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Abstract. We discuss the expansion of interaction kernels between anisotropic rigid
molecules. The expansion decouples the correlated orientational variables, which is
the crucial step to derive macroscopic free energy. It is at the level of kernel expansion,
or equivalently the free energy, that the symmetries of the interacting rigid molecules
can be fully recognized. Thus, writing down the form of expansion consistent with the
symmetries is significant. Symmetries of two types are considered. First, we examine
the symmetry of an interacting cluster, including the translation and rotation of the
whole cluster, and label permutation within the cluster. The expansion is expressed
by symmetric traceless tensors, with the linearly independent terms identified. Then,
we study the molecular symmetry characterized by a point group in O(3). The proper
rotations determine what symmetric traceless tensors can appear. The improper rota-
tions decompose these tensors into two subspaces and determine how the tensors in
the two subspaces are coupled. For each point group, we identify the two subspaces,
so that the expansion consistent with the point group is established.
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1 Introduction

In a system consisting of many rigid molecules, the interactions between the molecules
depend not only on the relative position, but also on the relative orientation. Such in-
teractions can lead to nonuniform orientational distribution. As a result, even in an in-
finitesimal volume, local anisotropy can be formed and further correlated spatially, which
is the typical mechanism for liquid crystals. An example that many are familiar with is
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the (uniaxial) nematic phase formed by rod-like molecules, where no positional order is
observed but an optical axis can be identified. If layer structure further arises, the smec-
tic phases could appear. The concept of liquid crystals has been expanded to a great
extent since rigid molecules of other shapes, such as bent-core molecules, have proved to
possess richer phase behaviors experimentally [16, 29].

In mathematical theory, to identify liquid crystalline phases, one needs to construct
free energy about some order parameters describing the local anisotropy. A simple ap-
proach is to construct phenomenological macroscopic models, typically a polynomial
of the order parameters and their derivatives. For rod-like molecules, the order pa-
rameter can be chosen as a second order symmetric traceless tensor, based on which
the Landau-de Gennes theory is built and has been successfully applied to both station-
ary and dynamic problems [2, 10, 25]. When discussing other types of liquid crystalline
phases, including polar, biaxial or tetrahedral order, people also attempted to construct
phenomenological models with different tensor order parameters [11,12,14,26,27,30]. In
these models, the terms are usually kept as minimum to describe specific phenomena.

Macroscopic theories can also be built upon molecular theories. Such an approach
dates back to the derivation of the equations of state for gases, where a homogeneous
system consisting of spherical molecules is considered [19, 21]. Inhomogeneous systems,
without considering the anisotropy of the molecule, have also been discussed, leading to
theories for modulated phases that can describe various materials such as amphiphilic
systems and block copolymers [7, 13, 24]. Molecular theories are characterized by in-
teraction kernel functions of several molecules, in which the variables representing the
positions of these molecules are correlated. To derive a macroscopic theory, it is neces-
sary to separate these variables, which can be done by expanding the kernel functions.
After the expansion is done, each term in the expansion corresponds to a term in the free
energy, so that the macroscopic theory is established.

When non-spherical rigid molecules are put into consideration, extra variables are
introduced for the orientation of the molecule. Most theories developed from molecular
interactions focus on the orientational variables only and are built for spatially homoge-
neous systems. In this case, the kernel functions are independent of spatial variables, and
the expansion decouples the orientational variables. Theories of this kind possibly start
from Maier–Saupe [20] for rod-like molecules. Other rigid molecules, including cuboid,
bent-core, triangular and cross-like [4, 5, 28, 35, 36], have also been discussed.

Recently, the expansion has been extended to spatially inhomogeneous cases, where
both spatial inhomogeneity and orientational anisotropy are included. This approach
combines the techniques for spatially inhomogeneous systems of spherical molecules and
for spatially homogeneous systems of non-spherical molecules. It was first proposed
for rod-like molecules [15], for which a tensor model was established for both nematic
and smectic phases. Later, it has been successfully applied to bent-core molecules [34],
resulting in a tensor model for modulated nematic phases.

Despite the success of these works, they still cannot describe the majority of exotic
liquid crystalline phases exhibited by non-spherical rigid molecules [18, 29, 39]. This is


