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Abstract. Emerging infectious diseases are existential threats to human health and
global stability. The recent outbreaks of the novel coronavirus COVID-19 have rapidly
formed a global pandemic, causing hundreds of thousands of infections and huge eco-
nomic loss. The WHO declares that more precise measures to track, detect and isolate
infected people are among the most effective means to quickly contain the outbreak.
Based on trajectory provided by the big data and the mean field theory, we establish an
aggregated risk mean field that contains information of all risk-spreading particles by
proposing a spatio-temporal model named HiRES risk map. It has dynamic fine spatial
resolution and high computation efficiency enabling fast update. We then propose an
objective individual epidemic risk scoring model named HiRES-p based on HiRES risk
maps, and use it to develop statistical inference and machine learning methods for de-
tecting suspected epidemic-infected individuals. We conduct numerical experiments
by applying the proposed methods to study the early outbreak of COVID-19 in China.
Results show that the HiRES risk map has strong ability in capturing global trend and
local variability of the epidemic risk, thus can be applied to monitor epidemic risk at
country, province, city and community levels, as well as at specific high-risk locations
such as hospital and station. HiRES-p score seems to be an effective measurement of
personal epidemic risk. The accuracy of both detecting methods are above 90% when
the population infection rate is under 20%, which indicates great application potential
in epidemic risk prevention and control practice.
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1 Introduction

One of our greatest challenges is the continuing global impact of infectious diseases. On
Mar 11th of 2020, The World Health Organization declared spread of the novel coro-
navirus COVID-19 is a global pandemic, when 118,000 confirmed cases of COVID-19
were found in 114 countries, with 4,291 deaths [1]. Although SARS-CoV-2, the virus that
causes COVID-19, has been found to have lower case fatality rate than either SARS or
Middle East respiratory syndrome-related coronavirus (MERS-CoV) [2], the sheer speed
of its geographical expansion and surge in numbers of confirmed cases severely impact
public health system. Human-to-human transmission seems to be the main method of
transmission for SARS-CoV-2, according to CDC of the United States [3]. The human-to-
human transmission routes of SARS-CoV-2 include direct transmission, such as cough,
sneeze, droplet inhalation transmission, and contact transmission, such as the contact
with oral, nasal, and eye mucous membranes [4]. But limitation of our knowledge on
SARS-CoV-2 and diversified symptoms of the infected patients complicate the diagnosis
of COVID-19 [2,5]. In addition, a significant percentage of infected patients, ranging from
18% to 50% as estimated in different research, are asymptomatic or with mild symptoms,
but they could still be highly contagious [6]. Therefore, early identification of infected
individuals and blocking their transmission paths are keys to effectively stop virus from
spreading.

Classic epidemic models such as SIR or exponential growth model use mathematical
and statistical approaches to quantify the dynamic mechanism of epidemic transmission
and to predict the size of the infected population. In these epidemic models, basic repro-
duction number R0 is the key parameter for quantifying the virus epidemic. Liu et al.
reviewed published studies on estimation of R0 of COVID-19 extracted from PubMed,
bioRxiv and Google Scholar during Jan 1st to Feb 7th, 2020 [7]. Results show that the es-
timated R0 varies from 2.2 to 6.49, and estimations obtained from the mechanism-based
dynamic modeling is significantly higher than those obtained using statistical methods
based on exponential growth model. Lack of robustness in estimation of the basic repro-
duction number may result in misleading estimates of the epidemic trend of COVID-19
as well as the size of infected population. In addition, these epidemic models cannot
predict the infection status of a specific individual, thus can only play a limited role in
practice of epidemic prevention and control. Epidemiology investigation used to be the
main method of exploring transmission process of infected individuals, but “omissions
and errors in previous activities can occur when the investigation is performed through
only a proxy interview with the patient” [8].

With the development of emerging technologies such as cloud computing, big data
and artificial intelligence, epidemiological research as well as epidemic prevention and
control methods are undergoing innovation. For example, based on search engine query
data, Google developed an approach, i.e., the Google Flu Trends (GFT) model, for de-
tecting influenza epidemics through monitoring health-seeking behavior in the form of
queries to online search engines. It provides estimates on the degree of influenza activ-
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ities at weekly and regional scale for the United States, with a reporting lag about one
day [9, 10]. Another example is more recent. South Korea’s response to the outbreak of
COVID-19 has been applauded by a number of international health experts [11]. Its out-
standing achievements in the prevention and control of the COVID-19 epidemic largely
depend on the comprehensive application of multi-source data, such as data from medi-
cal facility records, Global Positioning System, card transactions, and closed-circuit tele-
vision. Methods that can objectively verify the patients claims are adopted for conduct-
ing COVID-19 contact investigations in South Korea, which have collected more accurate
and timely information on the location, time of exposure, and details of the transmission
situations [8].

