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Abstract. We investigate some geometric properties of the curl operator, based
on its diagonalization and its expression as a non-local symmetry of the pseudo-
derivative (−∆)1/2 among divergence-free vector fields with finite energy. In
this context, we introduce the notion of spin-definite fields, i.e. eigenvectors of
(−∆)−1/2curl. The two spin-definite components of a general 3D incompress-
ible flow untangle the right-handed motion from the left-handed one. Having
observed that the non-linearity of Navier-Stokes has the structure of a cross-
product and its weak (distributional) form is a determinant that involves the
vorticity, the velocity and a test function, we revisit the conservation of energy
and the balance of helicity in a geometrical fashion. We show that in the case of
a finite-time blow-up, both spin-definite components of the flow will explode
simultaneously and with equal rates, i.e. singularities in 3D are the result of
a conflict of spin, which is impossible in the poorer geometry of 2D flows. We
investigate the role of the local and non-local determinants

∫ T

0

∫

R3
det
(

curlu,u,(−∆)θu
)
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and their spin-definite counterparts, which drive the enstrophy and, more gen-
erally, are responsible for the regularity of the flow and the emergence of sin-
gularities or quasi-singularities. As such, they are at the core of turbulence
phenomena.

AMS subject classifications: 35Q30, 35B06, 76D05, 76F02

Key words: Navier-Stokes, vorticity, hydrodynamic spin, critical determinants, turbu-
lence.

1 Introduction

The initial value problem for the Navier-Stokes system for incompressible fluids
is usually written as





∂u

∂t
+(u·∇)u−ν∆u=−∇p, divu=0,

u|t=0=u0.
(1.1)

Here u= u(t,x) is a time-dependent vector field on R3, the viscosity ν is a posi-
tive parameter (expressed in Stokes, i.e. L2

T
−1) and u0 is a given divergence-free

vector field.
In 1934, Leray [58] proved the existence of global weak solutions in L∞

t L2
x∩

L2
t Ḣ1

x. In 3D, the question of their uniqueness remains elusive and is intimately
connected to deciding whether the weak solutions enjoy a higher regularity. Well-
posedness in various function spaces has been studied thoroughly and culmi-
nates in Koch and Tataru’s result [52] if the data u0 is small in the largest (i.e. less

constraining) function space (called BMO−1) that is scale and translation invari-
ant and on which the heat flow remains locally uniformly in L2

t,x.
The set of singular times may or not be empty, but it is a compact subset of

R+, whose Hausdorff measure of dimension 1
2 is zero. The celebrated theorem of

Caffarelli et al. [17] ensures that singularities form a subset of space-time whose
parabolic Hausdorff measure of dimension 1 vanishes too (see also Arnold and
Craig [2]).

Note that Eq. (1.1) corresponds to an Eulerian point of view, i.e. it describes
the movement of the fluid in a fixed reference frame. The natural question of
tracking individual fluid particles, i.e. the Lagrangian point of view, is equivalent
to the existence of a flow ξ :R+×Rd→Rd

∂ξ

∂t
=u
(

t,ξ(t,x)
)

, ξ(0,x)= x. (1.2)
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The volume preserving map ξ(t,·) tracks the deformations of the fluid [22, 40].
For a comprehensive covering of most of the classical theory of Navier-Stokes,

we refer the reader to, e.g., Lemarié’s book [57] and the references therein. Bersel-
li’s recent book [9] offers an interesting complement that blends theoretical results
on the energy fluxes with numerical methods and turbulence theory. Davidson’s
book [34] provides valuable physical insight on the latter subject.

In the next few lines, we will present a small subset of these classical results,
not necessarily in chronological order, to provide some background on the ar-
duous question of the regularity of the solutions. Then we will expose our own
contribution, which is a new geometric approach based on the diagonalization of
the curl operator.

1.1 Classical regularity theory near a singular event

The behavior of smooth solutions of the Navier-Stokes equation as they approach
a (still conjectural) finite blow-up time has been studied very carefully.

For the Ḣ1 semi-norm, a precise rate has been known since Leray [58]: if the
first time of singularity T∗ of a smooth solution is finite, then

‖∇u(t)‖L2 ≥ C

(T∗−t)
1
4

· (1.3)

This inequality is the immediate consequence of a bootstrap of the local well-
posedness result for data in H1, when one takes into account that if u0 blows up
at time T∗, then u(t) will blow up at time T∗−t. Similarly, for any 0<γ<

1
2 and

p= 3
(1−2γ)

‖u(t)‖
Ḣ

1
2+2γ &‖u‖Lp ≥ Cγ

(T∗−t)γ
· (1.4)

The endpoint L∞ is admissible with rate γ= 1
2 .

Thanks to the energy inequality and the Sobolev embedding, any Leray solu-

tion enjoys a uniform control in L∞
t L2

x∩L2
t L6

x , so in particular in L4
t L3

x and L2+2/3
t L4

x.
Various authors including Chemin†, Foias et al. [39] and Cordoba et al. [33] in-
dependently observed that the amplitude of Leray solutions is controlled in
L1

loc(R+;L∞(R3)) i.e.

∀T>0,
∫ T

0
‖u(t)‖L∞ dt<∞. (1.5)

This result is now known as the absence of squirt singularities (see e.g. [57, §11.6]).

†Personal communication (2004) and unpublished lecture notes.
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In [74], Vasseur proved a family of estimates in various function spaces as
long as the solution remains smooth, one of which reads

∫ T∗

0
∑
|k|≤2

∥∥∇ku(t)
∥∥

L1dt≤C
(

1+‖u0‖4
L2

)
(1.6)

with a constant C that does not depend on the solution u, nor on the blow-up
time T∗. Interpolation between (1.5) and (1.6) ensures that

∀p∈ [1,∞],
∫ T∗

0
‖u(t)‖Lp dt<∞. (1.7)

Using the energy inequality (1.7) can obviously be improved to Lq([0,T∗);Lp)
with 




q=1− 3

p
, if p≥6,

2

q
+

3

p
=

3

2
, if 2≤ p≤6,

q=
p

2−p
, if 1≤ p≤2.

These universal qualitative upper bounds are in sharp contrast with the lower
bounds, which generalize (1.3)-(1.4) in the case of a finite time blow-up. Regard-
ing the supremum norm, (1.4) implies

∫ T∗

0
‖u(t)‖2

L∞ dt=+∞. (1.8)

In very rough terms and unless the amplitude oscillates wildly near T∗, the be-
havior depicted by (1.5) and (1.8) suggests that

C∞

(T∗−t)
1
2

≤‖u(t)‖L∞ ≤ C(u)

T∗−t
·

To “thicken” the peaks of amplitude, one may look at uniform bounds for the
heat flow, i.e. Besov norms of negative regularity index. The quantitative lower
bound of Chemin & Gallagher [20]

‖u(t)‖
Ḃ
−1+2γ
∞,∞

=sup
τ>0

τ
1
2−γ
∥∥eτ∆u(t)

∥∥
L∞ ≥ Cγ

(T∗−t)γ
, 0<γ<

1

2
(1.9)

is coherent with the previous intuition when γ = 1
2 . The second endpoint (γ =

0) requires special care because it is also the end of the chain of critical scale-
invariant spaces

Ḣ
1
2 ⊂L3⊂BMO−1⊂ Ḃ−1

∞,∞
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i.e. Galilean invariant spaces X ⊂ S ′(R3) whose norm satisfies the additional
relation ‖λu(λx)‖X = ‖u(x)‖X (see Meyer [65] and also [20, Proposition 1.2]).
Kato’s [51] and Escauriaza et al. [47] theorems state that

liminf
t→T∗

‖u(t)‖L3 ≥ c0, limsup
t→T∗

‖u(t)‖L3 =+∞.

Later, Seregin [69] proved that there are no major fluctuations of the L3 norm near
the blow-up time, i.e.

lim
t→T∗

‖u(t)‖L3 =+∞ (1.10)

and a quantitative polylogarithmic rate was obtained recently by Tao [71]

limsup
t→T∗

‖u(t)‖L3(
logloglog 1

T∗−t

)c =+∞. (1.11)

However, a simple scaling argument (see [6, §5.1]) forces the inferior limit (over
all solutions) to be zero in (1.11) and in any similar estimate with a diverging
rate, i.e. fluctuations of the L3 norm will sometimes be visible at this time-scale.
Soon afterwards, Barker & Prange [7] investigated the possibility of reducing the
length of the polylogarithm.

The well known Ladyzhenskaya-Prodi-Serrin condition reads

∫ T∗

0
‖u(t)‖q

Lp dt=+∞ for
2

q
+

3

p
=1, p>3. (1.12)

Note that (1.10) corresponds to the endpoint p = 3, while (1.8) matches p = ∞.
This second endpoint was investigated by Kozono & Taniuchi [53], who even
generalized it to the (larger) BMO space.

The blow-up of scale-invariant Besov norms of negative regularity index was
obtained by Gallagher et al. [41]. This lower bound implies that most supercritical
norms i.e. Galilean invariant space-time function spaces Y such that

∥∥λu(λ2t,λx)
∥∥

Y
≤Cλ1−γ‖u(t,x)‖Y

with γ<1 will also blow up. For the subtle behavior at the endpoint among crit-
ical spaces, i.e. Ḃ−1

∞,∞, we refer to Cheskidov & Shvydkoy [25] and Ohkitani [66].
Concerning spaces of higher regularity, we have known since Kato that

∫ T∗

0
‖∇u‖L∞ =+∞. (1.13)
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The celebrated Beale-Kato-Majda criterion [8, 68] reads

∫ T∗

0
‖curlu‖L∞ =+∞ (1.14)

and various generalizations in more involved function spaces are possible (see
e.g. [53, 68]). We will briefly present Cheskidov & Shvydkoy’s [26] variant of this
criterion (see Eq. (4.28) below).

Alternatively, each of the identities (1.8), (1.10), (1.12)-(1.14) can also be stated
as a regularity criterion. If the left-hand side integral is finite on some time inter-
val [0,T], then the corresponding solution remains regular up to and including
at time T, i.e. one has T∗

>T. Numerical investigations of quasi-singularities are
still underway, e.g. by Sverak et al. [45, 48], who possibly hint at the existence of
actual singularities, or by Protas et al. [5, 49, 50], who seek flows that maximize
the growth of various norms.

Let us close this first panorama by a word of caution. The heat equation
is justly considered as the archetype of a well behaved parabolic regularizing
model. Its solution is indeed obtained by convolution with a Gaussian kernel

et∆u0=
∫

R3
u0(x−

√
ty)W(y)dy with W(y)=(4π)−

3
2 e−

y2

4 . (1.15)

However, as shown by Tychonov [38, 72], this solution is not the only one if one

fails to restrict the growth of u at infinity to, e.g., O(ecx2
). For any α ∈ R, the

following function is a smooth (but not tempered) solution of the heat equation
that coincides with u0 at t=0:

u(t,x)+α
∞

∑
n=0

Pn

(
1

t

)
e
− 1

t2 H(t)
x2n

(2n)!
· (1.16)

Here u = et∆u0, H(t) is the Heaviside function, P0 = 1 and Pn+1(z) = 2z3Pn(z)+
P′

n(z) are the polynomials involved in the computation of the n-th derivative of

e−1/t2
. While this type of instability may seem far from the physical range of

validity of hydrodynamical models, it remains instructive (see also [59]).

1.2 Geometric regularity theory near a singular event

All the criteria that we have mentioned up to now are obviously isotropic and do
not rely on any geometric structure of the flow. There have been a few remarkable
attempts to take into account the geometric nature of the Navier-Stokes equation
and we shall now present them briefly.



