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Abstract. We study the multistationarity for the reaction networks with one dimen-
sional stoichiometric subspaces, and we focus on the networks admitting finitely many
positive steady states. We provide a necessary condition for a network to admit mul-
tistationarity in terms of the stoichiometric coefficients, which can be described by
“arrow diagrams”. This necessary condition is not sufficient unless there exist two re-
actions in the network such that the subnetwork consisting of the two reactions admits
at least one and finitely many positive steady states. We also prove that if a network
admits at least three positive steady states, then it contains at least three “bi-arrow
diagrams”. More than that, we completely characterize the bi-reaction networks that
admit at least three positive steady states.
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1 Introduction

This work is motivated by the multistability problem of dynamical systems arising from
biochemical reaction networks (under mass-action kinetics): for which rate constants, a
network has at least two stable positive steady states in the same stoichiometric com-
patibility class? Multistability is a frontier topic in mathematical biology since it widely
exists in the decision-making process and switch-like behavior in cellular signaling (e.g.,
[1,8,10,17,27]). Multistability problem is known to be a special real quantifier elimination
problem so it is challenging to solve it by the computational tools in real algebraic geom-
etry (e.g., [4, 12]). Given a network, one way to find multistability is to look for a witness
for (nondegenerate) multistationarity, i.e., a choice of parameters (rate constants and total
constants) such that the network has at least two positive (nondegenerate) steady states.
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In practice, if the number of positive nondegenerate steady states is large enough, one
can usually obtain at least two stable ones (e.g., [11, 18, 25]). Deciding multistationarity
or computing the witnesses for multistationarity is not easy neither but there exists a
collection of nice methods (e.g., [6, 13, 16, 21]). For instance, one typical approach is to
check if the determinant of a certain Jacobian matrix changes sign [2, 5, 7, 26]. Especially,
for the networks with binomial steady-state equations, deciding multistationary can be
unexpectedly simple [9, 20].

Since multistability or nondegenerate multistationarity can be lifted from small sub-
networks to the corresponding large networks [3, 14], criteria of (nondegenerate) mul-
tistationarity for small networks with only one species or up to two reactions (possibly
reversible) are studied in [15, 22]. In [15, 22], the authors completely characterized one-
species networks by “arrow diagrams”. For instance, the network “X1→2X1, 2X1→X1”
can be described as the arrow diagram (→,←) (see Definition 4.3). At the end of [15],
the authors wonder if their results can be extended to more general networks with one-
dimensional stoichiometric subspaces (note here, for a network with two reactions, if
it admits multistationarity, then it has a one-dimensional stoichiometric subspace [15]).
More specifically, they proposed the following question:

Question 1.1. [15, Question 6.1] Consider a network G with a one-dimensional stoichio-
metric subspace. For G to be multistationary, is it necessary for G to have an embed-
ded one-species network with arrow diagram (→,←) and another with arrow diagram
(←,→)? Is it sufficient?

It is remarkable that for the networks with one-dimensional stoichiometric subspaces,
multistationarity is equivalent to nondegenerate multistationarity if the maximum num-
ber of positive steady states is finite (see Theorem 2.1). It is also worth mentioning that if
a network with a one-dimensional stoichiometric subspace admits multistability, then it
admits at least three positive steady states (e.g., [24, Theorem 3.4]). So, it is also important
to extend the results in [15] to the networks admitting at least three positive steady states.

In this paper, we study the multistationarity problem for the networks with one-
dimensional stoichiometric subspaces, and we focus on the networks admitting finitely
many positive steady states. We answer Question 1.1 and extend the problem by the
following results.

(1) If a network admits multistationarity, then the network has an embedded one-
species network with arrow diagram (→,←) and another with arrow diagram
(←,→) (Theorem 4.1). The converse is also true if we additionally assume that
a subnetwork consisting of two reactions from the original network admits at least
one and finitely many positive steady states (Theorem 4.2).

(2) If a network admits at least three positive steady states, then it contains at least
three bi-arrow diagrams (Theorem 5.1 and Corollary 5.2).

(3) We completely characterize the stoichiometric coefficients of the bi-reaction net-
works that admit at least three positive steady states (Theorem 6.1).


