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Abstract. We present a systematic two-step approach to derive temporal up to the
eighth-order, unconditionally maximum-principle-preserving schemes for a semilin-
ear parabolic sine-Gordon equation and its conservative modification. By introducing
a stabilization term to an explicit integrating factor approach, and designing suitable
approximations to the exponential functions, we propose a unified parametric two-
step Runge-Kutta framework to conserve the linear invariant of the original system.
To preserve the maximum principle unconditionally, we develop parametric integrat-
ing factor two-step Runge-Kutta schemes by enforcing the non-negativeness of the
Butcher coefficients and non-decreasing constraint of the abscissas. The order condi-
tions, linear stability, and convergence in the L∞-norm are analyzed. Theoretical and
numerical results demonstrate that the proposed framework, which is explicit and free
of limiters, cut-off post-processing, or exponential effects, offers a concise, and effective
approach to develop high-order inequality-preserving and linear-invariant-conserving
algorithms.
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1 Introduction

Many differential equations in fluid dynamics, physics, chemistry, biology, engineering,
and material science are naturally equipped with inequality constraints on the solution
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components, such as strong stability [30], positivity [78], maximum principle [19,54], and
contractivity [48] constraints. It is recognized that preserving these inequality structures
is not only important for solutions to be physically meaningful but also relevant for the
numerical stability of time integration methods. In the last three decades, the develop-
ment of high-order accurate and efficient algorithms that can preserve such inequalities
has been a serious research objective [10,36,39,40,55,66]. However, it still remains an out-
standing open problem [3] to develop numerical methods that are both (i) of high-order
accuracy and (ii) capable of preserving inequality structures for any time-step size. To
the best of our knowledge, the high-order methods that can unconditionally guarantee
these properties are very limited [4, 19, 28, 46]. This motivated us to pursue high-order-
accurate and stable explicit schemes that can preserve the above inequality structures for
any time step. In particular, we selected the preservation of the maximum principle for
newly developed semilinear parabolic sine-Gordon equations as an example.

Recently, starting from the semilinear parabolic Allen-Cahn (AC) equation [1] and hy-
perbolic sine-Gordon equation [23], Cheng et al. [11] proposed and analyzed a parabolic
sine-Gordon (pSG) equation. They rigorously analyzed the existence of a maximum prin-
ciple, bounded steady states, a conditionally maximum-principle-preserving (MPP) first-
order implicit-explicit (IMEX) scheme, and an energy-stable second-order backward dif-
ferentiation formula (BDF2) scheme. The pSG equation is interesting for a number of rea-
sons. First and foremost, Cheng et al. [11] demonstrated that the pSG model exhibits strik-
ing similarity with the classical AC equation (Ginzburg-Landau potential). Because of its
very benign nonlinear structure, one can develop unconditionally MPP schemes. Thus,
it is of purely mathematical interest as a suitable testbed for phase field simulations, and
is expected to have a ubiquitous presence [11]. Moreover, from a physical perspective,
the pSG equation (with a white noise term and suitable parameters) is closely related to
models of a globally neutral gas of interacting charges [31], most directly it is the natural
(Langevin) dynamics for the sine-Gordon (Euclidean) quantum filed theory [7]. Hairer
and Shen [31] showed that the pSG equation with white noise also arises naturally from
a class of equilibrium interface fluctuation models with periodic nonlinearities. In addi-
tion, it was also proposed as a model for the dynamics of crystal-vapour interfaces at the
roughening transition [56], and has attracted much attention [32] in recent years. There-
fore, the development of efficient and stable schemes for the pSG equation has practical
significance. Consider the semilinear pSG equation [11]

{

ut=ǫ2∆u+ f (u), x∈Ω, t∈ (0,T],

u(x,0)=u0(x), x∈ Ω̄,
(1.1)

where the unknown function u represents the difference between the concentrations of
the two components, Ω ∈ Rd is an open, connected, and bounded region with a Lips-
chitz boundary ∂Ω, and periodic or homogeneous Neumann boundary conditions. The
nonlinear function f (u)= sin(u) is the negative derivative of a cosine potential function
F(u)=cos(u).