N. Lerner and F. Vigneron / Commun. Math. Res., 38 (2022), pp. 449-497 455

A striking example of the importance of the geometry for hydrodynamics
is turbulence, where radically anisotropic structures (vortex filaments and pan-
cakes) play a central role [34]. This observation suggests that the most funda-
mental and universal behavior of fluids is a microlocal cascade. However, it is
equally important (and more feasible) to describe the consequences of these in-
teractions at intermediary scales, for example by estimating the growth of norms
of geometric quantities.

An important step in this direction was achieved by Constantin & Fefferman
[28, 29], who studied the direction of the vorticity ω=curlu, i.e.

ξ(t,x)=
ω(t,x)

|ω(t,x)| ∈S2. (1.17)

Using ξ as a multiplier in the equation of vorticity (see (2.10) below), they estab-
lished that

(∂t+u·∇−ν∆)(|ω|)+ν|ω||∇ξ|2 =
〈
(ω ·∇)u,ξ

〉
R3 . (1.18)

Integrating over [0,t]×Ω for Ω = R3 or T3 leads (at first for smooth solutions,
see [29, Eq. 20]) to the identity

∫

Ω
|ω(t,x)|dx+ν

∫ t

0

∫

Ω
|ω(t,x)||∇ξ(t′ ,x)|2dxdt′

=
∫

Ω
|ω(0,x)|dx+

∫ t

0

∫

Ω

〈
(ω ·∇)u,ξ

〉
R3dxdt′.

The following geometric estimate follows immediately (using (3.2)):

∫

Ω
|ω(t,x)|dx+ν

∫ t

0

∫

Ω
|ω(t,x)||∇ξ(t′ ,x)|2dxdt′

≤‖ω(0)‖L1 +
1

2ν

(
‖u(0)‖2

L2 −‖u(t)‖2
L2

)
. (1.19)

To the best of our knowledge, this global L∞
t L1

x estimate is the only known a priori
bound on the vorticity that holds for any Leray solution, apart from the obvious
L2

t L2
x bound that follows from the energy inequality. This result illustrates how

a local alignment in the direction of the vorticity can deplete the nonlinearity. An
interpretation that connects this estimate to turbulence is given in [28].

Another notable geometric result is the one from Vasseur [73] on the direction
of the velocity field. This result is specific to the 3D case and can be stated as
follows. If a solution blows-up at a finite time T∗, then

∫ T∗

0

∥∥∥∥div

(
u

|u|

)∥∥∥∥
q

Lp

dt=+∞ for
2

q
+

3

p
≤ 1

2
, q≥4, p≥6. (1.20)
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Conversely, a control of the norm implies the regularity of the solution. This
criterion is based on the incompressibility of the flow and the identity

|u|div
u

|u| =−
(

u

|u| ·∇
)
|u|.

It means that the growth of |u| along the streamlines is linked to the divergence
of the direction of u. In particular, the kinetic energy |u|2 can only increase along
the streamlines if they are bent and produce some divergence in the direction of
the velocity.

Among anisotropic criteria, let us also mention a recent result by Chemin et
al. [21] that investigates the possibility of detecting a singularity through one com-
ponent only. If u is a smooth solution that presents a blow-up at a finite time T∗,
then

inf
σ∈S2

∫ T∗

0
‖u(t)·σ‖p

Ḣ
1
2+

2
p
dt=+∞ for p≥2, (1.21)

which means that all components will be affected. They also show that

inf
σ∈S2

sup
t′>t

‖u(t′)·σ‖
Ḣ

1
2
≥Clog− 1

2

(
e+

‖u(t)‖4
L2

T∗−t

)
. (1.22)

The fact that the right-hand side vanishes is coherent with the remark that fol-
lows (1.11).

1.3 Structure of this article and summary of our results

Our article is structured as follows. In Section 2, we expose some geometric
properties of the curl operator. The non-local diagonalization of the curl (see
Lemma 2.2 and Remark 2.3) establishes a geometrical link with the pseudo-deri-
vative, i.e. |D|=(−∆)1/2 : both operators are images of one another by a certain
symmetry of the subset of L2 formed by the divergence-free vector fields. This
property leads us to introduce (Definition 2.1) the notion of spin-definite vector
field, i.e. divergence-free fields such that

curlu=±|D|u.

The end of Section 2 is dedicated to the study of such fields. In layman’s terms,
fields with positive spin display an exclusive right-handedness motion at all sca-
les, while fields with negative spin are their chiral image in a mirror. Spin-definite
fields are build as superpositions of planar Beltrami waves (2.19) with indepen-
dent directions of propagation and various frequencies. Any divergence-free
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field can be decomposed in a unique way as the sum of two fields with respec-
tively a positive and a negative spin. A few numerical simulations illustrate the
importance of this notion for the description of vortex filaments.

The next key observation is that the non-linearity of Navier-Stokes has a cross-
product structure and its weak (i.e. distributional) form is a determinant (see
Eqs. (2.7) and (2.8) below). In Section 3, we use this geometric approach to revisit
the two classical conservation laws for Navier-Stokes, i.e. the balance of energy
and the balance of helicity. While the former is constitutional of the definition
of the Leray space L∞

t L2
x∩L2

t Ḣ1
x, we expose the latter (see Eqs. (3.4) and (3.8)) as

a conservation law in

L∞
t Ḣ

1
2
x ∩L2

t Ḣ
3
2
x

for the spin-definite components of the flow. Our main Theorem 3.1, can be re-
stated as follows.

Theorem 1.1. In the case of a finite-time blow-up of Navier-Stokes, both of the spin-

definite components of the flow will explode simultaneously and with equal rates.

In simple terms, this means that singularities can only appear as the result
of an unresolved conflict of spin that escalated out of control. Proposition 3.2,
Theorems 3.2 and 3.3 quantify how an imbalance between the two spins actually
prevents singularities. In Subsection 3.6, we explain how the poorer geometry of
2D flows either enforces the victory of one direction of rotation over the other or
lets the viscosity dissolve the attempted conflict, while the richer 3D geometry
allows for the possibility of an escalation of conflicting spins. In Subsection 3.4,
we also briefly discuss the recent developments regarding Onsager’s conjecture
for the balance of energy and its counterpart for the balance of helicity.

Section 4 pursues the geometric investigation of the weak form of the non-
linearity, i.e. critical determinants. Applying this point of view to study the en-
strophy produces a proof of the regularity of 2D flows based on the identity

∫

R3
det(curlu,u,−∆u)=0,

which is valid if u is a 2D divergence-free field embedded in 3D space; note
that the integrand is not identically zero and that the cancellation is the result
of a space average. More generally, we investigate (Propositions 4.1 and 4.2 and
the identity (4.12)) how the sign of

∫ t

0

∫

R3
det
(

curlu,u,|D|2θu
)
dxdt′
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relates to the growth of the Sobolev norm Ḣθ of the spin-definite components of
the flow. This analysis suggests that even though the definition of regularity is
obviously local, its control in the case of Navier-Stokes flows will likely involve
non-local estimates. We also obtain a stability estimate among Leray solutions
that has a geometric form

‖u1(t)−u2(t)‖2
L2 ≤‖u1(0)−u2(0)‖2

L2 exp

(∫ T

0

‖u1×u2‖2
L2

‖u1−u2‖2
L2

)

and a variant of the Beale-Kato-Majda criterion.
For the convenience of the reader, Appendix A recalls the geometric proof of

some vector calculus identities whose direct computational proofs in coordinates
would be non-trivial.

2 Geometric properties of the curl operator

In this section, we collect some classical facts related to vorticity and we intro-
duce notations, in particular the signed decomposition of curl in Subsection 2.3
and the associated notion of spin of a 3D divergence-free field, that will be used
throughout the article.

We use the following definition for the Fourier transform on Rn:

û(ξ)=(2π)−
n
2

∫

Rn
e−ix·ξu(x)dx, u(x)=(2π)−

n
2

∫

Rn
eix·ξ û(ξ)dξ. (2.1)

This definition provides a unitary transformation in L2(Rn). The operator D =
−i∇ satisfies

D̂αu(ξ)= ξα û(ξ).

The operator |D|= (−∆)1/2 has symbol |ξ|. We focus exclusively on the three
dimensional case, i.e. n=3, except in the brief Subsection 3.6.

2.1 The curl operator

We use the notation C=curl. It is a Fourier multiplier of symbol

C(ξ)=




0 −iξ3 iξ2

iξ3 0 −iξ1

−iξ2 iξ1 0


, (2.2)
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which is the matrix of η 7→iξ×η seen as an endomorphism of the Hermitian space
C3. Obviously

C(ξ)∗= t C(ξ)=C(ξ), (2.3)

which implies that the curl is (formally) self-adjoint over L2(R3). One has

C(ξ)2 =−




0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0






0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0




=



|ξ|2−ξ2

1 −ξ1ξ2 −ξ1ξ3

−ξ1ξ2 |ξ|2−ξ2
2 −ξ2ξ3

−ξ1ξ3 −ξ3ξ2 |ξ|2−ξ2
3


,

so that
C(ξ)2 = |ξ|2 Id−ξ⊗ξ i.e. C2=∇div−∆.

The columns of C(ξ) are clearly orthogonal to ξ, which reflects the classical fact
that div◦curl=0. The operator |D|−1C is obviously bounded on L2 and is even of
Calderón-Zygmund type by Mikhlin’s multiplier theorem. The Leray projection
onto divergence-free vector fields can be expressed in terms of C

P= |D|−2 C2= Id+∇(−∆)−1 div. (2.4)

The operator P is an orthogonal projection since P=P∗ and P2 =P. Similarly,
Id−P is an orthogonal projection onto gradient fields‡, i.e. the nullspace of C.
Note also that P and C commute.

2.2 The Navier-Stokes velocity equation in curl form

Let us briefly present some alternative expressions of the Navier-Stokes equation
involving the operator C. For now, we are not directly interested in the standard
equation of vorticity but rather in expressing the linear and non-linear terms as
curls.

When u is a divergence-free vector field, the identity (2.4) implies that C2u=
−∆u. The Navier-Stokes equation (1.1) can thus also be written as





∂u

∂t
+P

(
(u·∇)u

)
+νC2u=0,

ut=0=u0, divu0=0.
(2.5)

‡As we plant our discussion exclusively within the L2 framework, there are no potential flows
like ∇(x2−y2+x3−3xz2), which is both a gradient and a divergence-free field on R3. Such a field

is formally in the range of P.
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Applying P to Eq. (1.1) leads directly to (2.5). Conversely, (2.5) implies that

both ∂u
∂t and u(t= 0) are divergence-free, proving that divu= 0. Applying Id=

P−∇(−∆)−1 div to u·∇u, the pressure is immediately reconstructed with the
identity ∇p=∇(−∆)−1 div(u·∇)u.

Remark 2.1. A common observation is that

(u·∇)u=∑
j

uj∂ju=∑
j

∂j(uju)=div(u⊗u)

because u is a divergence-free vector field, which gives a meaning in the dis-

tributional sense to the non-linear term as soon as u(t,·) belongs to any space

embedded in L2
loc.

Let us now recall a well known identity of vector calculus. For any vector field
u, one has

(Cu)×u=(u·∇)u− 1

2
∇|u|2. (2.6)

The first coordinate of Cu×u is indeed

(∂3u1−∂1u3)u3−(∂1u2−∂2u1)u2

=(u3∂3+u2∂2)(u1)−
1

2
∂1

(
u2

3+u2
2

)

=(u·∇)u1−
1

2
∂1

(
|u|2

)
.

The identity then follows by circular permutation among indices. There is also
a profound geometric reason for the above identity (known sometimes as the dot
product rule), as it is elemental in the definition of Riemannian connections (see
Appendix A, Eq. (A.11)).

