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Abstract. In this paper, we compute the stationary states of the multicomponent phase-
field crystal model by formulating it as a block constrained minimization problem. The
original infinite-dimensional non-convex minimization problem is approximated by a
finite-dimensional constrained non-convex minimization problem after an appropriate
spatial discretization. To efficiently solve the above optimization problem, we propose
a so-called adaptive block Bregman proximal gradient (AB-BPG) algorithm that fully
exploits the problem’s block structure. The proposed method updates each order pa-
rameter alternatively, and the update order of blocks can be chosen in a deterministic
or random manner. Besides, we choose the step size by developing a practical linear
search approach such that the generated sequence either keeps energy dissipation or
has a controllable subsequence with energy dissipation. The convergence property of
the proposed method is established without the requirement of global Lipschitz conti-
nuity of the derivative of the bulk energy part by using the Bregman divergence. The
numerical results on computing stationary ordered structures in binary, ternary, and
quinary component coupled-mode Swift-Hohenberg models have shown a significant
acceleration over many existing methods.
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1 Introduction

Multicomponent systems, such as alloys, soft matters, are an important class of materi-
als, particularly for technical applications and processes. The microstructures of materi-
als play a central role for a broad range of industrial application, such as the mechanical
property of the quality and the durability, optical device, high-capacity data storage de-
vices [23,37–39,48]. Advances in modeling and computation have significantly improved
the understanding of the fundamental nature of microstructure and phase selection pro-
cesses. Notable contributions have been made through using the phase-field methodol-
ogy [20,21], which has been successful at examining mesoscale microstructure evolution
over diffusive time scales. Recently, phase field crystal (PFC) models have been proposed
to efficiently simulate eutectic solidification, elastic anisotropy, solute drag, quasicrystal
formation, solute clustering and precipitation mechanisms [14, 38, 46]. Besides, binary
and ternary component phase field models have attracted many research interests from
the computation perspective [2, 3, 5, 11, 15, 43, 54].

The PFC model for a general class of multicomponent systems is formulated con-
sisting s components in d dimensional space. The concentrations of the components are
described by s vector-valued functions {φi(r)}s

i=1 =(φ1(r),··· ,φs(r)). The variable φα(r),
so-called order parameter, denotes the local fraction of phase α. The free energy func-
tional of PFC model of a s-component system can be described by two contributions, a
bulk free energy F[{φi(r)}s

i=1] and an interaction potential G[{φi(r)}s
i=1], which drive the

density fields to become ordered by creating minimal in the free energy for these states.
Formally, we can write the free energy functional of the multicomponent system as

E[{φi(r)}s
i=1;Θ]=G[{φi(r)}s

i=1;Θ]+F[{φi(r)}s
i=1;Θ], (1.1)

where Θ are relevant physical parameters. F has polynomial or logarithmic formulation
[12, 16, 47] and G is the interaction potential, such as high-order differential terms or
convolution terms [12, 42]. Usually, some constraints are imposed on the PFC model,
such as the mass conservation or incompressibility which means the order parameter
{φi(r)}s

i=1 belong to a feasible space.
To understand the fundamental nature of multicomponent systems, it often involves

finding stationary states corresponding to ordered structures. Denote Vi (i = 1,2,··· ,s)
to be a feasible space of the i-th order parameter, the above problem is transformed into
solving the minimization problem

min E[{φi(r)}s
i=1;Θ], s.t. φi(r)∈Vi (i=1,2,··· ,s), (1.2)

with different physical parameters Θ, which brings a tremendous computational burden.
Different methods have been proposed for computing the stationary states of multi-

component models and can be classified into two categories through different formula-
tions and numerical techniques. One is to solve the steady nonlinear Euler-Lagrangian
system of (1.2) through different spatial discretization approaches. The other class of