In this research, based on trajectory big data and mean field theory, we firstly propose
a high-resolution spatio-temporal model, namely HiRES, for the risk assessment of epi-
demic disease with human-to-human transmission. HiRES has a fine spatial resolution
and high computation efficiency that can support real-time monitoring in practice. Then
using the epidemic risk maps produced by HiRES model, we propose a personal infec-
tion risk scoring model, namely HiRES-p, to obtain objectively quantified risk of infection
for every authorized individual. Based on these risk scores, we develop methods using
statistical inference and machine learning approach respectively to detect early infection
of suspected cases. We apply our methods to investigate early outbreak of COVID-19 in
China during Jan 1st, 2020 to Jan 29th, 2020.

2 Trajectory big data

Trajectory data refers to a sequence of geographic locations with timestamps. It is a se-
ries of sampling points from the trajectory of continuously moving objects [12]. Accord-
ing to the different acquisition methods, trajectory data can be divided into the follow-
ing five categories: GPS (global positioning system) based, wireless network signaling
based, geo-social network based, RFID (radio frequency identification) based and Wi-fi
based [13]. On the other hand, according to the type of moving objects, it can be clas-
sified into human movement trajectory, vehicle trajectory, animal trajectory and natural
phenomenon movement trajectory [14].

Distinctive features of trajectory data include large-volume, real-time and diversity.
In addition, trajectory data in general carries a lot of information for data mining and
scientific analysis, thus is a very important type of big data. The spatio-temporal vari-
ability is the basic feature of trajectory data since it contains information of spatial and
temporal dimensions. Due to the variety of trajectory data sources, the trajectory data is
sampled at different frequencies. In addition, sampling of continuously moving objects
may introduce more biases and difficulties in data processing. Considering these char-
acteristics, analysis and mining of trajectory big data must balance between discovering
the spatio-temporal structure and variability and avoiding introducing excessive noise.

Common methods for analyzing the trajectory big data include pattern mining, clus-
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tering, machine learning, spatio-temporal modeling, etc. For example, [15–17] discover
common characteristic of objects’ movement behaviors based on trajectory data by pat-
tern mining; [18,19] use traditional machine learning based on feature engineering, while
[20,21] apply neural network-based models, to classify trajectory data with different char-
acteristics; [22–24] apply clustering methods to calculate data similarity in order to find
abnormal trajectories and to mine trajectory patterns; recent works in [25, 26] predict re-
lated variables in both spatial and temporal dimensions based on existing data. From the
perspective of application scenario, trajectory big data has been applied to traffic predic-
tion [25, 26], route recommendation, travel services [27], travel behavior analysis, smart
city management [15] and so on.

Trajectory big data used in this study is calculated and analyzed within the Phoenix
Tree Platform which is a centralized big data PaaS platform operated by one of the global
Tele Communication Company China Mobile. To ensure data security and protect per-
sonal information, we sanitize the datasets so that the direct link between the trajectory
and the specific subscriber cannot be identified. In the training datasets, subscribers are
labeled as ‘confirmed’ or ‘normal’. The use and disclosure of data have strictly followed
data and information management regulations in China and China Mobile’s data man-
agement requirements and obtain its approval and individual authorization [28–31].

3 Mathematical modeling of epidemic risk

We develop mathematical models to quantify regional epidemic risk and personal infec-
tion risk. Firstly, based on the mean field theory, we propose a spatio-temporal model,
namely HiRES, to provide high-resolution estimation of regional epidemic risk based on
trajectory data of confirmed infections and obtain HiRES epidemic risk maps through
mapping the estimated spatial epidemic risk to the corresponding base station cells. The
main idea of the mean field theory is to focus on one particle and it assumes that the most
important contribution to the interactions of such particle with its neighboring particles is
determined by the mean field due to the neighboring particles [32]. Based on this theory,
instead of investigating how each confirmed case, i.e., a risk-spreading particle, interact
with the rest of population, which is impossible or computationally costly, we establish
an aggregated risk mean field that contains information of all risk spreading particles.
Then based on this epidemic risk mean field, we propose a scoring model HiRES-p to es-
timate the personal epidemic risk of each individual using the HiRES maps and his/her
trajectory data. Finally, based on the HiRES-p scores, we develop detection methods
using both statistical inference approach and machine learning approach to detect and
classify suspected individuals.