A direct consequence of (2.6) for the non-linear term of Navier-Stokes is that

P
(
(u·∇)u

)
=P

(
(Cu)×u

)
. (2.7)

We may therefore rewrite the Navier-Stokes equation in (2.5) as follows:

∂u

∂t
+P

(
(Cu)×u

)
+νC2u=0. (2.8)

This particular form of the equation will be of central importance in what follows.
It suggests a new form of cancellations based on the following identity:

〈
(u·∇)u,w

〉
L2(R3)

= 〈Cu×u,w〉L2(R3)=
∫

R3
det(Cu,u,w)dx, (2.9)
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which holds for any pair of divergence-free vector fields u,w. The identity (2.7)
thus underlines that the non-linearity of Navier-Stokes has the structure of a cross-
product, and that its weak (distributional) form (2.9) is a determinant that in-
volves the vorticity, the velocity and a test function.

Of course, this formulation is related to the vorticity equation. One has

CP
(
(Cu)×u

)
=PC

(
(Cu)×u

)
=C

(
(Cu)×u

)
=(u·∇)Cu−

(
(Cu)·∇

)
u.

Therefore, applying C to (2.8) directly implies the vorticity equation

∂ω

∂t
+(u·∇)ω+νC2ω=(ω ·∇)u (2.10)

with ω = Cu. In the line of (2.8), note that the nonlinear term of the vorticity
equation inherits the structure of a cross-product: (u·∇)ω−(ω ·∇)u=C(ω×u).
The vortex-stretching term (ω ·∇)u=(ω ·∇)|D|−2 Cω is of order zero but highly
non-local in ω. On average, it is orthogonal to u (see (3.12) below). The vortex-
stretching term plays a central role in the cascade of energy towards smaller scales
in 3D turbulent flows by thinning the girth of vortex tubes.

Remark 2.2. The Navier-Stokes equation can also be rewritten as

∂u

∂t
+P(u·∇)Pu+νcurl2u=0 (2.11)

to put the emphasis on the transport-diffusion aspect of the Navier-Stokes sys-

tem. However, due to the embedded pressure, the transport part is not the

divergence-free vector field u·∇, but the non-local skew-adjoint operator

P(u·∇)P.

For a time-independent and divergence-free vector field U, the flow of that

operator, i.e. the solution of ∂tφ = P(U ·∇)Pφ, is given by the Fourier Integral

Operator

φ(t)=expitP(U·D)P φ0,

where U ·D=−iU ·∇; under rather mild assumptions of regularity, this operator

is self-adjoint (unbounded) on L2(R3;R3).
This flow is strikingly different from that of the vector field V, i.e. ψ(t) =

expit(U·D)ψ0. The difference induced by a projector “sandwich” is already strik-

ing among matrices. For example, in R2, let us consider a self-adjoint matrix A

and a self-adjoint projection P onto a non-eigenvector of A

A=

(
λ 0

0 µ

)
, P=

1

2

(
1 1

1 1

)
=PT,
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then

eitA=

(
eitλ 0

0 eitµ

)
while eitPAP= Id+

(
eit

λ+µ
2 −1

)
P.

The presence of the projector P changes the evolution radically: the linear parts

differ as t→ 0 (the later being the P-projection of the former) and the long-term

behaviors are obviously completely different.

2.3 Decomposition of curl as a superposition of signed operators

Let us denote by PL2 the subspace of L2(R3) composed of vector fields that are
divergence-free. As recalled in Subsection 2.1, the curl operator is self-adjoint and
elliptic on PL2. We now want to decompose PL2 into an orthogonal direct sum of
subspaces on which C=curl is signed. The definition of these subspaces involves
the following non-local operators associated with the “square root” of P.

Lemma 2.1. One can decompose P=Q++Q− where

Q±=
1

2

(
P±C|D|−1

)
. (2.12)

The operators Q± satisfy Q∗
±=Q±=Q2

± and Q+Q−=Q−Q+=0.

Proof. The main computation is

Q2
±=

1

4

(
P2+C2 |D|−2±

(
PC|D|−1+C|D|−1P

))
.

Applying (2.4) ensures the simplifications P2=P and [P,C|D|−1]=0. As PC=C,

we obtain Q2
±=Q±. The other properties follow immediately.

Let us define the following signed curl operators:

C+=CQ+, C−=−CQ−. (2.13)

These operators play a central role in this article.

Lemma 2.2. One can decompose C=C+−C−. The operators C± satisfy

C∗
±=C±≥0, (2.14)

C+C−=C−C+=0, (2.15)

C+= |D|Q+=Q+|D|Q+=Q+CQ+, (2.16)

C−= |D|Q−=Q−|D|Q−=−Q−CQ−. (2.17)
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Proof. Since [P,C] = 0 we have [C,Q±] = 0 so that CQ±=CQ2
±=Q±CQ±. The

properties

C=PC=Q+C+Q−C=C+−C−, C+C−=C−C+=0, C∗
±=C±

follow from the corresponding ones for Q±. We also have

CQ+=
1

2

(
CP+C2 |D|−1

)
=

1

2

(
C+P|D|

)
= |D|1

2

(
P+C|D|−1

)
= |D|Q+,

CQ−=
1

2

(
CP−C2 |D|−1

)
=

1

2

(
C−P|D|

)
=−|D|1

2

(
P−C|D|−1

)
=−|D|Q−.

Observing that |D|Q±=Q±|D|Q± ensures the positivity of these operators.

Remark 2.3. The previous lemma ensures that the respective restrictions of C± to

Q±L2 both coincide with |D|. The kernel of C± in PL2 is Q∓L2. In the orthogonal

decomposition PL2=Q+L2⊕Q−L2, the matrix of the curl operator is thus

(|D| 0

0 −|D|

)

i.e. C= |D|◦(Q+−Q−) is the diagonalization of the curl operator. This formula

highlights a profound geometric connection between the curl and the pseudo-

derivative |D|: both operators are images of one another by a symmetry of PL2.

Note also that, by functional calculus, one may define fractional operators

Cs
±= |D|sQ± (2.18)

for any s ∈ R; the corresponding Cs = |D|s◦(Q++esiπQ−) is however not self-

adjoint if s∈R\Z.

In view of these properties, we are led to introduce the following definition.

Definition 2.1. A divergence-free vector field in L2(R3) is said to have positive (resp.

negative) spin if it belongs to the subspace Q+L2 (resp. Q−L2). We say that u is spin-

definite if it has either positive or negative spin.

According to Remark 2.3, a square integrable field u has positive spin (up to
a gradient field) if and only if Cu= |D|Pu and negative spin if Cu=−|D|Pu. In
general, a divergence-free vector field is not spin-definite; however, Lemma 2.1
ensures that any PL2 field is always the (direct) sum of two spin-definite vector
fields with opposite spins.
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Remark 2.4. The notion of spin-definite field has been known in physics literature

under the denomination helical decomposition and dates back to Lesieur [61]. It

has occasionally been used in theoretical and numerical investigations, e.g. Con-

stantin & Majda [31], Cambon & Jacquin [18], Waleffe [76], Alexakis [1]. See also

the discussion in Subsection 3.6 below.

Example 2.1. The spin-definite fields that are spectrally supported on a sphere

are examples of Beltrami flows. If Ŵ(ξ) is a distribution supported on {|ξ|=λ},

then |D|W = λW; in this case, W is spin-definite if and only if CW =±λW. In

the periodic setting (or if one drops the square integrability on R3), the simplest

non-trivial example is of the form

W±
λ,φ(x)=cos(λx · #»e1+φ) #»e2∓sin(λx · #»e1+φ) #»e3 (2.19)

for some orthonormal basis ( #»e1, #»e2, #»e3), a frequency λ > 0 and a phase shift φ ∈
[0,2π); W+

λ,φ is spin-positive and W−
λ,φ is spin-negative. The fields e−νtλ2

W±
λ,φ(x)

are exact solutions of the Navier-Stokes equation. They are a transient planar

wave and a shear flow where the main direction of the shear rotates (resp. right-

of left-handedly) as one travels along the axis R
#»e1. It is the hydrodynamical

equivalent of a circularly polarized electromagnetic wave (for further results on

Beltrami flows, see e.g. [27, 44]).

Let us comment on the “microlocal” meaning of this definition. It is common
knowledge that all complex vector spaces (even of higher dimension) are canoni-
cally oriented by the initial choice of one square root of −1 among the two choices
±i. For ξ 6=0, the subspace ξ⊥ of C3 is of complex dimension 2; according to (2.4),
the matrix |ξ|−1 C(ξ)∈M3,3(C) defined by (2.2) is a square root of the orthogo-
nal projector P(ξ)= I−|ξ|−2(ξ⊗ξ) of C3 onto ξ⊥ . The pair (P(ξ),−i|ξ|−1 C(ξ))
defines a complex structure with conjugate coordinates Q±(ξ). A field has pos-
itive spin if, at each frequency ξ ∈ R3\{0}, the complex vector û(ξ) belongs to
ranQ+(ξ).

Lemma 2.3. For ξ∈R3\{0} and the matrix C(ξ)∈M3,3(C) defined by (2.2), we have

kerC(ξ)=Cξ, ranC(ξ)= ξ⊥=
{

η∈C3 ;η ·ξ=0
}

, (2.20)

SpecC(ξ)={0,±|ξ|} , ker
(

C(ξ)∓|ξ|
)
= ranQ±(ξ). (2.21)

In particular, ranQ±(ξ) is one-dimensional if ξ 6= 0. One has Q−(ξ) = Q+(−ξ) =
Q+(ξ). In local coordinates, the non-trivial eigenvectors are given, e.g. away from the
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axis ξ2= ξ3=0, by

δ±(ξ)=
1

2|ξ|2




ξ2
2+ξ2

3

−ξ1ξ2±iξ3|ξ|
−ξ1ξ3∓iξ2|ξ|


 (2.22)

and one has

kerQ±(ξ)=SpanC{ξ,δ∓(ξ)}, ranQ±(ξ)=Cδ±(ξ). (2.23)

Proof. Let ξ be in R3\{0}. If for a,b∈R3 we have iξ×(a+ib)=0, we obtain that

ξ×a= ξ×b = 0, which is equivalent to a∧ξ = b∧ξ = 0, i.e. (a+ib)∈Cξ. On the

other hand, the two-dimensional ξ⊥ contains the two-dimensional range of C(ξ).
Properties (2.21) follow from Lemma 2.2, which implies that

C(ξ)= |ξ|Q+(ξ)−|ξ|Q−(ξ),

where Q±(ξ) are the rank-one projections defined by

Q±(ξ)=
1

2

(
I−|ξ|−2(ξ⊗ξ)︸ ︷︷ ︸

real symmetric

±|ξ|−1 C(ξ)︸ ︷︷ ︸
purely imaginary
anti-symmetric

)
.

The operators Q± are the Fourier multipliers Q±(D). The formula for δ±(ξ) is

obtained by choosing the first column of Q±(ξ).

Remark 2.5. The previous choice for δ±(ξ) becomes singular along the axis ξ2 =
ξ3=0. To perform computations near this axis, one should instead choose another

column of Q±(ξ) as basis vectors.

With these local coordinates, the general expression of the Fourier reconstruc-
tion of a divergence-free vector field is

u(x)=
∫

R3

[
ϑ+(ξ)δ+(ξ)+ϑ−(ξ)δ−(ξ)

]
eix·ξdξ (2.24)

for some spectral weights ϑ±(ξ)∈C defined almost everywhere and obtained in
a unique way by the decomposition of û(ξ) on the basis (δ+(ξ),δ−(ξ)) of ξ⊥. As
u is real-valued, the weights have to satisfy

ϑ±(−ξ)=ϑ±(ξ).

One can easily compute

Cu(x)=
∫

R3
|ξ|
[
ϑ+(ξ)δ+(ξ)−ϑ−(ξ)δ−(ξ)

]
eix·ξdξ
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and

|D|u(x)=
∫

R3
|ξ|
[
ϑ+(ξ)δ+(ξ)+ϑ−(ξ)δ−(ξ)

]
eix·ξdξ.

