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Abstract. We present a new numerical method for solving the elliptic homogenization
problem. The main idea is that the missing effective matrix is reconstructed by solving
the local least-squares in an offline stage, which shall be served as the input data for
the online computation. The accuracy of the proposed method is analyzed with the
aid of the refined estimates of the reconstruction operator. Two dimensional and three
dimensional numerical tests confirm the efficiency of the proposed method, and illus-
trate that this online-offline strategy may significantly reduce the cost without loss of
the accuracy.
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1 Introduction

We consider a prototypical elliptic boundary value problem

{ −div(a ε(x)∇uε(x))= f (x), x∈D⊂R
d,

uε(x)=0, x∈∂D,
(1.1)

where ε is a small parameter that signifies explicitly the multiscale nature of the problem.
We assume that the coefficient a ε, which is not necessarily symmetric, belongs to a set
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M(α,β,D) that is defined by

M(α,β,D):={B∈ [L∞(D)]d
2 |(Bξ,ξ)≥α|ξ|2 , |B(x)ξ|≤β|ξ|,

for any ξ∈R
d and a.e. x∈D}, (1.2)

where D is a bounded domain in R
d and (·,·) denotes the inner product in R

d, while |·|
is the corresponding norm.

In the sense of H-convergence [53, 54], for every sequence a ε ∈M(α,β,D) and f ∈
H−1(D), the sequence uε of the solution to (1.1) satisfies

{
uε ⇀u0, weakly in H1

0(D),

a ε∇uε⇀A∇u0, weakly in [L2(D)]d,
as ε→0, (1.3)

where u0 is the solution of the homogenization problem

{ −div(A(x)∇u0(x))= f (x), x∈D,

u0(x)=0, x∈∂D,
(1.4)

and A∈M(α,β,D). Here H1
0(D),L2(D) and H−1(D) are standard Sobolev spaces [4].

The quantities of interest for Problem (1.1) and Problem (1.4) are the homogenized
solution u0 over the whole domain and the solution uε at certain critical local region. The
former stands for the information at the large scale, and the later mimics the informa-
tion at small scale. There are lots of work devoted to efficiently compute such quantities
during the last several decades; see, e.g., [6, 17, 20], among many others. Presently we
are interested in the efficient way to compute u0. A typical way that towards this is pro-
vided by the heterogeneous multiscale method (HMM) [3, 18], and the FE2−method [40]
commonly used in the engineering community that is also in the same spirit of HMM.
The underlying idea of this approach is to extract A by solving the cell problems posed
on the sampling points of the macoscopic solver. At each point, one needs to solve d cell
problems with d the dimensionality. Therefore, the main computational cost comes from
solving all these cell problems. The number of the cell problems grows rapidly when
higher-order macroscopic solvers are employed. To reduce the cost, certain nonconven-
tional quadrature schemes were proposed in [16] when finite element method is used as
the macroscopic solver. The number of the cell problems reduces to one third compared
to the standard mid-point quadrature scheme when P2 Lagrange finite element method
is employed as the macroscopic solver. Unfortunately, it does not seem easy to extend
such idea to even higher order macroscopic solvers because the quadrature nodes tend
to accumulate in the interior of the element [48, 50, 51].

In [35], the authors presented a local least-squares reconstruction of the effective ma-
trix using the solution of the cell problems posed on the vertices of the triangulation,
which was dubbed as HMM-LS. The total number of the cell problems equals to the to-
tal number of the interior vertices of the triangulation, which is of O(h−d) with h the
mesh size of the macroscopic solver. This method achieves higher-order accuracy with