3.1 Notations

We start by introducing key notations used in this paper.
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t0,t1,··· ,tk: time period;

t̂k = tk−tk−1: basic temporal resolution;

x̂l,m: identification of a communication base station cell (abbreviated as
BSC hereafter), where l means area number, m is symbol number of
station in this area. Every spatial coverage of BSC varies from 500m
to 1km approximately. We will use x̂l,m indiscriminately to represent
station and treat as one pixel in our epidemic risk map;

F(x̂l,m, t̂k): base function at station x̂l,m during time period t̂k;

F̄(x̂l,m, t̂k): estimated epidemic risk at BSC x̂l,m during time period t̂k;

fp(x̂l,m, t̂k): subscriber ps proportion of stay-time at BSC x̂l,m during t̂k;

yp(t̂k): subscriber ps personal base risk;

ỹp(tk): subscriber ps personal risk score at time tk;

δs: incubation decay coefficient which represents degree of infection im-
pact of a confirmed case on a BSC;

Γi: outdoor decay coefficient of virus;

γi: decay coefficient of virus.

3.2 HiRES model and epidemic risk map

The spreading risk of an infectious disease with human-to-human as the main route of
transmission comes from human movements and interaction. Thus high-resolution tra-
jectory data of infected patients can well represent the spreading spatio-temporal risk of
the virus. Put it in the context of mathematics, given the trajectory data of an infectious
patient p, i.e., confirmed case, we define his/her proportion of stay at certain base station
cell x̂l,m during a given time period t̂k by fp(x̂l,m, t̂k), which satisfies ∑l,m fp(x̂l,m, t̂k) = 1.
We define our base function F as follows:

F(x̂l,m, t̂k)=
P

∑
p=1

δs(p,t̂k)
fp(x̂l,m, t̂k),

where P is the total number of confirmed cases, δs(p,t̂k)
is incubation decay coefficient as

defined in Secttion 3.1. Since each confirmed case has different confirmed date, let s(p, t̂k)
be a function of subscriber and time interval, which means the number of unit of time
from tk to confirmed date. For example, if we choose time interval as one day, subscriber p
diagnosed on 15th Jan, we intend to calculate basic value at 13th Jan (tk=13th, tk−1=12th),
then s(p, t̂k)=2.

We consider the median length of stay in hospital as a proxy for time to cure, and we
assume that the patient would become temporarily immune to the virus when healed.
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Thus after recovery, confirmed cases will be removed from the confirmed group and
their stay at BSCs will not be counted into the risk map anymore.

Based on the trajectories of all confirmed cases during a certain period, for every
region covered by a BSC, its epidemic risk can be calculated by:

F̄(x̂l,m)=∑
k

ΓkF(x̂l,m, t̂k),

where k depends on the survival time of virus. Γk is the decay coefficients. Thus, we
obtained our epidemic risk map, namely, HiRES risk map, {F̄(x̂l,m,latl,m,lonl,m)}, where
(latl,m,lonl,m) refers to the geographical information (latitude and longitude) of the BSC.
The spatial coverage and resolution of this HiRES map is determined by the spatial dis-
tribution and coverage/radius of all the BSCs covered by the trajectory data.

3.3 HiRES-p model and detection of suspected cases

In the practice of epidemic prevention and control, one of the most important and diffi-
cult problems is to detect suspected cases, i.e., people are highly likely infected or to be
infected in the near future. Based on HiRES risk maps, we develop a personal epidemic
risk scoring model HiRES-p, which can explicitly quantified risk of infection for every
authorized individual. The infection risk of an individual during a certain time interval
is defined by his/her accumulated trajectory risk given by the HiRES risk maps. During
a time interval t̂k, the HiRES-p personal base risk score is formulated as follows:

yp(t̂k)=∑
x̂l,m

∑
t̂k

γk f (x̂l,m, t̂k)F(x̂l,m, t̂k),

where k depends on the survival time of virus. Most infectious viruses have an incubation
period, when we evaluate the infection risk of an individual at certain time point, it’s not
enough to only consider risk arising from the most recent exposure. Historical personal
risk score exposure during the incubation period also plays a crucial role. Thus we define
the HiRES-p personal risk score at time tk by the maximum of his/her epidemic risk score
series obtained during the past incubation period. That is, the HiRES-p scoring model can
be given by:

ỹp(tk)=max(yp(t̂k),yp(t̂k−1),··· ,yp(t̂k−T)),

where T is the incubation period of the epidemic virus. By definition, the distribution of
the HiRES-p score for an individual will follow a generalized extreme value distribution
(GEV). Generally speaking, HiRES-p risk score is defined by a function of historical per-
sonal risk exposures during the virus incubation period, thus can take other form besides
taking maximum. In machine learning based method introduced later in this article, the
analytic form of this function defines data feature.