A field u has positive (resp. negative) spin if and only if ϑ−≡0 (resp. ϑ+≡0).

Corollary 2.1. The spin is a chiral notion: the mirror image of a field with positive spin

by a planar symmetry of R3 is a field of negative spin.

Proof. Without impeding on the generality, one may assume that v(x1,x2,x3) =
u(x1,x2,−x3). It is then clear from (2.24) and (2.22) that the two fields u and v

have opposite spins.

The family of spin-definite vector fields is quite rich and appears to have
a tubular jet-structure, where the sign of the spin reflects whether the forward
motion is right- or left-handed. For example,

u1(x)=−1

2

(
cos(x1−x2)+2sin(x2+x3)

)
#»e1

− 1

2

(
cos(x1−x2)+

√
2cos(x2+x3)

)
#»e2

+

√
2

2

(
sin(x1−x2)+cos(x2+x3)

)
#»e3,

u2(x)=−1

5

(
4cos(x1−2x2)+5sin(x2+x3)

)
#»e1

− 1

10

(
4cos(x1−2x2)+5

√
2cos(x2+x3)

)
#»e2

+
1

10

(
4
√

5sin(x1−2x2)+5
√

2cos(x2+x3)
)

#»e3

are divergence-free and have positive spin i.e. Cuj= |D|uj. They are illustrated in
Fig. 2.

Note that Cu1 =
√

2u1 so this example is a Beltrami flow; û1 is supported on

the spectral sphere of radius
√

2. On the contrary, C(Cu2×u2) 6=0 so this second
example is not even a generalized Beltrami flow; û2 involves frequencies of mag-

nitudes
√

2 and
√

5. However, both are clearly the superposition of two planar
Beltrami waves of positive spin (i.e. flows from Example 2.1) that progress in dif-
ferent directions. Both flows have a similar structure: they swirl in a right-hand
fashion, the center of each vortex is a zone of low pressure and high dissipation,
the four hyperbolic corners of each cell (where the convection diverges) are axes
of high pressure with minimal dissipation. Accounting for box-periodicity, these
two examples display one single continuous vortex tube.
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Figure 1: Real (left) and imaginary (right) parts of δ+(ξ) on the unit sphere |ξ|=1. Multiplication by
a suitable prefactor in C can rotate the axis (and the apparent singularity) of δ+(ξ) to any point on the
sphere (the axis for the real and imaginary parts are the same). One obtains δ−(ξ) by complex conju-

gation of δ+(ξ); therefore, the imaginary part of the Fourier field “flows” the other way around in C3.

If we superpose three or more planar Beltrami waves of positive spin, one can
build more refined flows with positive spin that contain an intricate network of
vortex tubes. The positive spin imposes that the movement remains exclusively
right-handed at all scales. In the example shown in Fig. 3, four distinct regions
(accounting for periodicity) of high vorticity appear to be disconnected, i.e. one
generates vortex tubes of finite length.

Figure 2: Two examples of non-trivial divergence-free fields, with positive spin in the periodic setting
x∈T3. Above: field u1 (Beltrami); below: field u2 (not generalized Beltrami). Left: streamlines of
uj(x) over the pressure field. Right: streamlines of uj(x) over the intensity of the dissipation field.
Units are arbitrary. Observe the right-hand side motion.
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Figure 3: A third example of a non-trivial divergence-free field, with positive spin in the periodic setting
x ∈ T3. The field is constructed as the superposition of three planar Beltrami waves with linearly
independent directions. Left: streamlines of uj(x) over the pressure field. Right: intensity of the
vorticity field. Units are arbitrary. The viewpoint is slightly different for better legibility. Four vortex
filaments occur in the high-pressure region.

These examples suggest that the family of spin-definite flows is structurally
simple (superposition of planar Beltrami waves) and yet quite rich. It is the build-
ing blocks of intricate vortex structures and deserves to be studied specifically, as
we will now do.

Remark 2.6. The question of defining a microlocal notion of spin is legitimate§,

albeit non-trivial because the operators C±|D| are non-local. If u is a divergence-

free field, there exists a stream vector (i.e. vector potential) Ψ such that u=CΨ. It

is given by Ψ= |D|−2 Cu+∇q where ∇q is an arbitrary irrotational component,

e.g. q= 0. If one is interested only in the local behavior of the flow near a point

x0 ∈ R3, one could consider a smooth cut-off function χ ∈D(R3) supported in

a ball of radius r>0 and such that χ(x)=1 if |x|≤ r
2 . The field

ũ=C
(
χ(x−x0)Ψ(x)

)
=χ(x−x0)u(x)+∇χ(x−x0)×Ψ︸ ︷︷ ︸

recirculation around
the cutout zone

remains divergence-free, coincides with u on the ball B(x0, r
2) and is compactly

supported on B(x0,r). The two spin-definite components of ũ can be seen as

a local expression of the spin of the original field u near x0. However, the recir-

culation of ũ near the edge of the cutoff zone may shadow the meaning of the

spin at low frequencies, so a secondary microlocal cutout to isolate frequencies

|ξ|≫ r−1 may be necessary. We will not investigate this question further in this

article.

§The notion of spin introduced in this article could then reasonably be called Fourier spin to insist

on its global nature.
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3 Two integral quantities preserved by the Navier-

Stokes evolution

In this section, we revisit the classical energy balance for Navier-Stokes in the
light of the aforementioned properties of the curl operator over PL2 = Q+L2⊕
Q−L2.

3.1 Classical energy method

Leray’s method was introduced in 1934 in the seminal article [58]. It consists in
multiplying (2.8) by u to get

d

dt
‖u(t)‖2

L2 +2
〈
P(Cu×u),u

〉
L2+2ν‖Cu‖2

L2 =0.

Since P∗u=Pu=u, the non-linear term formally cancels out

〈
P(Cu×u),u

〉
= 〈Cu×u,u〉=det(Cu,u,u)=0. (3.1)

This leads to the classical energy balance

‖u(t)‖2
L2 +2ν

∫ t

0
‖Cu‖2

L2 dt′=‖u(0)‖2
L2 ,

which, truthfully, only holds for smooth solutions in the three-dimensional case.
As Leray solutions are obtained as limits of compact sequences (un)n∈N that sat-
isfy the energy equality but converge to u only weakly in H1, Fatou’s lemma
implies

‖u(t)‖2
L2 +2ν

∫ t

0
‖Cu‖2

L2 dt′≤‖u(0)‖2
L2 . (3.2)

The possibility of anomalous dissipation, i.e. a strict inequality in (3.2), was envi-
sioned by Onsager [67] and formalized e.g. in [37]. Onsager’s conjecture on the
minimal regularity assumption on u that is necessary to ensure (3.2) was solved
recently by the conjunction of the works of Isett [46] and Constantin et al. [32].
Soon afterwards, its importance was renewed by the construction of Buckmas-
ter, Vicol [14] of wild (i.e. non-Leray) solutions of Navier-Stokes that defy any
physically reasonable energy balance (their energy profile can even be prescribed
arbitrarily) even though they belong to a reasonable function space C0

t (Hσ
x ) for

some σ>0, typically σ≃2−18. For further details, see Subsection 3.4 below.
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3.2 Conservation law associated with the signed curl

Let us define the following quantities:

N±(u,t)=
∥∥C1/2

± u(t)
∥∥2

L2+2ν
∫ t

0

∥∥C3/2
± u

∥∥2

L2dt′. (3.3)

Thanks to the results of Subsection 2.3, the sum N+(u,t)+N−(u,t) is equiva-

lent, for divergence-free vector fields, to the square of the norm of u in L∞
t Ḣ1/2

x ∩
L2

t Ḣ3/2
x . Inspired by the negative sign of the curl on Q−L2, let us now turn our

attention to the Krein [54] “norm” N+(u,t)−N−(u,t).

Proposition 3.1. Let u be a smooth solution of (2.8). The following conservation law

then holds:

N+(u,t)−N−(u,t)=N+(u,0)−N−(u,0). (3.4)

Proof. Thanks to the self-adjointness of the curl, one has 〈Cu,∂tu〉L2 = 〈∂t Cu,u〉L2

pointwise in time. Let us multiply Eq. (2.8) by 2Cu. We get

d

dt

〈
Cu(t),u(t)

〉
L2+2

〈
P(Cu×u),Cu

〉
L2+2ν

〈
C3u,u

〉
L2 =0.

For smooth vector fields, the cubic term vanishes since

〈
P(Cu×u),Cu

〉
= 〈Cu×u,Cu〉=det(Cu,u,Cu)=0. (3.5)

The lemma then follows, with k=1 or 3, from the identities

Ck =(C+−C−)k =Ck
++(−1)k Ck

−

and 〈
Ck u,u

〉
L2 =

∥∥Ck/2
+ u

∥∥2

L2+(−1)k
∥∥Ck/2

− u
∥∥2

L2 ,

which are a consequence of the diagonalization of the curl obtained in Subsec-

tion 2.3.

For Leray solutions, the pendant of the conservation law (3.4) is not obvi-
ous. For example, it is not clear how N+(u,t)−N−(u,t) compares to N+(u,0)−
N−(u,0) for all Leray solutions (see Subsection 3.5 below). However, if one con-
siders the first singularity event, the following result expresses that singularities
for the 3D Navier-Stokes equation can only occur as the result of a direct conflict
of spin.
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Theorem 3.1. If u is a smooth solution of Navier-Stokes on [0,T∗) with a maximal life-

time T∗
<∞, then

limsup
t→T∗

N±(u,t)=+∞, lim
k

N+(u,tk)

N−(u,tk)
=1 (3.6)

for some increasing sequence of times tk →T∗.

An attempt at a physical interpretation of this result is proposed in Subsec-
tion 3.6 below.

Proof. As u is smooth on [0,T∗), the conservation law (3.4) holds for any t< T∗

and

|N+(u,t)−N−(u,t)|≤C0

with e.g. C0=|
∫

R3 ω0·u0| according to (3.7) below. Thanks to [41], the sum N+(u,t)
+N−(u,t) and therefore at least one of the two norms N±(u,t) must diverge in

lim-sup as t→T∗. As the difference remains bounded, both norms N±(u,t) must

diverge simultaneously. One obtains an increasing sequence tk →T∗ such that

N+(u,tk)≥C0+k

and therefore N−(u,tk)≥ k. Then |N+(u,tk)/N−(u,tk)−1|≤C0/k→0.

3.3 Helicity

Using the properties of C± exposed in Subsection 2.3, one recovers the helicity

H(t)=
∫

R3
ω ·u=

〈
(C+−C−)u,u

〉
L2 =

∥∥C1/2
+ u(t)

∥∥2

L2−
∥∥C1/2

− u(t)
∥∥2

L2 . (3.7)

More generally, the quantity N+−N− can be written as a conservation law for
helicity

N+(u,t)−N−(u,t)

=
∫

R3
ω ·u−2ν

∫ t

0

∫

R3
ω ·∆u=

∫

R3
ω ·u+2ν

∫ t

0

∫

R3
∇ω ·∇u. (3.8)

The previous results imply that, for smooth solutions of the Euler equation, H(t)
is conserved and that for smooth solutions of Navier-Stokes, the quantity (3.8) is
invariant. The benefit of using the non-local diagonalization of the curl operator
(i.e. the C± operators) is that this new point of view isolates two distinct signed
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quantities N± in the balance of helicity, which is really not obvious in the right-
hand side of (3.8). Helicity thus appears as a measure of the balance between the
spin-definite components of u.

