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Abstract. In this paper, we develop a symmetric accelerated stochastic Alternating
Direction Method of Multipliers (SAS-ADMM) for solving separable convex optimiza-
tion problems with linear constraints. The objective function is the sum of a possibly
nonsmooth convex function and an average function of many smooth convex func-
tions. Our proposed algorithm combines both ideas of ADMM and the techniques of
accelerated stochastic gradient methods possibly with variance reduction to solve the
smooth subproblem. One main feature of SAS-ADMM is that its dual variable is sym-
metrically updated after each update of the separated primal variable, which would al-
low a more flexible and larger convergence region of the dual variable compared with
that of standard deterministic or stochastic ADMM. This new stochastic optimization
algorithm is shown to have ergodic converge in expectation with O(1/T) convergence
rate, where T denotes the number of outer iterations. Our preliminary experiments
indicate the proposed algorithm is very effective for solving separable optimization
problems from big-data applications. Finally, 3-block extensions of the algorithm and
its variant of an accelerated stochastic augmented Lagrangian method are discussed in
the appendix.
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1 Introduction

We consider the following structured composite convex optimization problem with linear
equality constraints:

min{ f (x)+g(y) | x∈X , y∈Y , Ax+By=b}, (1.1)

where X ⊂R
n1 , Y⊂R

n2 are closed convex subsets, A∈R
n×n1, B∈R

n×n2, b∈R
n are given,

g : Y→R∪{+∞} is a convex but possibly nonsmooth function, and f is an average of N
real-valued convex functions:

f (x)=
1

N

N

∑
j=1

f j(x).

We assume that each f j defined on an open set containing X is Lipschitz continuously
differentiable on X . Problem (1.1) is also referred as the regularized empirical risk mini-
mization in big-data applications [26, 35], including classification and regression models
in machine learning, where N denotes the sample size and f j corresponds to the empir-
ical loss. A major difficulty for solving (1.1) is that the sample size N can be very large
such that it is often computationally prohibitive to evaluate either the full function value
or the gradient of f at each iteration of an algorithm. Hence, it is essential for an effective
algorithm, e.g., a stochastic gradient method, to explore the summation structure of f in
the objective function.

The augmented Lagrangian function of (1.1) is

Lβ (x,y,λ)=L(x,y,λ)+
β

2
‖Ax+By−b‖2 , (1.2)

where β> 0 is a penalty parameter, λ is the Lagrange multiplier and the Lagrangian of
(1.1) is defined as

L(x,y,λ)= f (x)+g(y)−λT(Ax+By−b). (1.3)

Although the Augmented Lagrangian Method (ALM) can be applied to solve (1.1), it does
not take full advantage of the separable structure of (1.1). As a splitting version of ALM,
the standard Alternating Direction Method of Multipliers (ADMM, [11, 12]) exploits the
separable structure of the objective function and performs the following iterations:





xk+1∈argmin
x∈X

Lβ(x,yk,λk),

yk+1∈argmin
y∈Y

Lβ(xk+1,y,λk),

λk+1=λk−sβ
(

Axk+1+Byk+1−b
)

,

where s∈ (0, 1+
√

5
2 ) is the stepsize for updating the dual variable λ.


