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Abstract. We present a mathematical and numerical investigation to the shrinking-
dimer saddle dynamics for finding any-index saddle points in the solution landscape.
Due to the dimer approximation of Hessian in saddle dynamics, the local Lipschitz as-
sumptions and the strong nonlinearity for the saddle dynamics, it remains challenges
for delicate analysis, such as the boundedness of the solutions and the dimer error. We
address these issues to bound the solutions under proper relaxation parameters, based
on which we prove the error estimates for numerical discretization to the shrinking-
dimer saddle dynamics by matching the dimer length and the time step size. Further-
more, the Richardson extrapolation is employed to obtain a high-order approxima-
tion. The inherent reason of requiring the matching of the dimer length and the time
step size lies in that the former serves a different mesh size from the later, and thus
the proposed numerical method is close to a fully-discrete numerical scheme of some
space-time PDE model with the Hessian in the saddle dynamics and its dimer approx-
imation serving as a “spatial operator” and its discretization, respectively, which in
turn indicates the PDE nature of the saddle dynamics.
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1 Introduction

One of the major challenges in computational physical and chemistry is how to efficiently
calculate saddle points on a complicated energy landscape. In comparison with find-
ing local minima, the computation of saddle points is generally more difficult due to
their unstable nature. Nevertheless, saddle points provide important information about
the physical and chemical properties. For instance, the index-1 saddle point represents
the transition states connecting two local minima according to the transition state the-
ory [19, 35], and the index-2 saddle points are particularly interesting in chemical sys-
tems for providing valuable information on the trajectories of chemical reactions [15].
The applications of saddle points include nucleation in phase transformations [5, 32, 33],
transition rates in chemical reactions and computational biology [11, 12, 21, 23, 25], etc.

The saddle points can be classified by the (Morse) index, which is characterized by
the maximal dimension of a subspace on which the Hessian H(x) is negative definite,
according to the Morse theory [20]. Most existing searching algorithms focus on finding
the index-1 saddle points, e.g. [1, 4, 6, 7, 9, 16, 17, 31]. However, the computation of high-
index (index>1) saddle points receive less attention despite of the fact that the number of
high-index saddles are much larger than the number of local minima and index-1 saddles
on the complicated energy landscapes [2, 18].

The original saddle dynamics (SD) aims to find an index-k (1≤ k∈N) saddle point of
an energy function E(x) [28]
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(1.1)

Here the natural force F :RN →R
N is generated from an energy E(x) by F(x)=−∇E(x),

H(x) :=−∇2E(x) corresponds to the Hessian of E(x), β, γ>0 are relaxation parameters,
x represents the position variable and direction variables {vi}k

i=1 form a basis for the
unstable subspace of the Hessian at x.

Because the Hessians are often expensive to calculate and store, one can apply first
derivatives to approximate the Hessians in Eq. (1.1) by using k dimers centered at x. To
be specific, H(x)vi is approximated by

Ĥ(x,vi,l) :=
1

2l

(

F(x+lvi)−F(x−lvi)
)

(1.2)

with the direction vi and the dimer length 2l for some l>0.

Following the idea of the shrinking dimer dynamics [31,34], we obtain the shrinking-
dimer saddle dynamics (SSD) [28] as follows:


