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Abstract. In this paper, we propose a network model, the multiclass classification-
based reduced order model (MC-ROM), for solving time-dependent parametric par-
tial differential equations (PPDEs). This work is inspired by the observation of apply-
ing the deep learning-based reduced order model (DL-ROM) [14] to solve diffusion-
dominant PPDEs. We find that the DL-ROM has a good approximation for some spe-
cial model parameters, but it cannot approximate the drastic changes of the solution
as time evolves. Based on this fact, we classify the dataset according to the magnitude
of the solutions and construct corresponding subnets dependent on different types
of data. Then we train a classifier to integrate different subnets together to obtain the
MC-ROM. When subsets have the same architecture, we can use transfer learning tech-
niques to accelerate offline training. Numerical experiments show that the MC-ROM
improves the generalization ability of the DL-ROM both for diffusion- and convection-
dominant problems, and maintains the DL-ROM’s advantage of good approximation
ability. We also compare the approximation accuracy and computational efficiency
of the proper orthogonal decomposition (POD) which is not suitable for convection-
dominant problems. For diffusion-dominant problems, the MC-ROM has better ap-
proximation accuracy than the POD in a small dimensionality reduction space, and its
computational performance is more efficient than the POD’s.
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1 Introduction

Partial differential equation (PDE) is a fundamental mathematical model in scientific and
engineering computation. It is urgent to develop a numerical approach for solving PDEs.
The approach requires the following properties: high fidelity, generalization ability (be-
ing available to different PDE, different initial-boundary condition, model parameters,
and so on), computational efficiency (being expected to achieve the optimal O(N) com-
putational complexity). The approach is in terms of computational PDE model. Para-
metric PDEs (PPDEs) are one of the most important PDEs. Many scientific and engi-
neering problems, such as control, optimization, inverse design, uncertainty quantifica-
tion, Bayesian inference can be described by PPDEs with computational domains, initial-
boundary conditions, source terms, and physical properties as parameters. However, nu-
merically solving PPDEs usually requires expensive computational costs mainly due to
multi-query and real-time computing. Therefore, designing a computational PDE model
that meets the above characteristics for the PPDEs has important applications. However,
it is also a challenge in scientific and engineering computation.

The projection-based linear reduced order model (ROM) [15, 23] is an effective way
to improve the computational efficiency of numerically solving PPDEs. ROM can be
divided into offline and online stages. The offline stage constructs a low-dimensional
subspace to approximate the solution manifold using obtained high fidelity numerical
solutions. The computational tasks on the offline stage are usually expensive. The on-
line stage obtains an approximated solution for a new given model parameter based on
the low-dimensional subspace. The proper orthogonal decomposition (POD) method is
a popular algorithm for constructing linear ROM and is effective for many questions,
such as computational fluid dynamics and structural analysis [5, 31]. However, the POD
method still has some weaknesses, such as (i) it requires to construct a relatively high-
dimensional subspace to obtain an acceptable numerical solution; (ii) it needs relatively
expensive reduction strategies; and (iii) it has the intrinsic difficulty to handle physical
complexity, etc. To overcome these difficulties, a non-intrusive and data-driven nonlin-
ear reduced-order model based on deep learning (or neural network) has been devel-
oped [24, 26].

Using the neural network as an ansatz to solve PDE can be traced back to the late
1990s [27]. In recent years, with the evolution of the computational power, the explosive
development of deep learning has again attracted much attention of the community of
scientific computing. Due to the great expressivity of neural network [13], the neural-
network PDE solver achieves some breakthroughs in solving a single PDE, especially
high-dimensional PDE [18, 41, 46]. Using neural networks to solve PPDEs has also been
attracted much attention. The idea is to apply neural networks to learn the parameter to
solution mapping. The main works can be divided into two parts based on the steady-
state and time-dependent PPDEs. Firstly, the works on steady-state PPDEs can be di-
vided into supervised learning [39,43] and unsupervised learning [10,50]. Secondly, since
time-dependent PPDEs also involve time variables, the requirements for its generaliza-