Let us also point out that (3.7) and Lemma 2.2 imply immediately

|H(t)|≤
∥∥C1/2

+ u(t)
∥∥2

L2+
∥∥C1/2

− u(t)
∥∥2

L2 =‖u‖2

Ḣ
1
2
. (3.9)

One recovers the classical estimate

|H(t)|=
∣∣∣
〈
|D|−1/2Cu,|D|1/2u

〉∣∣∣≤C‖u‖2

H
1
2
,

which relies on the fact that the operator |D|−1C is obviously bounded on L2.

Remark 3.1. Note that, contrary to the phrasing of most proofs, the conservation

of helicity does not result from a global cancellation of terms; instead, each term

(and sub-term) given by the respective evolution equations for u and ω vanishes

on its own∫

R3
(∂tω)·u+ν〈∇u,∇ω〉L2 =

〈
(u·∇)ω,u

〉
L2+

〈
(ω ·∇)u,u

〉
L2 =0+0=0,

∫

R3
(∂tu)·ω+ν〈∇u,∇ω〉L2 =

〈
(u·∇)u,ω

〉
+〈∇p,ω〉=0+0=0.

Indeed, using the self-adjointness of the curl twice, the identity (2.6) implies (ei-

ther formally or for smooth u) that, on average, the convection term (u·∇)u is

orthogonal to the vorticity
〈

w,(u·∇)u
〉

L2 =
〈

curlu,(u·∇)u
〉

L2 =
〈

u,curl[(u·∇)u]
〉

L2

=
〈

u,curl[ω×u]
〉

L2 = 〈ω,ω×u〉L2 =0. (3.10)

If u is divergence-free, one has the well known identity
〈
ω,(u·∇)u

〉
L2+

〈
u,(u·∇)ω

〉
L2 =−〈divu,u·ω〉=0.

Combining this last identity with (3.10), one gets that the transport term (u·∇)ω
is, on average, orthogonal to the velocity field

〈
u,(u·∇)ω

〉
L2 =0. (3.11)

Finally, as divω=0, and assuming enough decay at infinity

〈
(ω ·∇)u,u

〉
L2 =

1

2

∫

R3
(ω ·∇)|u|2 = 1

2

∫

R3
div
(
|u|2ω

)
=0. (3.12)

The identities (3.10)-(3.12) provide a simple derivation of the conservation of he-

licity for the Euler equation, which holds as long as it is legitimate to test the

equation for vorticity (2.10) against u itself.
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The connection with helicity provides the following uniform integral bounds
that imply that the two spin-definite components of u must have, on average,
a comparable size in Ḣ1/2. Note however that the last result of Subsection 3.2
provides a stronger insight at the time of first singularity.

Proposition 3.2. For any Leray solution of Navier-Stokes, one has

∫ ∞

0
|H(t)|2dt=

∫ ∞

0

(∥∥C1/2
+ u(t)

∥∥2

L2−
∥∥C1/2

− u(t)
∥∥2

L2

)2
dt≤

‖u0‖4
L2

8ν
(3.13)

and

‖u‖2

L4
t Ḣ

1
2
x

=
∫ ∞

0

(∥∥C1/2
+ u(t)

∥∥2

L2+
∥∥C1/2

− u(t)
∥∥2

L2

)2
dt≤

‖u0‖2
L2

4
√

2ν
. (3.14)

Proof. The helicity is globally square-integrable in time because

∫ ∞

0
|H(t)|2dt≤

∫ ∞

0
‖ω(t)‖2

L2‖u(t)‖2
L2 dt≤‖ω‖2

L2
t L2

x
‖u‖2

L∞
t L2

x
≤

‖u0‖4
L2

8ν
·

For the last step, we used the energy inequality (3.2) and ab≤ c2

4β if a,b,c,β>0 with

a+βb≤c. The full L4
t Ḣ1/2

x norm of u is controlled by interpolation between L∞
t L2

x

and L2
t Ḣ1

x.

3.4 Onsager’s conjecture anew

In this section, we investigate briefly the minimal regularity that is required to
ensure respectively the conservation of energy or the balance of helicity.

Onsager’s famous conjecture [67] states that unless u∈Cα
x with α> 1

3 , there may
be an energy miscount at spectral infinity and that u itself is not an admissible test
function. The heuristic leading to that exponent is that the minimal regularity
required to make sense of (3.1) consists in spreading one derivative across the

three factors, hence the C1/3
x critical space. For the Euler equation, Constantin et

al. [32] indeed proved the conservation of energy for α> 1
3 while Isett [46], using

convex integration, recently showed its failure for α< 1
3 and solved the problem

that had been open for 69 years.

For the Navier-Stokes equation, the conservation of energy for Leray solutions
was proved by Serrin under an L

q
t L

p
x assumption with 2

q+
3
p =1, p≥3, which also
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implies smoothness (see criterion (1.12) above). Lions [62], Ladyzhenskaya [56]
and Shinbrot [70] also proved the conservation of energy when

2

q
+

2

p
≤1, p≥4

so in particular for L4
t L4

x. This intermediary scaling (2
4+

3
4 =

5
4) is of particular

interest because it is both too low to be a guaranteed bound for all Leray solutions,
but also too high to automatically imply the smoothness of the solution. Kukavica
[55] weakened this assumption to a local L2

t,x bound on the pressure (recall that
p is obtained by a Calderón-Zygmund operator applied to u×u). The last gap in
scaling was closed by Cheskidov et al. [24], who proved that any Leray solution
in L3([0,T];H5/6) conserves energy (see also Leslie and Shvydkoy [60]).

To understand why the space L3
t Ḣ5/6

x is exactly consistent with Onsager’s
heuristic, let us point out that, even with a loose Leibniz rule, one cannot expect
to make sense of

∫ T

0

∫

R3
det(Cu,u,u)=0 unless

∫ T

0

∫

K

∣∣|D| 1
3 u(t,x)

∣∣3dxdt<∞

for any compact subset K ⊂ R3. The Navier-Stokes (i.e. parabolic) scaling of

L3
t Ẇ1/3,3

x is 2
3+

3
3− 1

3=1+ 1
3 , which matches that of L3

t Ḣ5/6
x ⊂L3

t Ẇ1/3,3
x . The local in-

tegrability at this scale is ensured in the following way. For a triple s1+s2+s3≥ 3
2

with sj ≥ 0 and at least two non-zero regularity indices and K ⊂ R3 bounded,
Hölder law and the Sobolev embeddings imply (see Constantin-Foias [30])

∫

K
|(u·∇)v·w|≤ cK‖u‖

L6/(3−2s1)+
‖∇v‖

L6/(3−2s2)+
‖w‖

L6/(3−2s3)+

≤CK‖u‖Hs1‖∇v‖Hs2‖w‖Hs3 .

At Onsager’s scaling, the difficulty is that, when u∈H5/6, then ∇u∈H−1/6 may
fail to be locally integrable. Very elegantly, Cheskidov et al. [24] used a frequency
decomposition u=ul+uh with an arbitrary spectral threshold κ and controlled the
non-trivial terms with Bernstein’s inequalities to transfer the singularity across
the trilinear interaction, effectively loosening Leibniz’s rule

∫

K
|(u·∇)ul ·u|≤

∫

K
|(uh ·∇)ul ·uh|+

∫

K
|(ul ·∇)ul ·uh|+0

≤‖uh‖2

H
1
2
‖ul‖

H
3
2
+‖ul‖

H
5
6
‖ul‖H1‖uh‖

H
2
3

.
(

κ−
1
3‖uh‖

H
5
6

)2(
κ

2
3 ‖ul‖

H
5
6

)
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+‖ul‖
H

5
6

(
κ

1
6‖ul‖

H
5
6

)(
κ−

1
6‖uh‖

H
5
6

)

.‖u‖3

H
5
6
.

This computation ensures that the cancellation

lim
κ→∞

∫

R3
(u·∇)ul ·u=0

is legitimate.
The other side of Onsager’s conjecture for Navier-Stokes is still open. A his-

torical breakthrough¶ was achieved very recently by Buckmaster & Vicol [14, 15]
and with Colombo [11]. They showed that a small positive regularity C0

t Hσ
x with

σ≃2−18 is not enough to prevent the existence of non-conservative viscous flows.
They constructed flows in that class whose energy profile can be prescribed arbi-
trarily. Such strange flows are weak solutions of the Navier-Stokes equation but
are not Leray solutions. While this pathology may seem to be of a purely math-
ematical nature, it does have a deep connection with turbulence [16, 35]. These
flows display a persistent low-frequency shadow of a vanishing high-frequency
forcing, which was first observed for Euler [12]. This reverse cascade ends up to
be stronger than what the viscosity can diffuse. In the absence of viscosity [13],
one can even push the regularity of the pathologies to σ= 1

2− .
In the same spirit as Onsager’s original conjecture, one can ask which minimal

regularity will ensure the balance of the helicity, i.e. the conservation of N+−
N− defined above. Roughly speaking, in order to use Cu as a test function and
ensure (3.5), one would need to spread two derivatives across three factors, which

would place the bar at C2/3
x . This threshold is sometimes known as Onsager’s

conjecture for helicity. In the case of Euler’s equation, Onsager’s conjecture for
helicity was essentially resolved by Cheskidov et al. [23]. Recently, Luigi de Rosa
[36] investigated the possibility of splitting the assumption between u ∈ L

q1
t Cα1

x

and curlu ∈ L
q2
t Wα2,1

x with 2
q1
+ 1

q2
= 1 and 2α1+α2 ≥ 1, which suggests that, for

helicity, subtle plays with scaling are possible.
Because of the higher regularity threshold, the estimate in the case of Navier-

Stokes is simpler than the one presented above. For example, having u∈L3
t (Ḣ7/6

x )

¶This article is the result of three years of reflection inspired by Vlad Vicol’s remarkable talk at the
CIRM of Marseille, in December 2018, which brought the two authors together. We are grateful to

Prof. Vicol for his kind advice at that time and when we met again at the IHES in Gif-sur-Yvette

in early 2020 [75]. Our meditation on the Beltrami waves that were used in the original proof [14]
ultimately led us to Definition 2.1 of spin-definite fields and convinced us of the importance of

this notion for hydrodynamics.
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provides enough integrability
∫ t

0

∫

R3
|(u·∇)u·Cu|≤‖u‖L3(L9)‖∇u‖L3(L9/4)‖Cu‖L3(L9/4)

≤‖u‖L3(Ḣ7/6)‖∇u‖2
L3(Ḣ1/6)

≤‖u‖3
L3(Ḣ7/6)

and thus legitimizes (3.5). Note that the scaling of L3
t (Ḣ7/6

x ) is consistent with
1
3 more derivative than that of L3

t (Ḣ5/6
x ), which was critical for the conservation

of energy. This scaling is thus coherent, in spirit, with Onsager’s conjecture for
helicity. The scaling of L3(Ḣ7/6) differs from that of L∞(L2)∩L2(Ḣ1) by 7

6− 2
3 =

1
2

derivative; such a control is similar in scaling to L∞(Ḣ1/2)∩L2(Ḣ3/2) and is there-
fore not known (and possibly not expected) for the most general Leray solutions.

Remark 3.2. Formally, there are two other known conserved integrals for Euler

and Navier-Stokes: the momentum

P(t)=
∫

R3 or T3
u(t,x)dx, (3.15)

and the angular momentum

L(t)=
∫

R3 or T3
x×u(t,x)dx. (3.16)

However, on R3, the decay of the velocity field that is necessary to define the

momentum is not benign; for example, P(t) is identically zero for any integrable

divergence-free field. Similarly, the weighted integrability

u∈L1
(
(1+|x|)dx

)

happens to be the critical one that cannot be propagated by the flow because the

generic profile of a well localized flow decays exactly as |x|−d−1 at infinity along

most directions, which is due to the non-local effect of the pressure field (see

Brandolese-Vigneron [10]). Therefore P and L are not the most useful conserva-

tion laws for flows on the full space R3.

