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Abstract. Boundary and initial conditions are important for the wellposedness of par-
tial differential equations (PDEs). Numerically, these conditions can be enforced ex-
actly in classical numerical methods, such as finite difference method and finite ele-
ment method. Recent years, we have witnessed growing interests in solving PDEs
by deep neural networks (DNNs), especially in the high-dimensional case. However,
in the generic situation, a careful literature review shows that boundary conditions
cannot be enforced exactly for DNNs, which inevitably leads to a modeling error. In
this work, based on the recently developed deep mixed residual method (MIM), we
demonstrate how to make DNNs satisfy boundary and initial conditions automati-
cally by using distance functions and explicit constructions. As a consequence, the
loss function in MIM is free of the penalty term and does not have any modeling error.
Using numerous examples, including Dirichlet, Neumann, mixed, Robin, and periodic
boundary conditions for elliptic equations, and initial conditions for parabolic and hy-
perbolic equations, we show that enforcing exact boundary and initial conditions not
only provides a better approximate solution but also facilitates the training process.
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1 Introduction

Partial differential equation (PDE) is one of the most important tools to model various
phenomena in science, engineering, and finance. It has been a long history of developing
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reliable and efficient numerical methods for solving PDEs. Notable examples include
finite difference method [19], finite element method [28], and discontinuous Galerkin
method [8]. For low-dimensional PDEs, these methods are proved to be accurate and
demonstrated to be efficient. However, they run into the curse of dimensionality for high-
dimensional PDEs, such as Schrédinger equation in the quantum many-body problem
[9], Hamilton-Jacobi-Bellman equation in the stochastic optimal control [1], and nonlinear
Black-Scholes equation for pricing financial derivatives [16].

In the last decade, significant advancements in deep learning have driven the de-
velopment of solving PDEs in the framework of deep learning, especially in the high-
dimensional case where deep neural networks overcome the curse of dimensionality by
construction; see [2,3,6,10-13,17, 21,22, 24,26, 27] for examples and references therein.
Among these, deep Ritz method uses the variational form (if exists) of the corresponding
PDE as the loss function [11] and deep Galerkin method (DGM) uses the PDE residual
in the least-squares senses as the loss function [26]. In [24], physics-informed neural
networks are proposed to combine observed data with PDE models. The mixed resid-
ual method (MIM) first rewrites a PDE into a first-order system and then uses the system
residual in the least-squares sense as the loss function [22]. These progresses demonstrate
the strong representability of deep neural networks (DNNs) for solving PDEs.

In classical numerical methods, basis functions or discretization stencils have com-
pact supports or sparse structures. Machine learning methods, instead, employ DNNs as
trial functions, which are globally defined. This stark difference makes DNNs overcome
the curse of dimensionality while classical numerical methods cannot. However, there
are still unclear issues for DNNSs, such as the dependence of approximation accuracy on
the solution regularity and the enforcement of exact boundary conditions. It is straight-
forward to enforce exact boundary conditions in classical numerical methods while it is
highly nontrivial for DNNs due to their global structures. A general strategy is to add a
penalty term in the loss function which penalizes the discrepancy between a DNN eval-
uated on the boundary and the exact boundary condition. Such a strategy inevitably
introduces a modeling error which leads to a degradation of the approximation accuracy
and typically makes the training process more difficult [7]. Therefore, it is always desir-
able to construct DNNs which automatically satisfy boundary conditions and there are
several efforts towards this objective [4,23,25]. It is shown that Dirichlet boundary con-
dition can be enforced exactly over a complex domain in [4]. This idea cannot be applied
for Neumann boundary condition since the solution value on the boundary is not avail-
able. This issue is solved by constructing the trial DNN in a different way [23]. However,
for mixed boundary condition, this construction has a serious issue at the intersection of
Dirichlet and Neumann boundary conditions and an approximation has to be applied.
Therefore, it is so far that an exact enforcement of mixed boundary condition for DNNs
has still been lacking.

In this work, in the framework of MIM, we demonstrate how to make DNNs sat-
isfy boundary and initial conditions automatically using distance functions and explicit
constructions. As a consequence, the loss function in MIM is free of penalty term and



