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Abstract. We propose a class of multipliers correction methods to minimize a differ-
entiable function over the Stiefel manifold. The proposed methods combine a function
value reduction step with a proximal correction step. The former one searches along
an arbitrary descent direction in the Euclidean space instead of a vector in the tangent
space of the Stiefel manifold. Meanwhile, the latter one minimizes a first-order proxi-
mal approximation of the objective function in the range space of the current iterate to
make Lagrangian multipliers associated with orthogonality constraints symmetric at
any accumulation point. The global convergence has been established for the proposed
methods. Preliminary numerical experiments demonstrate that the new methods sig-
nificantly outperform other state-of-the-art first-order approaches in solving various
kinds of testing problems.
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1 Introduction

We focus on the matrix-variable optimization problems with orthogonality constraints:

min
X∈Rn×p

f (X)

s.t. X⊤X= Ip,
(1.1)

where p≤n, Ip is the p×p identity matrix, and f : Rn×p−→R is a continuously differen-

tiable function. The feasible region, denoted by Sn,p :=
{

X∈Rn×p |X⊤X= Ip

}

, is called
the Stiefel manifold.
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Optimization problems over the Stiefel manifold have wide applications in scientific
computing and data science. For example, in linear eigenvalue problems [9, 25, 26], en-
ergy minimization in electronic structure calculations [23, 24, 36], matrix completion [8],
independent component analysis [31], Bose–Einstein condensates [34], discriminant anal-
ysis [22], dictionary learning [18], and nearest low-rank correlation matrix problems [16].
Beyond that, one can find other applications in [4, 12] and the references therein.

1.1 Existing works

Optimization problems over the Stiefel manifold have been adequately studied in re-
cent decades. There emerge quite a few algorithms and solvers, such as, geodesic-based
approaches [12, 27, 28], retraction-based approaches [1–3, 5, 19, 20, 32, 33, 36], and split-
ting and alternating approaches [21, 30]. We refer the interested readers to the mono-
graph [4] and survey [17] on these methods. Recently, the authors in [15] developed two
orthonormalization-free approaches, called PLAM and PCAL, which are based on the
augmented Lagrangian penalty function [29] but adopt an explicit expression to update
Lagrangian multipliers instead of the dual ascent step. Such approaches are particularly
suitable for parallel computing due to their high scalability. PCAL was further applied
to solve the energy minimization problem in electronic structure calculations [13]. More
recently, an exact penalty model, which shares the same global minimizers as the origi-
nal problem (1.1), was proposed in [35]. In order to solve this model, they also proposed
first-order and second-order approaches which subsume PCAL as a specific implemen-
tation.

In [14], the authors proposed a new algorithmic framework which consists of two
steps: the function value reduction step, which preserves the feasibility, is conducted in
the Euclidean space; the correction step is nothing but a rotation on the previously ob-
tained step. As the Lagrangian multipliers associated with orthogonality constraints are
symmetric and enjoy an explicit expression X⊤∇ f (X) at any first-order stationary point
of (1.1) (see [15, (2.2)]), the purpose of this correction step is to guarantee the symmetry of
X⊤∇ f (X) at each iteration. In summary, three algorithms were introduced in [14] to ful-
fill the framework; extensive numerical results illustrated their great potential. However,
this framework strictly depends on the following assumption.

Assumption 1.1. f (X)=h(X)+tr
(

G⊤X
)

, where G∈Rn×p is a constant matrix and h(X)
is orthogonal invariant, i.e., h(XQ) = h(X) holds for any Q∈Sp,p. Moreover, ∇h(X) =
H(X)X, where H : Rn×p−→Sn and Sn refers to the set of n×n symmetric matrices.

Assumption 1.1 restricts the objective to a class of composite functions. In this case,
the explicit expression X⊤∇ f (X) can be divided into two parts, including a symmetric
term X⊤H(X)X and a linear term X⊤G. Hence, it is sufficient to guarantee the symmetry
of X⊤∇ f (X) in the correction step by making X⊤G symmetric. To this end, one can min-
imize tr

(

G⊤X
)

in the range space of X where finding its global minimizer is equivalent
to computing a singular value decomposition.