3.5 Non-explosion criteria

The Navier-Stokes system can be written for the decomposition u=u++u− where
u±=Q±u are the two spin-definite components of u (see Definition 2.1)





∂u+

∂t
+Q+

(
Cu×u

)
+νC2

+u+=0, u+(0)=Q+u0,

∂u−
∂t

+Q−
(
Cu×u

)
+νC2

−u−=0, u−(0)=Q−u0.

(3.17)
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However, the coupling of the two equations through Cu×u is highly intricate.
The point of this section is to investigate how this coupling relates to issues of
regularity.

Let us briefly explain the technical difficulty that one encounters when one
attempts to generalize the conservation law (3.4) to the framework of Leray solu-

tions. Let u be a Leray solution of Navier-Stokes with u0 ∈H
1
2 and uk a sequence

of Galerkine approximations of u that are spin-definite. It is common knowl-
edge (see e.g. [57]) that the convergence of uk to u holds in the strong topology of
L∞([0,T];H−1)∩L2([0,T],Hs) for any T>0 and any arbitrary but fixed value s<1.
In particular, with s= 1

2 , one gets that

lim
〈

C±uk(t),uk(t)
〉

L2 =
〈

C±u(t),u(t)
〉

L2

for almost every t≥0. The proof of (3.4) can be reproduced for the smooth func-
tions uk leading to

〈
C+uk(t),uk(t)

〉
L2+2ν

∫ t

0

〈
C3
+uk,uk

〉
L2+

〈
C−uk(0),uk(0)

〉
L2

=
〈

C+uk(0),uk(0)
〉

L2+
〈

C−uk(t),uk(t)
〉

L2+2ν
∫ t

0

〈
C3
−uk,uk

〉
L2

i.e. N+(uk,t)+N0
−=N0

++N−(uk,t). However, in general, Fatou’s lemma can only
guarantee that

N±(u,t)≤ liminf
k→∞

N±(uk,t),

which is not in our favor if we want to pass to the limit in the previous identity.
It is possible to circumvent this difficulty in the case of spin-definite solutions.

Theorem 3.2. If u is a Leray solution of Navier-Stokes stemming from u0 ∈H1/2, then

u is smooth as long as it remains spin-definite.

Proof. Let u be a Leray solution of Navier-Stokes with u0 ∈H1/2 and T1 >0 such

that u is spin-definite on [0,T1]. Without impeding the generality, one can apply

a planar symmetry if necessary and assume positive spin. It is common knowl-

edge that u is smooth on some non-trivial interval [0,T2]. One considers

T=sup
{

t∈ [0,T1];u is smooth on [0,t]
}
≥T2.

Reasoning by contradiction, let us assume that T≤T1. Then (3.4) and the fact that

u has positive spin imply N+(u,t)=N+(u,0) for all t∈ [0,T) i.e.

‖u(t)‖2

Ḣ
1
2
+2ν

∫ t

0
‖u‖2

Ḣ
3
2
dt′=

∥∥C1/2
+ u(t)

∥∥2

L2+2ν
∫ t

0

∥∥C3/2
+ u

∥∥2

L2dt′=‖u0‖2

Ḣ
1
2
.
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In particular, u∈L∞([0,T);Ḣ1/2) and [41] implies that T cannot be a singular time;

consequently, one has T>T1.

Remark 3.3. According to (3.17), a solution u remains spin-definite if and only if

P(Cu×u) has the same spin as u. In general, it is not clear that this property is

propagated by the flow. At least, this is the case for generalized Beltrami flows,

i.e. when C(Cu×u)=0 because then P(Cu×u)=0.

The assumptions of the previous statement are somewhat exorbitant. In the
rest of this section, we investigate instead how the respective sizes of the spin-
definite components Q±u of a smooth solution u are related to the emergence of
singularities. However, as we only need smoothness to ensure the conservation
of N+(u,t)−N−(u,t), we will preserve some generality by assuming instead that
u is a Leray solution such that |N+(u,t)−N−(u,t)|≤C0 .

The following lemma will be useful to bound a pair of close numbers from
a common lower bound.

Lemma 3.1. For α, β∈R+ and positive Cj,ε j, we have

C0≥|α−β|≥−C1+ε1 min(αε2 ,βε2) =⇒ max(α,β)≤C0+
(
ε−1

1 (C0+C1)
) 1

ε2 ,

C0≥|α−β|≥−C1+ε1 min(logα,logβ) =⇒ max(α,β)≤C0+exp
(
ε−1

1 (C0+C1)
)
.

Proof. Since the assumption and the conclusion are symmetrical in α,β, we may

assume that 0≤β≤α. We then have

C0+β+C1≥α+C1≥β+ε1βε2

so

ε1βε2 ≤C0+C1 i.e. β≤
(
ε−1

1 (C0+C1)
) 1

ε2 .

Consequently,

max(α,β)=α≤β+C0 ≤
(
ε−1

1 (C0+C1)
) 1

ε2 +C0.

The second claim can be obtained in a similar way.

At a time of first singularity, we have already mentioned (see the last result of
Subsection 3.2) that N+(u,t) and N−(u,t) will simultaneously diverge to +∞ and
at the same rate. As Leray’s flow goes on, the value of N+(u,t)−N−(u,t) may
be altered through each singular event. If the conflicts of spins were resolved
(possibly in a non-unique way) by favoring one over the other, this could lead
to a substantial drift. The following result quantifies, in this general setting, that
even a logarithmic in-balance between the two spins is enough to deter singular-
ities.
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Theorem 3.3. If u is a Leray solution of Navier-Stokes such that

C0≥|N+(u,t)−N−(u,t)|
≥−C1+εmin

(
logN+(u,t),logN−(u,t)

)
, ∀t∈ [0,T) (3.18)

for some constants C0,C1, ε>0. Then u remains smooth on [0,T∗) with T∗
>T.

Proof. The previous lemma implies N±(u,t)≤ exp[ε−1
1 (C0+C1)] on [0,T) and in

particular

‖u‖2
L∞([0,T];Ḣ1/2)

≤ sup
t∈[0,T]

N+(u,t)+N−(u,t)≤2exp
[
ε−1

1 (C0+C1)
]

thus u(T) is smooth thanks to [41] and the solution can be extended slightly be-

yond that point by the standard local well-posedness argument.

3.6 Comparison with the dimension n=2

Let us conclude this section by a brief investigation of the case of dimension 2.
The general expression of a divergence-free real-valued 2D vector field is

#»u (x)=
1

2π

∫

R2
ϑ(ξ)

#      »

δ(ξ)eix·ξdξ, (3.19)

where
#      »

δ(ξ) = ξ⊥/|ξ| ∈ R2 and ϑ(ξ) ∈ C satisfies ϑ(ξ) = −ϑ(ξ); note the anti-

Hermitian symmetry because of the anti-symmetric nature of
#      »

δ(ξ) in 2D. Excep-
tionally, we write the arrows as a visual cue to distinguish between vector and
scalar quantities. It is obvious that

|D| #»u =
1

2π

∫

R2
|ξ|ϑ(ξ) #      »

δ(ξ)eix·ξdξ, ω=curl #»u =
1

2π

∫

R2
i|ξ|ϑ(ξ)eix·ξ dξ. (3.20)

Even though |D| #»u ∈R2 is non-local while ω∈R and is local, on the spectral side,
the two operators are conjugate of one another

ω= i
#        »

δ(D) ·|D| #»u , |D| #»u =−i
#        »

δ(D)(ω). (3.21)

This property means that, in 2D, the structure of the curl is not as rich as its 3D
analog (compare with Remark 2.3) and that, consequently, the conflict of two 2D
contra-rotating vortices is not as profound as a conflict of spins in 3D.

In 2D, the resolution of such a conflict can only lead to a plain redistribution
of the amplitude ϑ(ξ) in (3.19) and as the geometry of the equation does not leave
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any room for microlocal compensations, the flow either “has to” make a choice
in favor of one direction of rotation or, in the case of perfect balance, let the vis-
cosity eat up the singularity attempt. As we know, the Navier-Stokes equation is
well-posed in 2D and the qualitative behavior of the vorticity [42] matches this
heuristic.

In 3D, a redistribution among the pair of amplitudes (ϑ+(ξ),ϑ−(ξ)) in (2.24)
also means favoring one spin over the other. However, the richer geometry pro-
vides the flow with a new way of “not choosing”: it can amplify both spins simul-
taneously instead of letting the viscosity take over, which results in an escalating
conflict of spin. Singularities, if they occur, are thus the byproduct of this unre-
solved microlocal game of chicken.

Of course, in the physical realm, the presence of sticky boundaries (i.e. with
Dirichlet conditions) can produce numerous cases of spin imbalance and cou-
plings, which gives the boundary layer its driving role in turbulence, regardless
of whether or not true singularities or only quasi-singularities occur. One also has
to wonder whether the late resolution of physically admissible extreme events of
this type (i.e. conflict of spins that have escalated for a long time) favors subse-
quent cancellations, which could be the mechanism that drives intermittency.

Remark 3.4. We encourage the reader to consider the recent numerical simula-

tions of Alexakis [1]. Our colleagues in physics study the energy and helicity

fluxes of turbulent flows, by decomposing the influence of all possible interac-

tions among spin-definite components. The numerical evidence hints at multiple

non-trivial facts: the total energy flux can be split into three spin-related fluxes

that remain independently constant in the inertial range; one of them amounts to

10% of the total energy flux and is a (hidden) backwards energy cascade, which

subsists even in fully developed 3D turbulence. The helicity flux can be decom-

posed in a similar fashion into two fluxes that remain constant in the inertial

range.

4 Critical determinants and non-local aspects of the

regularity theory

In this section, we investigate the idea of computing energy estimates for Cθ u
with various values of θ>0. Each computation leads to a determinant whose av-
erage sign plays a key role both in the growth of the regularity norms in the case
of a potential blow-up and in their control as long as the flow remains smooth.
It is worth insisting on the fact that geometric and non-local estimates seem to
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play a central role in the question of the regularity of the solutions of 3D Navier-
Stokes. This study also leads to a geometric criterion for the uniqueness of Leray
solutions and a slight variant of the Beale-Kato-Majda criterion.

4.1 Example: a geometric drive for enstrophy

Let us first investigate the well-known case of the enstrophy

E(t)=
∫

R3
|∇u|2=

∫

R3
|ω|2. (4.1)

The equivalence between the two formulations follows e.g. from C2 = −∆ for
divergence-free fields.

Assuming regularity, one uses ω as a test function in the vorticity equation
(2.10) and takes advantage of the cross-product structure of the nonlinearity, i.e.

(u·∇)ω−(ω ·∇)u=C(ω×u).

One is led to the following balance:

‖ω(t)‖2
L2 +2ν

∫ t

0
‖Cω(t′)‖2

L2 dt′+2
∫ t

0

∫

R3
det
(
u,Cu,∆u

)
dxdt′=‖ω0‖2

L2 . (4.2)

Note that

〈ω×u,Cω〉L2 =
∫

R3
det
(
u,Cu,∆u

)
dx.

This computation is a typical example involving a critical determinant: the av-
erage sign of the determinant is responsible for the variations of the norms mea-
suring the regularity of the flow, here in terms of enstrophy. When ν= 0, i.e. for
(smooth) 3D Euler flows, the space-time average of det(u,Cu,∆u) is the sole geo-
metrical drive of the variations of enstrophy.

The best known a priori upper bounds for enstrophy is a Riccati-type control
by Lu & Doering [63]

E ′(t)≤CE3(t). (4.3)

It is obtained by estimating the critical determinant mentioned above and di-
verges in finite time. For advanced numerical experiments on the growth of en-
strophy for 3D viscous flows, see e.g. [5, 49, 50] and the numerous references to
the numerical literature therein.

