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Abstract. This paper aims at studying the difference between Ritz-Galerkin (R-G)
method and deep neural network (DNN) method in solving partial differential equa-
tions (PDEs) to better understand deep learning. To this end, we consider solving a
particular Poisson problem, where the information of the right-hand side of the equa-
tion f is only available at n sample points, that is, f is known at finite sample points.
Through both theoretical and numerical studies, we show that solution of the R-G
method converges to a piecewise linear function for the one dimensional problem or
functions of lower regularity for high dimensional problems. With the same setting,
DNNs however learn a relative smooth solution regardless of the dimension, this is,
DNNs implicitly bias towards functions with more low-frequency components among
all functions that can fit the equation at available data points. This bias is explained
by the recent study of frequency principle. In addition to the similarity between the
traditional numerical methods and DNNSs in the approximation perspective, our work
shows that the implicit bias in the learning process, which is different from traditional
numerical methods, could help better understand the characteristics of DNNS.
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1 Introduction

Deep neural networks (DNNs) become increasingly important in scientific computing
fields [5-7,10-13,16,17,22,26,31]. A major potential advantage over traditional numerical
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methods is that DNNs could overcome the curse of dimensionality in high-dimensional
problems. With traditional numerical methods, several studies have made progress on
the understanding of the algorithm characteristics of DNNSs. For example, by exploring
ReLU DNN representation of continuous piecewise linear function in FEM, the work [13]
theoretically establishes that a ReLU DNN can accurately represent any linear finite el-
ement functions. In the aspect of the convergence behavior, the works [32, 33] show a
Frequency Principle (F-Principle) that DNNs often learn low-frequency components first
while most of the conventional methods (e.g., Jacobi method) exhibit the opposite con-
vergence behavior—higher-frequency components are learned faster. These understand-
ings could lead to a better use of DNNs in practice, such as DNN-based algorithms are
proposed based on the F-Principle to fast eliminate high-frequency error [3,17].

As the DNN-based algorithms are increasingly important in solving PDEs, it is im-
portant to study the property of the DNN solution. The aim of this paper is to investigate
the different behaviors between DNNs and Ritz-Galerkin (R-G) method (as a traditional
numerical method). To this end, we utilize an example to show their stark difference,
that is, solving PDEs only with a few given sample points. We denote n by the sample
number and m by the basis number in the Ritz-Galerkin method or the neuron number in
DNNSs. In traditional PDE models, we consider the situation where the source functions
in the equation are completely known, i.e. the sample number n can go to infinity. But
in practical applications, such as signal processing, statistical mechanics, chemical and
biophysical dynamic systems, we often encounter the problems that only a few sample
values can be obtained. It is interesting to ask what effect R-G methods would have on
solving this particular problem, and what the solution would be obtained by the DNN
method. On the other hand, DNN is well-known often over-parameterized in real appli-
cations. For a fair comparison, the R-G method is also set as over-parameterized when
the number of basis functions goes to infinity.

In this paper, we show that R-G method considers the discrete sampling points as
linear combinations of Dirac delta functions, while DNN method always uses a relatively
smooth function to interpolate the discrete sampling points. And we incorporate the
F-Principle to show how DNN method is different from the R-G method, that is, for
all functions that can fit the training data, DNNs implicitly bias towards functions with
more low-frequency components. In addition to the similarity between the traditional
numerical methods and DNNSs in the approximation perspective [13], our work shows
that the implicit bias in the learning process, which is different from traditional numerical
methods, could help better understand the characteristics of DNNS.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the R-
G method and the DNN method. In Sections 3 and 4, we present the difference between
the two methods in solving PDEs numerically, and provide some theoretical analysis. We
end the paper with the conclusion in Section 5.



