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Abstract. Reinforcement learning (RL) algorithms based on high-dimensional func-
tion approximation have achieved tremendous empirical success in large-scale prob-
lems with an enormous number of states. However, most analysis of such algorithms
gives rise to error bounds that involve either the number of states or the number
of features. This paper considers the situation where the function approximation is
made either using the kernel method or the two-layer neural network model, in the
context of a fitted Q-iteration algorithm with explicit regularization. We establish an

Õ(H3|A| 1
4 n− 1

4 ) bound for the optimal policy with Hn samples, where H is the length
of each episode and |A| is the size of action space. Our analysis hinges on analyzing
the L2 error of the approximated Q-function using n data points. Even though this
result still requires a finite-sized action space, the error bound is independent of the
dimensionality of the state space.
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1 Introduction

Modern reinforcement learning (RL) algorithms often deal with problems involving an
enormous amount of states, often in high dimensions, where function approximation
must be introduced for the value or policy functions. Despite their practical success [20,
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40,49], most existing theoretical analysis of RL is only applicable to the tabular setting (see
e.g. [3, 4, 17, 32, 33, 43]), in which both the state and action spaces are discrete and finite,
and the value function is represented by a table without function approximation. Rela-
tively simple function approximation methods, such as the linear model [34, 57] or gen-
eralized linear model [55], have been studied in the context of RL with various statistical
estimates. The kernel method has also been studied in [18, 28, 60, 61], but results therein
either suffer from the curse of dimensionality or require stringent assumptions about the
kernel (in the form of fast decay of the kernel’s eigenvalues or the bounds on the cover-
ing number). This paper considers general kernel method and two-layer neural network
models and establishes dimension-independent results for these two classes of function
approximation.

In the context of supervised learning, dimension-independent error rates have been
established for a number of important machine learning models [21], including the kernel
methods and two-layer neural network models. Of particular importance is the choice
of the function space associated with the specific machine learning model. For the kernel
method and two-layer neural network models, the corresponding function spaces are the
reproducing kernel Hilbert space (RKHS) [1] and Barron space [22], respectively. Extend-
ing such results to the setting of reinforcement learning is a challenging task due to the
coupling between the value/policy functions at different time steps.

In this work, we consider the fitted Q-iteration algorithm [13, 26, 27, 46, 51] for situa-
tions where the state space is embedded in a high-dimensional Euclidean space and the
action space is finite. The function approximation to the Q-function is made either using
the kernel method or the two-layer neural networks, with explicit regularization. We as-
sume there is a simulator that can generate samples for the next state and reward, given
the current state and the action. This allows us to focus on analyzing errors from the
function approximation. Under the assumptions that the function approximation is com-
patible with the reward function and transition model, and all admissible distributions
are uniformly bounded from a reference distribution (see Assumption 3.2), we establish

an Õ(H3|A| 1
4 n− 1

4 ) bound for the optimal policy with Hn samples, where H is the length
of each episode and |A| is the size of action space. This result is independent of the di-
mensionality of the state space, and the convergence rate for n is close to the statistical
lower bound for many function spaces, including several popular cases of RKHS and the
Barron space (see Section 5 for a detailed discussion).

The key component in the analysis is to estimate the one-step error and control the
error propagation. An important issue is the choice of the norm. L∞ estimates have been
popular in reinforcement learning for analyzing the tabular setting [4, 17, 32, 33], linear
models, [11, 34, 57] and kernel methods [60, 61] (see discussions below). However, in the
case we are considering, L∞ estimates suffer from the curse of dimensionality with re-
spect to the sample complexity, i.e. to ensure that the error is smaller than ǫ, we need at
least O(ǫ−d) samples in d-dimensional state space (see Section 5 for a detailed discussion).
This fact also explains why we only consider finite action space. Once we consider the
high-dimensional action space, it is inevitable to find a maximum of a high-dimensional


