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Abstract. In many applications one needs to process massive data of high dimension-
ality. In order to make data compact and reduce computational complexity, dimension-
ality reduction algorithms are commonly used. Linear discriminant analysis (LDA) is
one of the most used approaches, which leads to a matrix trace ratio problem, i.e.,
maximization of the trace ratio ρ(V)=Tr(VT AV)/Tr(VT BV), where A and B are n×n
real symmetric matrices with B positive definite, and V is an n×p column orthonor-
mal matrix. In this paper, we consider a commonly used Iterative Trace Ratio (ITR)
algorithm developed by Ngo et al., The trace ratio optimization problem, SIAM Review, 54
(3) (2012), pp. 545–569. In implementations, it is common to use the symmetric Lanc-
zos method to compute the p eigenvectors of a certain large matrix corresponding to
its p largest eigenvalues at each iteration, and the resulting algorithm is abbreviated
as ITR L. We establish the global convergence and local quadratic convergence of the
trace ratio itself. We then make two improvements over ITR L: (i) using the refined
Lanczos method to compute the desired eigenvectors at each iteration and (ii) provid-
ing a better initial guess via solving a generalized eigenvalue problem of the matrix
pair (A,B). The resulting algorithms are abbreviated as ITR RL and ITR GeigRL, re-
spectively. Numerical experiments demonstrate that ITR RL and ITR GeigRL outper-
form ITR L substantially.

AMS subject classifications: 65F15, 65F30, 62H30, 15A18

Key words: Dimensionality reduction, trace ratio, global convergence, eigenvalue, eigenvector,
refined projection, refined Lanczos algorithm, implicitly restarted, preprocess.

1 Introduction

In many applications such as data mining, machine learning and bioinformatics, one has
to process massive data. Due to excessive storage requirement and computational cost,

∗Corresponding author. Email addresses: jiazx@tsinghua.edu.cn (Z. Jia), laifh14@163.com (F. Lai)

http://www.global-sci.org/csiam-am 297 c©2021 Global-Science Press



298 Z. Jia and F. Lai / CSIAM Trans. Appl. Math., 2 (2021), pp. 297-312

in order to overcome the difficulty of high dimensionality, make an effective analysis
and process the data, it is necessary to use dimensionality reduction, whose aim is to
reduce the high dimensionality and meanwhile to retain the useful information of data
features and structures. Some dimensionality reduction approaches are from statistics
and geometry, e.g., the linear discriminant analysis (LDA) [5] and the local preserving
projection (LPP) [7], etc. They ultimately lead to the matrix trace ratio problem: Find the
column orthonormal solution V∗ to the optimization problem

max
VTV=Ip

Tr(VT AV)

Tr(VTBV)
, (1.1)

where A and B are n×n real symmetric, V is n×p column orthonormal, Ip is the identity
of order p with 1< p≪ n being the classification number of data features, and ‘Tr(·)’ is
the trace of a square matrix. For convenience, we suppose that B is symmetric positive

definite, and define ρ(V)= Tr(VT AV)
Tr(VT BV)

to be the objective function. Therefore, the trace ratio

optimization problem is to find V∗ and the maximum trace ratio ρ∗=ρ(V∗).
The Foley-Sammon transform (FST) method [4] is based on the Fisher discriminant

criterion [3]. Exploiting this criterion, Sammon proposes an optimal set of discriminant
surfaces [16], which is extended to the optimal set of discriminant vectors [4]. One can use
FST method to obtain optimal sets of discriminant vectors successively. The method has
received much attention in the field of pattern recognitions; see, e.g., [8]. There have been
some FST based methods under different conditions, for example, Liu’s method [14].
Since the discriminant vectors are successively obtained and only locally optimal, there
is no guarantee that the discriminant vectors obtained ultimately are globally optimal.
This is a typical shortcoming that many local optimization methods share.

There have been some methods for solving (1.1). Yan and Tang [20] propose a mul-
tiscale search algorithm, which, at each iteration, solves a symmetric matrix eigenvalue
problem, but no convergence analysis is made. It appears that this method converges
slowly, similar to the bisection methods proposed by Xiang et al. [19] and Guo et al. [6].
Wang et al. [18] improve these methods and propose a Newton like method for solving
problem (1.1), in which they give up multiscale and bisection searches and instead solve
a symmetric matrix eigenvalue problem at each iteration so as to accelerate the conver-
gence. Ngo et al. [15] develop an Iterative Trace Ratio (ITR) method. In implementations,
they suggest to use the symmetric Lanczos method at iteration k to find the p eigenvectors
of A−ρkB associated with the p largest eigenvalues where ρk is the current approxima-
tion to ρ∗, and we shall call the resulting ITR algorithm ITR L. Specifically, the implicitly
restarted Lanczos algorithm is used.

The convergence of ITR has been analyzed in, e.g., [1, 22, 23], where the global lin-
ear convergence of {ρk} and the local quadratic convergence of {Vk} has been proved
with the columns of Vk being the unit-length eigenvectors of A−ρk−1B corresponding
to its p largest eigenvalues counting their multiplicities. Throughout the paper, the p
largest eigenvalues are always meant to count their multiplicities. The convergence of


