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Abstract. We propose a relaxed alternating minimization algorithm for solving two-
block separable convex minimization problems with linear equality constraints, where
one block in the objective functions is strongly convex. We prove that the proposed
algorithm converges to the optimal primal-dual solution of the original problem. Fur-
thermore, the convergence rates of the proposed algorithm in both ergodic and noner-
godic senses have also been studied. We apply the proposed algorithm to solve several
composite convex minimization problems arising in image denoising and evaluate the
numerical performance of the proposed algorithm on a novel image denoising model.
Numerical results for both artificial and real noisy images demonstrate the efficiency
and effectiveness of the proposed algorithm.
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1 Introduction

In this study, we focus on solving the following convex minimization problem:

min
x∈H1,y∈H2

f (x)+g(y)

s.t. Ax+By=b,
(1.1)
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where H1, H2, and G are real Hilbert spaces, f :H1→(−∞,+∞] and g :H2→(−∞,+∞] are
proper lower-semicontinuous (lsc) convex functions, b∈G, A : H1→G and B : H2→G are
nonzero bounded linear operators. Throughout this study, we assume that f is σ-strongly
convex for some σ>0. Furthermore, many problems from different areas are special cases
of (1.1), such as the projection onto the intersection of convex sets [1] and the resource
allocation problem [2]. In the following, we present several concrete examples of signal
and image processing.

Example 1. (Total variation image denoising problem) The total variation image denois-
ing problem was first proposed by Rudin, Osher, and Fatemi [3], which takes the form
of

min
x

1

2
‖x−u‖2+λ‖x‖TV , (1.2)

where u ∈ Rm×n is the observed noisy image, ‖x‖TV denotes total variation, and λ > 0
is the regularization parameter. (1.2) is often referred to as the ROF model. The total
variation ‖x‖TV can be represented by the composition of a convex function ϕ and a first-
order difference operator L :Rm×n→Rm×m×Rm×n, that is, ‖x‖TV=ϕ(Lx) [4,5]. Then, (1.2)
is a special case of (1.1).

Example 2. (Constrained total variation image denoising problem) Considering the prior
information of pixel values in digital images is often bounded by 0 ≤ x ≤ 1 or 0 ≤ x ≤
255. Let C be a nonempty closed convex set. The following constrained ROF model was
considered in [6–9]:

min
x

1

2
‖x−u‖2+λ‖x‖TV

s.t. x∈C.
(1.3)

Example 3. (Mixed Gaussian-impulse noise problem) In many practical applications, the
noise distribution is relatively complex, and Gaussian noise cannot be accurately simu-
lated. Many studies have focused on the removal of mixed Gaussian noise. The following
mixed Gaussian-impulse noise problem, in which the total variation as a regularization
function, was independently studied in [10–13]:

min
x

1

2
‖x−u‖2+µ‖x−u‖1+λ‖x‖TV , (1.4)

where µ>0 and λ>0 are regularization parameters. (1.4) is often referred to as the L2-L1-
TV model. In addition, box constraints or nonnegativity constraints can also be added to
(1.4) to improve its performance.

Example 4. (Mixed Poisson-Gaussian noise problem) Due to the influence of photon
counting and thermal noise, the observed image is usually destroyed by mixed Poisson-
Gaussian noise. Many studies have focused on mixed Poisson-Gaussian denoising prob-
lems. See, for example [14–17]. In particular, Thanh and Dvoenko [18] considered the


