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Abstract. Subspace techniques such as Krylov subspace methods have been well
known and extensively used in numerical linear algebra. They are also ubiquitous and
becoming indispensable tools in nonlinear optimization due to their ability to han-
dle large scale problems. There are generally two types of principals: i) the decision
variable is updated in a lower dimensional subspace; ii) the objective function or con-
straints are approximated in a certain smaller subspace of their domain. The key in-
gredients are the constructions of suitable subspaces and subproblems according to the
specific structures of the variables and functions such that either the exact or inexact
solutions of subproblems are readily available and the corresponding computational
cost is significantly reduced. A few relevant techniques include but not limited to di-
rect combinations, block coordinate descent, active sets, limited-memory, Anderson
acceleration, subspace correction, sampling and sketching. This paper gives a com-
prehensive survey on the subspace methods and their recipes in unconstrained and
constrained optimization, nonlinear least squares problem, sparse and low rank op-
timization, linear and nonlinear eigenvalue computation, semidefinite programming,
stochastic optimization and etc. In order to provide helpful guidelines, we empha-
size on high level concepts for the development and implementation of practical algo-
rithms from the subspace framework.
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1 Introduction

Large scale optimization problems appear in a wide variety of scientific and engineering
domains. In this paper, we consider a general optimization problem

mxinf(x), s.t. x€ X, (1.1)

where x is the decision variable, f(x) is the objective function and X’ is the feasible set. Ef-
ficient numerical optimization algorithms have been extensively developed for (1.1) with
various types of objective functions and constraints [89,113]. With the rapidly increasing
problem scales, subspace techniques are ubiquitous and becoming indispensable tools
in nonlinear optimization due to their ability to handle large scale problems. For exam-
ple, the Krylov subspace methods developed in the numerical linear algebraic commu-
nity have been widely used for the linear least squares problem and linear eigenvalue
problem. The characteristics of the subspaces are clear in many popular optimization
algorithms such as the linear and nonlinear conjugate gradient methods, Nesterov’s ac-
celerated gradient method, the Quasi-Newton methods and the block coordinate decent
(BCD) method. The subspace correction method for convex optimization can be viewed
as generalizations of multigrid and domain decomposition methods. The Anderson ac-
celeration or the direct inversion of iterative subspace (DIIS) methods have been suc-
cessful in computational quantum physics and chemistry. The stochastic gradient type
methods usually take a mini-batch from a large collection samples so that the computa-
tional cost of each inner iteration is small. The sketching techniques formulate a reduced
problem by a multiplication with random matrices with certain properties.

The purpose of this paper is to provide a review of the subspace methods for nonlin-
ear optimization, for their further improvement and for their future usage in even more
diverse and emerging fields. The subspaces techniques for (1.1) are generally divided
into two categories. The first type is to update the decision variable in a lower dimen-
sional subspace, while the second type is to construct approximations of the objective
function or constraints in a certain smaller subspace of functions. Usually, there are three
key steps.

¢ Identify a suitable subspace either for the decision variables or the functions.
e Construct a proper subproblem by various restrictions or approximations.
e Find either an exact or inexact solution of subproblems.

These steps are often mixed together using the specific structures of the problems case by
case. The essence is how to reduce the corresponding computational cost significantly.
The collection of subspaces techniques is growing ever rich in unconstrained and con-
strained optimization, nonlinear least squares problem, sparse and low rank optimiza-
tion, linear and nonlinear eigenvalue computation, semidefinite programming, stochas-
tic optimization, manifold optimization, phase retrieval, variational minimization and