An immediate corollary of (4.2) is a geometric criterion for regularity

∫ T

0

∫

R3
det(u,Cu,∆u)dxdt≥0 =⇒ u∈L∞

(
[0,T];Ḣ1

)
∩L2

(
[0,T];Ḣ2

)
. (4.4)
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For example, one recovers in this manner that all irrotational flows are smooth be-
cause the critical determinant vanishes identically (they are indeed the gradients
of solutions of the heat equation).

As a slightly more involved application, let us investigate the case of 3D fields
with 2D symmetry, i.e.

v=




v1(x1,x2)
v2(x1,x2)

0


, ω=




0
0

∂1v2−∂2v1


.

For such a field, one has

det(v,Cv,∆v)=−

∣∣∣∣∣∣

0 v1 ∆v1

0 v2 ∆v2

∂1v2−∂2v1 0 0

∣∣∣∣∣∣
=(∂2v1−∂1v2)(v1∆v2−v2∆v1).

If one introduces the stream function ψ(x1,x2) such that v1=∂2ψ and v2=−∂1ψ

det(v,Cv,∆v)=
(
−(∂2ψ)(∂1∆ψ)+(∂1ψ)(∂2∆ψ)

)
∆ψ,

which has no particular reason to vanish but leads to a global cancellation for any
t>0

∫

R3
det(v,Cv,∆v)=

1

2

(〈
∂2ψ,−∂1(∆ψ)2

〉
L2+

〈
∂1ψ,∂2(∆ψ)2

〉
L2

)

=
1

2

〈
∂1∂2ψ−∂2∂1ψ,(∆ψ)2

〉
L2 =0.

In particular, (4.4) implies the global regularity of such solutions, which has been
known since Leray [58]. As the balance law (4.2) also holds for smooth solutions
of the Euler equation, the previous computation implies the conservation of en-
strophy for smooth 2D Euler flows.

Remark 4.1. For a general 3D divergence-free flow u, invoking the vector poten-

tial u=CΨ and computing the critical determinant in (4.2) brings out 288 terms

involving the product of a first, second and third order derivative of the compo-

nents of Ψ, with no obvious compensations through space averages. This remark

illustrates the huge gap in complexity between 2D and 3D flows.

4.2 General case

Let us go back to the Navier-Stokes equation written in the form (2.8). The weak
form of the nonlinear term is, as mentioned in (2.9), a determinant

〈∂tu,w〉L2+ν
〈

C2u,w
〉

L2+
∫

R3
det(Cu,u,w)dx=0 (4.5)
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for all divergence-free test fields w. Assuming u is smooth, one can collect various
balance laws for Navier-Stokes by choosing w appropriately as a function of u.
The two standard choices are either w= u, which gives Leray’s energy equality
for smooth solutions, and w=Cu, which we explored in Subsection 3.2 and which
relates to the balance of helicity. Taking w=C2u leads to (4.2) and the balance of
enstrophy with, this time, a non-trivial critical determinant.

Leray’s energy identity can be extended given a first integral of the flow, i.e. α
such that (u·∇)α=0. Then w=αu is a divergence-free field and we have

〈∂tu,αu〉L2 +ν
〈

C2u,αu
〉

L2 =0,

and thus

〈αu,u〉L2 −
∫ t

0
〈α̇u,u〉L2+2ν

∫ t

0

〈
C2v,αu

〉
L2 =

〈
α(0)u0,u0

〉
L2 . (4.6)

For example, with α(t)= e−2λt , we get a family of conservation laws indexed by
λ>0

e−2λt‖u(t)‖2
L2 +2λ

∫ t

0
e−2λt′‖u(t′)‖2

L2 dt′

+2ν
∫ t

0
e−2λt′‖∇u(t′)‖2

L2 dt′=‖u0‖2
L2 , (4.7)

which is a weighted time-integral (gauge transform) of the classical energy bal-
ance that puts t′∼1/(2λ) into focus. Similarly, for w=e−2λt Cu, one gets a variant
of (3.4)

e−2λt〈u,Cu〉L2+2λ
∫ t

0
e−2λt′〈u,Cu〉L2

+2ν
∫ t

0
e−2λt′〈C2u,Cu

〉
L2 = 〈u0,Cu0〉L2 . (4.8)

Note that

〈u,Cu〉L2 =
∥∥C1/2

+ u
∥∥2

L2−
∥∥C1/2

− u
∥∥2

L2 ,
〈

C2u,Cu
〉

L2 =
∥∥C3/2

+ u
∥∥2

L2−
∥∥C3/2

− u
∥∥2

L2 .

Let us now investigate the more interesting case where w=C±u.

Proposition 4.1. If u is a smooth solution of Navier-Stokes, one has the following balance

laws:

∥∥C1/2
± u(t)

∥∥2
+2ν

∫ t

0

∥∥C3/2
± u

∥∥2
dt′



484 N. Lerner and F. Vigneron / Commun. Math. Res., 38 (2022), pp. 449-497

+
∫ t

0

∫

R3
det(Cu,u,|D|u)dxdt′=

∥∥C1/2
± u0

∥∥2
. (4.9)

Note that the critical determinant is identical in both cases, which is a new proof of (3.4).

One has also

‖u(t)‖2

Ḣ
1
2
+2ν

∫ t

0
‖u(t′)‖2

Ḣ
1
2
dt′+

∫ t

0

∫

R3
det(Cu,u,|D|u)dxdt′=‖u0‖2

Ḣ
1
2
. (4.10)

Proof. The only non-trivial point is the critical determinant. One has

det(Cu,u,C+u)dx=det(Cu,u,Cu+C−u)=det(Cu,u,C−u)

and thus

det(Cu,u,|C |u)dx=det(Cu,u,C+u)+det(Cu,u,C−u)=2det(Cu,u,C±u).

Finally, since |C|= |D|P, we can replace |C|u by |D|u. Subtracting the two iden-

tities gives (3.4), while adding them up provides the last claim.

Remark 4.2. Thanks to Lemma 2.2, one can rewrite this critical determinant as

det(Cu,u,|D|u)=det
(
(C+−C−)u,u,(C++C−)u

)

=−2det(u,C+u,C−u). (4.11)

This determinant is a geometrical drive for the growth of the Ḣ1/2 norm. Among

possible cancellations, it vanishes for Beltrami waves (Cu proportional to u), for

flows spectrally supported on a sphere (|D|u proportional to u) and, most impor-

tantly, for spin-definite flows (Cu proportional to |D|u).

To handle fractional powers, it is simplest to split the spin-definite compo-

nents to avoid problems with the lack of self-adjointness. Using w = C2θ
± u for

some θ>0 and the properties established in Subsection 2.3, one gets

∥∥Cθ
±u(t)

∥∥2

L2+2ν
∫ t

0

∥∥Cθ+1
± u(t′)

∥∥2

L2dt′

+2
∫ t

0

∫

R3
det
(

Cu,u,C2θ
± u
)
dxdt′=

∥∥Cθ
±u0

∥∥2

L2 . (4.12)

This time, the cancellation takes the form

det
(

Cu,u,C2θ
+ u
)
+det

(
Cu,u,C2θ

− u
)
=det

(
Cu,u,|D|2θu

)
.
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For integer values of 2θ, one has

det
(

Cu,u,C2θ
+ u
)
−det

(
Cu,u,C2θ

− u
)
=det

(
Cu,u,C2θ u

)
.

The determinants det(Cu,u,C2θ
± u) are the geometric drive for the growth of the

Ḣθ norm of the spin-definite components of u. In particular, we have proven the
following statement.

Proposition 4.2. If u is a smooth solution of Navier-Stokes, one has the following balance

laws:

‖u(t)‖2
Ḣθ +2ν

∫ t

0
‖u(t′)‖2

Ḣθ+1dt′

+2
∫ t

0

∫

R3
det
(

Cu,u,|D|2θu
)
dxdt′=‖u0‖2

Ḣθ (4.13)

for any θ > 0, and the spin-definite variants (4.12); when θ ∈N, one can replace |D|2θ

by (−∆)θ . For any n∈N∗, one has also

Nn
+(u,t)−Nn

−(u,t)+2
∫ t

0

∫

R3
det(Cu,u,Cn u)dxdt′

=
∥∥u+

0

∥∥2

Ḣ
n
2
−
∥∥u−

0

∥∥2

Ḣ
n
2

, (4.14)

where the definition (3.3) is extended by

Nn
±(u,t)=‖u±(t)‖2

Ḣ
n
2
+2ν

∫ t

0
‖u±(t′)‖2

Ḣ
n
2 +1dt′ (4.15)

and u±
0 =Q±u0.

The case θ=0 is of special interest because, as for θ= 1
2 , both critical determi-

nants coincide.

Proposition 4.3. If u is a smooth solution of Navier-Stokes, one has the following balance

laws:

‖u±(t)‖2
L2 +2ν

∫ t

0
‖∇u±(t′)‖2

L2 dt′

±2
∫ t

0

∫

R3
det(Cu,u−,u+)dxdt′=

∥∥u±
0

∥∥2

L2 . (4.16)

In particular, the balance between the spin-definite components is ruled by

N0
+(u,t)−N0

−(u,t)+4
∫ t

0

∫

R3
det(Cu,u−,u+)dxdt′

=
∥∥u+

0

∥∥2

L2−
∥∥u−

0

∥∥2

L2 . (4.17)
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Proof. Using u± as a test function, one has

det(Cu,u,u±)=det(Cu,u++u−,u±)=±det(Cu,u−,u+).

This completes the proof.

4.3 Applications

Regularity on [0,T]×R3 is assured when the following inequality holds:

∃θ≥ 1

2
,
∫ T

0

∫

R3
det
(

Cu,u,|D|2θu
)
dxdt≥0. (4.18)

Of course, giving sense to the previous integral requires some a priori knowl-
edge that the solution is smooth. However, if the inequality is satisfied for some
θ≥ 1

2 along a sequence of, e.g., Galerkine approximations that converge to a given

Leray solution u, then u enjoys a uniform bound in L∞([0,T];Ḣθ) and therefore,
according to [41], is smooth on [0,T]. To avoid making an assumption on ap-
proximating sequences, one can require instead the slightly stronger property on
a general Leray solution

∃θ≥ 1

2
, a.e. t∈ [0,T]

∫

R3
det
(

Cu,u,|D|2θu
)
dx≥0 (4.19)

with u0∈Hθ . Then one can proceed as in the proof of Theorem 3.2 and show that
the first time of singularity cannot occur before T.

4.3.1 Uniqueness criterion based on critical determinants

In this section, we revisit the weak-strong uniqueness result and investigate how
the associated stability estimate can be expressed in a more geometric way. We
refer the reader to [43] and the references therein for an in-depth discussion of
weak-strong uniqueness for Navier-Stokes.

Let us consider two Leray solutions uj, j= 1,2 of the incompressible Navier-
Stokes equation (2.8) and their difference δ=u1−u2. Using the energy inequality
for each, one gets

‖δ(t)‖2
L2 +2ν

∫ t

0
‖∇δ‖2

L2

≤‖u1(0)‖2
L2+‖u2(0)‖2

L2−2

(〈
u1(t),u2(t)

〉
L2+2ν

∫ t

0

〈
∇u1,∇u2

〉
L2

)
.
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The standard argument in favor of weak-strong uniqueness consists in observing
that each equation tested against (a regularized version of) the other field ulti-
mately gives

〈
u1(t),u2(t)

〉
L2+2ν

∫ t

0
〈∇u1,∇u2〉L2

=
〈

u1(0),u2(0)
〉

L2−
∫ t

0

〈
(δ·∇)u1,δ

〉
L2 ,

which implies

‖δ(t)‖2
L2 +2ν

∫ t

0
‖∇δ‖2

L2 ≤‖δ(0)‖2
L2 +2

∫ t

0

〈
(δ·∇)u1,δ

〉
L2 (4.20)

and, with Gronwall’s inequality

‖δ(t)‖2
L2 ≤‖δ(0)‖2

L2 exp

(∫ t

0
‖∇u1(t

′)‖L∞ dt′
)

. (4.21)

This control is enough to ensure the uniqueness of all Leray solutions stemming
from u1(0) as long as u1 remains smooth. It remains nonetheless quite crude.

