflow and outflow
at the domain boundaries), it can only be second order accurate. This problem
exists already for regular finite difference schemes, but is compounded by the
ILW procedure at the numerical boundaries.

In [10], conservative finite difference schemes were obtained using the ILW
procedure, with the following ingredients:
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• Using the numerical quadrature formula

∫ ∞

0
h(x)dx=∆x

+∞

∑
j=0

ωjh(xj)+O
(

(∆x)ν), (4.6)

where the weights ωj depend on ν, but ωj=1 for j≥ν, we define the numer-
ical total mass consistent with high order accuracy to the true total mass as

S̃=
N

∑
j=0

ωjuj∆x. (4.7)

• We modify the numerical fluxes near the boundary (the modification is local
and is a high order accuracy perturbation from the original inverse Lax-
Wendroff scheme), so that the resulting scheme is conservative (subject to
inflow and outflow) with respect to the numerical total mass (4.7).

• The conservative inverse Lax-Wendroff scheme works equally well as the
original inverse Lax-Wendroff scheme in accuracy and non-oscillatory per-
formance, through extensive numerical tests, and it shows an advantage in
shock location resolution for long time simulation.

In [51], an ILW procedure is designed for the boundary treatment of implicit-
explicit (IMEX) Runge-Kutta method for hyperbolic systems with stiff source
terms. The ILW procedure has been applied to boundary conditions of the Boltz-
mann type models in [11] and of the simulations of relativistic stars in [47], among
others. Engineering applications of the ILW and SILW procedures can be found
in, e.g., [6, 22].

5 The ILW procedure for problems involving

complex moving geometries

We can easily extend the ILW and SILW procedures, defined on fixed geometry,
to deal with problems of solutions involving complex moving geometries.

For problems in such geometries, it is difficult to use body-fitted meshes which
conform to the moving geometry. Instead, methods based on fixed cartesian
meshes have been successfully developed. For example, the immersed bound-
ary (IB) method introduced by Peskin [36] is widely used. One of the challenges
of the IB method is the representation of the moving objects which cut through
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the grid lines in an arbitrary fashion. To solve compressible inviscid flows in
complex moving geometries, most methods in the literature are based on finite
volume schemes. The challenge mainly comes from the so-called “small-cell”
problem. Namely, one obtains irregular cut cells near the boundary, which may
be orders of magnitude smaller than the regular grid cells, leading to a severe
time step restriction. Also, in terms of accuracy, most finite volume schemes in
the literature are at most second order. In particular, the errors at the boundaries
sometimes often fall short of second order.

Our ILW procedure can be extended to such situations with moving geome-
tries. The only change is to obtain relationships between the temporal and spatial
derivatives via the PDE in the moving Lagrangian framework. That is, in replac-
ing the usual time derivatives by the material derivatives (measured along the
moving boundary) in the ILW procedure. We refer to [42] for the details. See
also [43].

6 Convection-diffusion equations

The extension of the ILW and SILW procedures to convection-diffusion equa-
tions is non-trivial, since totally different boundary treatments are needed for
the diffusion-dominated and the convection-dominated regimes.

Let us first look at the simple example of the heat equation

ut =uxx , 0< x<∞

with the boundary condition

u(0,t)= g(t).

If we perform a Taylor expansion at x=0

uj=u(0,t)+ux(0,t)xj+
1

2
uxx(0,t)x2

j +··· ,

then the ILW procedure can only determine the even order derivatives

u(0,t)= g(t), uxx(0,t)= g′(t), ···

and the odd derivatives must be obtained by extrapolation.
Stability of such ILW procedure, when the relative location of the bound-

ary and the closest grid point is arbitrary, and for both Dirichlet and Neumann
boundary conditions, is systematically analyzed in [28, 30].
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Now, suppose we have a convection-diffusion equation

ut+aux = εuxx , 0< x<∞

with the boundary condition
u(0,t)= g(t).

There are two ways of applying the ILW procedure to obtain the first two spatial
derivatives:

1. The first approach is to use extrapolation to obtain the second derivative
uxx(0,t)=uext

xx , and then use the ILW procedure to obtain the first derivative

ux(x,0)=−
1

a

(

g′(t)−εuext
xx

)

.

The remaining derivatives can be obtained similarly. This is the approach
for the purely convection equation (ε=0), hence it is expected to work well
for convection-dominated situation.

2. The second approach is to use extrapolation to obtain the first derivative
ux(0,t)=uext

x , and then use the ILW procedure to obtain the second deriva-
tive

uxx(x,0)=
1

ε

(

g′(t)+auext
x

)

.

The remaining derivatives can be obtained similarly. This is the approach
for the purely diffusion equation (a= 0), hence it is expected to work well
for diffusion-dominated situation.

In [33], a carefully designed combination of the boundary treatments for the
two regimes has been proposed and a stable and accurate boundary condition for
general convection-diffusion equations has been obtained, which worked well for
various test cases including compressible Navier-Stokes equations. Engineering
applications can be found in, e.g., [5, 8, 31].

7 Concluding remarks

In this short survey, we have demonstrated an inverse Lax-Wendroff (ILW) pro-
cedure for boundary treatment, which yields stable discretization with the same
CFL number as the inner scheme and allows us to compute problems on arbi-
trary domains using cartesian meshes. The technique can be applied to inviscid
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and viscous flows with complex moving geometries, yielding stable and high or-
der accurate solutions. The simplified ILW (SILW) procedure further improves
the efficiency and effectiveness of such boundary treatments.

Current and future extensions of the ILW procedure would involve a gener-
alization of this technique to other schemes such as the discontinuous Galerkin
method, and to problems with deformable structures and interface problems.
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