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Abstract. We propose a splitting Hamiltonian Monte Carlo (SHMC) algorithm, which
can be computationally efficient when combined with the random mini-batch strategy.
By splitting the potential energy into numerically nonstiff and stiff parts, one makes
a proposal using the nonstiff part of U, followed by a Metropolis rejection step using
the stiff part that is often easy to compute. The splitting allows efficient sampling from
systems with singular potentials (or distributions with degenerate points) and/or with
multiple potential barriers. In our SHMC algorithm, the proposal only based on the
nonstiff part in the splitting is generated by the Hamiltonian dynamics, which can
be potentially more efficient than the overdamped Langevin dynamics. We also use
random batch strategies to reduce the computational cost to O(1) per time step in
generating the proposals for problems arising from many-body systems and Bayesian
inference, and prove that the errors of the Hamiltonian induced by the random batch

approximation is O(
√

∆t) in the strong and O(∆t) in the weak sense, where ∆t is the
time step. Numerical experiments are conducted to verify the theoretical results and
the computational efficiency of the proposed algorithms in practice.
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1 Introduction

Markov chain Monte Carlo (MCMC) [4, 22, 27, 47, 53, 58] methods are nowadays rou-
tinely used in a variety of scientific computing problems, including computing statistics
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for many-body systems [1, 21], sampling from log-concave distributions [11, 13, 39, 43],
parameter estimation in Bayesian statistics [2, 22, 25, 57] and Bayesian inverse problems
[24, 50], just to name a few. Among MCMC methods, Hamiltonian Monte Carlo (HMC)
[3, 7, 16, 49] has recently garnered a lot of attention in practice due to its scalability and
efficiency in high-dimensional settings [6, 49]. Nonetheless, there are several situations
where HMC can encounter difficulties. The first such scenario might be sampling from
the Gibbs distribution

µ(q)∝ exp[−βU(q)] (1.1)

of a many-body interacting particle system, where β > 0 is the (dimensionless) inverse
temperature. It takesO(N2) operations to compute the total potential energy

U(q)=
N

∑
i=1

wiV(qi)+ ∑
i,j:i<j

wiwjφ(qi−qj), (1.2)

where qi∈R
d is the position of the i-th particle and wi denotes the weight. If one moves

one particle per step, which is preferred in some applications [15, 21, 42], the computa-
tional cost of evolving the Hamiltonian dynamics and the Metropolis-Hastings correction
step in HMC are both O(N). This fact makes HMC computationally expensive when
sampling from the Gibbs distribution. Moreover, interaction potentials φ such as the
Coulomb potential or the Lennard-Jones potential are usually singular [21]. Singularity
in φ can introduce stiffness to the Hamiltonian system, which makes the numerical sim-
ulations difficult [62], and possibly leads to low acceptance rates [42], thus deteriorating
the sampling efficiency of HMC.

As for another well-known example, let us consider Bayesian inference of a parame-
ter θ based on its posterior distribution ppost(θ|DN) given the observed data DN

ppost(θ|DN)∝ pprior(θ)
N

∏
i=1

p(yi;θ), (1.3)

where DN ={y1,. . .,yN} is a sample of size N drawn from the probabilistic model p(·;θ).
When p(·;θ) is posited to be a mixture model, which is often the case in clustering and
density estimation problems [20], the corresponding posterior distribution ppost(θ|DN)
may be multimodal. One main reason for multimodality in mixture models is the non-
identifiability of the parameters due to label switching [29]. When the target distribu-
tion (the posterior distribution in this case) is multimodal, most MCMC algorithms have
difficulty moving between isolated modes and are therefore prone to generate biased
samples. As a result, HMC could fail to explore the entire state space and lead to even
worse performance than the simple Random Walk Metropolis (RWM) algorithm [44].
Indeed, the Hamiltonian simulation heavily relies on the gradient information of the po-
tential U, easily resulting in samples trapped in one single well of U when U has multiple
modes. A popular strategy of sampling from multimodal distributions is running multi-
ple chains with over-dispersed initializations in parallel. Other methods include parallel