Instead, using (2.9), let us rewrite the crucial step in a more geometric way

〈
u1(t),u2(t)

〉
L2+2ν

∫ t

0
〈∇u1,∇u2〉L2

+
∫ t

0
det(Cu1,u1,u2)+det(Cu2,u2,u1)

=
〈

u1(0),u2(0)
〉

L2 .

Observe that

det(Cu1,u1,u2)+det(Cu2,u2,u1)=det(Cδ,u1,u2)=(u1×u2)·Cδ.

As divδ=0, one has ‖Cδ‖L2 =‖∇δ‖L2 and one can completely absorb the offend-
ing derivative

‖δ(t)‖2
L2 ≤‖δ(0)‖2

L2 +
1

2ν

∫ t

0
‖u1×u2‖2

L2 . (4.22)

In particular, we have the following statement.

Theorem 4.1. If u1 and u2 are two Leray solutions such that

‖u1×u2‖2
L2 ≤γ(t)‖u1−u2‖2

L2 with γ∈L1([0,T]), (4.23)

then for any t∈ [0,T], one has

‖δ(t)‖2
L2 ≤‖δ(0)‖2

L2 exp

(∫ T

0
γ(t′)dt′

)
. (4.24)
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For example, if u1 ∈ L2
t L∞

x we can apply this result because u1×u2 =−u1×δ
and we recover a well-known case of weak-strong uniqueness. However, the
geometric assumption (4.23) is a priori weaker if, for example, the two fields tend
to line up when one of them grows unbounded.

4.3.2 A variant of BKM based on critical determinants

Formally, the standard argument for the Beale-Kato-Majda criterion [8, 68] con-
sists in writing the equation for vorticity (2.10) in weak form against ω itself,
which gives

‖ω(t)‖2
L2 +2ν

∫ t

0
‖Cω‖2

L2 =‖ω0‖2+2
∫ t

0

〈
(ω ·∇)u,ω

〉
L2

and thus, in particular

‖ω(t)‖2
L2 ≤‖ω0‖2+2

∫ t

0
‖ω‖2

L2‖ω‖L∞ .

Combined with Gronwall lemma, this ensures that the solution (of either Euler
or Navier-Stokes) remains smooth as long as

∫ T

0
‖ω(t)‖L∞ dt<+∞. (4.25)

Let us present a variant of this computation, inspired by the previous critical
determinants.

Our starting point is similar, but we write the non-linear term slightly differ-
ently

‖ω(t)‖2
L2 +2ν

∫ t

0
‖Cω‖2

L2+2
∫ t

0
〈ω×u,Cω〉L2 =‖ω0‖2

L2 .

Now, if one splits ν=ν1+ν2 with arbitrary values νj>0, one gets

‖ω(t)‖2
L2 +2ν1

∫ t

0

∥∥∥∥Cω+
1

2ν1
(ω×u)

∥∥∥∥
2

L2

+2ν2

∫ t

0
‖Cω‖2

L2

=
1

2ν1

∫ t

0
‖ω×u‖2

L2+‖ω0‖2
L2 .

In particular, one obtains an estimate that is now specific to Navier-Stokes

‖ω(t)‖2
L2 +2ν2

∫ t

0
‖Cω‖2

L2 ≤‖ω0‖2
L2+

1

2ν1

∫ t

0
‖ω×u‖2

L2 . (4.26)
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Consequently, as

‖ω×u‖2
L2 ≤‖ω‖2

L2‖u‖2
L∞ ,

Gronwall’s lemma ensures the regularity of the flow on [0,T] provided that

∫ T

0
‖u(t)‖2

L∞ dt<+∞. (4.27)

This condition is the endpoint of the Prodi-Serrin L
q
t L

p
x family with 2

q +
3
p =1.

Let us finally point out that an interesting connection between the Beale-Kato-
Majda criterion and the theory of turbulence was established by Cheskidov &
Shvydkoy [26], who showed that a condition

∫ T

0

∥∥ω≤Q(t)(t)
∥∥

B0
∞,∞

dt<∞ (4.28)

ensures the regularity of the flow on [0,T]. The dynamic wave-number 2Q(t) sep-
arates high-frequency modes where viscosity prevails over the non-linear term
from the low-frequency modes where the Euler dynamics is dominant. It is de-
fined by

Q(t)=min
{

q∈N ; ∀p>q, 2−p‖∆pu‖L∞ < c0ν
}

. (4.29)

The constant c0>0 is absolute. The operators ∆p are the Littlewood-Paley projec-
tion on the p-th dyadic shell and ω≤Q denotes the corresponding projection on

the spectral ball of radius 2Q. Using this criterion and a relation between the time-

average of 2Q(t) and Kolmogorov’s dissipation wave-number, the authors of [26]
provide a strong analytical support to the fact that most turbulent flows (i.e. even
mildly intermittent ones) are actually regular solutions of Navier-Stokes.

In retrospect, this last observation makes the denomination of turbulent so-
lution given by Leray [58] to his weak solutions a now unnecessarily confusing
linguistic choice and it may be unwise to propagate it in the modern literature:
mathematical singularities, if they exist, will be violent events that are likely to
be of turbulent nature; however, most turbulent flows of practical interest for
engineering purposes are smooth, albeit less smooth (e.g. in terms of analyticity
radius) than the laminar flows, and only display quasi-singularities. Of course,
this remark does not intend to denigrate in any way the admirable work of Jean
Leray, who was greatly ahead of his era and whose entire life [19,64] was a tribute
to what a great mind can achieve in adversity, when it is moved by an unquench-
able curiosity and a strong sense of humanism.
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Appendix A

In this appendix, we recall some well known facts that bridge the standard vector
calculus with its geometric foundations. We denote by 〈·,·〉 the canonical Euclid-
ian scalar product of R3 and by ( #»e1, #»e2, #»e3) the canonical orthonormal basis. For
a comprehensive introduction to geometrical hydrodynamics, we refer the reader
to Arnold’s works [3, 4].

A.1 Some vector calculus formulas

Let us start with the defining identity for the vector product in R3.

Claim A.1. Let A,B,C be vectors in R3. Then we have

〈A×B,C〉R3 =det(A,B,C). (A.1)

In particular if R is a 3×3 matrix, we have

tR
(
RA×RB)=(detR)(A×B). (A.2)

Proof. Both sides are bilinear antisymmetric in A,B thus one can reduce the iden-

tity to the sole case A= #»e1 and B= #»e2, i.e.

c3=

∣∣∣∣∣∣

1 0 c1

0 1 c2

0 0 c3

∣∣∣∣∣∣
,

which is obviously true.

Claim A.2. Let A,B,C,X,Y be vectors in R3. Then we have

det(A×B,X,Y)= 〈A,X〉〈B,Y〉−〈B,X〉〈A,Y〉 (A.3)

and the triple cross-product formula

(A×B)×C= 〈C,A〉B−〈C,B〉A. (A.4)

Proof. For each identity, both sides are bilinear antisymmetric in A,B. The formu-

las reduce respectively to
∣∣∣∣∣∣

0 x1 y1

0 x2 y2

1 x3 y3

∣∣∣∣∣∣
= x1y2−x2y1 and




0

0

1


×




c1

c2

c3


=



−c2

c1

0


,

which are obviously true.
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Remark A.1. Eq. (A.4) implies the Jacobi identity

(A×B)×C+(B×C)×A+(C×A)×B=0, (A.5)

since the left-hand side of (A.5) is also

〈C,A〉︸ ︷︷ ︸B−〈C,B〉A︸ ︸+〈A,B〉C−〈A,C〉B︸ ︷︷ ︸+〈B,C〉A︸ ︸−〈B,A〉C=0.

A.2 Some differential calculus formulas

An orientation of R3 is a choice of a non-trivial ω0 in the 3rd exterior power Λ3R3,
i.e. a non-degenerate alternating trilinear form on R3.

Definition A.1. Let w be a one-form in R3. We define the vector field curlw by the

identity

ι(curlw)ω0=dw, (A.6)

where ι stands for the interior product.

Remark A.2. For ω0=dx1∧dx2∧dx3 the interior product reads

ιX(ω0)=X1dx2∧dx3−X2dx1∧dx3+X3dx1∧dx2 (A.7)

and with w=∑wjdxj we recover the usual formula for the curl.

In particular, for a function α, identifying a vector field u to a one-form we
find

curl(αu)=αcurlu+∇α×u. (A.8)

Next we investigate the curl of a general advection term and how these operators
(do not) commute.

Lemma A.1. Let u∈W
1,p
loc and v∈W

2,p′

loc be two vector fields on R3 for some p∈ [1,+∞].
We have

curl
(
(u·∇)v

)
=(u·∇)curlv−

(
(curlv)·∇

)
u+(divu)(curlv)

+ ∑
1≤j≤3

(∇uj×∇vj). (A.9)

Proof. We use a geometric approach because any direct attempt leads to night-

marish computations. We consider u as a vector and v as a 1-form and use Ein-

stein summation convention freely

u=uj
∂

∂xj
, v=vjdxj.
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With ω0 = dx1∧dx2∧dx3, recall that ι(curlv)ω0 = dv i.e. curlv is a vector and dv is

a 2-form. The Lie derivative Lu is defined by Elie Cartan’s formula

Lu(ω)= ιudω+d(ιuω). (A.10)

The convective term can be expressed as a 1-form in the following way:

(u·∇)v=Lu(vj)dxj =Lu(v)−vjLu(dxj)

=Lu(v)−vjd(ιudxj)=Lu(v)−vjduj.

As the Lie derivative commutes with exterior differentiation, one gets

d
(
(u·∇)v

)
=Lu(dv)+duj∧dvj.

Proceeding by identification, one gets

ιcurl((u·∇)v)ω0=d
(
(u·∇)v

)
=Lu(ι(curlv)ω0)+duj∧dvj

= ι(curlv)Lu(ω0)+ ιLu(curlv)ω0+duj∧dvj

=(divu)ιcurlvω0+ ι[u,curlv]ω0+duj∧dvj,

providing (A.9) since duj∧dvj= ι(∇uj×∇vj)
ω0.

The geometrical reason that gives the convection term its cross-product struc-
ture (see identity (2.6) when u=v) is the following.

Lemma A.2. Let u,v be vector fields in R3. Then we have

(u·∇)v+(v·∇)u=∇(u·v)−u×curlv−v×curlu. (A.11)

Proof. We introduce ũ=ujdxj, ṽ= vjdxj the two one-forms associated to u and v

and proceed as in the proof of the previous lemma

(u·∇)ṽ+(v·∇)ũ=Lu(vj)dxj+Lv(uj)dxj

=Lu(ṽ)−vjLu(dxj)+Lv(ũ)−ujLv(dxj)

= ιudṽ+d(ιuṽ)−vjduj︸ ︸
+ιvdũ+d(ιvũ)−ujdvj︸ ︸

=d(ιv ũ)+ ιuιcurlvω0+ ιvιcurluω0.

In the last expression, we used (A.6) to expand dũ and dṽ. The three underlined

terms cancel each other out because ιuṽ=ujvj. Recall that the cross-product u×v

is defined as a 1-form by the identity

(u×v)·w=ω0(u,v,w) i.e. u×v= ιvιuω0. (A.12)
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We thus get

(u·∇)ṽ+(v·∇)ũ=∇(u·v)+curlv×u+curlu×v,

which is the sought result.
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