To detect suspected cases, we firstly use statistical inference approach to formulate
the detection problem into a hypothesis testing problem. Assume the HiRES-p score of a
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normal individual follows a GEV distribution with its cumulative distribution function
given by F0(x;µ,σ,η). The real-time HiRES-p score ỹp(tk) is considered as a sample from
certain GEV distribution. Numerical experiments indicate that the probability distribu-
tion of HiRES-p for the normal group is significantly different from that of the infected
group. Thus, detection of suspected cases is equivalent to test whether sample ỹp(tk)
comes from the distribution under the null hypothesis, i.e., F0. We calculate the P-value
of this hypothesis testing problem based on the null distribution F0, and reject the null
hypothesis if it is small at certain significance level, say 5%, which indicates a successful
detection of suspected case. The theoretical detection rate (DR) is defined by the power
of the test and false alarm rate (FAR) is relevant to the significance level chosen for the
hypothesis test. let α denote type I error and β denote type II error, we have the following
theoretical results on DR and FAR:

{

DR=1−β,

FAR=α.

From the big-data perspective, detection of suspected cases can be formulated as a
classification problem using machine learning approach. Given large group of people,
we would like to divide them into two categories: suspected case and healthy case. To
apply machine learning approach, we firstly need to construct the training dataset and
the testing dataset with sufficient amount of trajectory records. Then we extract data fea-
tures by calculating the HiRES-p score defined by certain analytic form. Given a labeled
training dataset, we can train our model using common machine learning algorithms
such as Decision Tree, Random Forest and Support Vector Machine. Performance of the
ML methods can be evaluated using the testing dataset. Model selection should consider
both accuracy and robustness.

The flowchart of models and methods introduced in this section is summarized in
Fig. 1.

3.4 Discussions on hyperparamters

We discuss hyperparameters that are important in our method.

1. Basic temporal resolution

The basic temporal resolution is chosen as one day in this research, but can be changed to
fit data and research need. For convenience of expression, we will use k replace t̂k which
means day k. In practice, higher resolution is preferable since faster update of personal
risk enables earlier detection of suspected cases, meanwhile higher resolution demands
more data and computing resources.

2. Incubation decay coefficient

Incubation decay coefficient is a key parameter in calculating the HiRES risk map, thus
validation of this parameter is crucial for the accuracy of the risk map. It consists of a
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Figure 1: Architecture of HiRES and HiRES-p.

virus decay model and an estimate of incubation period. In practice, theoretical results
may not be available especially at the early outbreak of the disease. Advices from pro-
fessionals are needed. In our application study, we work on early outbreak of COVID-19
in China. Linton et al. [33] found that the incubation period of COVID-19 falls within
the range of 2-14 days with 95% confidence. Based on this research, we set incubation
period T=14 days in our experiments. We assume virus exponential decay follows this

formula δs = e−
1

T+1−s , s=1,2,··· ,14, where s represents number of days from current time
to diagnosed date, and δs =0 when s>14.

3. Decay coefficient of virus

Outdoor decay coefficient measures how long virus stay active after viral shedding. Re-
cent research find that COVID-19 was most stable on plastic and stainless steel and viable
virus could be detected up to 72 hours [34]. Thus, in our application study, epidemic risk
on BSCs and personal risk score are the weighted sum of 3 daily values

F̄(x̂l,m,k)=
2

∑
i=0

ΓiF(x̂l,m,k−i),

where Γi are decay weights outdoors. Under the assumption of viable virus being re-
duced by half each day, we let Γi=50×22−i.
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Decay coefficient of virus γi measures rate of decreasing of infectiousness of viruses
to humans and is used to calculate the HiRES-p score:

yp(k)=
2

∑
i=0

γi ∑
x̂l,m

fp(x̂l,m,k−i)F̄(x̂l,m,k−i).

Neeltje et al. [34] showed COVID-19 linearly decay under log10 TCID50/mL titer, so we
set γi=10−i in our application study.

4. Recovery time of an infected individual

Recovery time is an important index we use to decide whether an infected individual
still contributes to the risk map or not. In practice, exact recovery time of each individual
is hard to get. Instead, record of stay in hospital for confirmed cases can be obtained
and used to estimate time to cure. Recent research find that the median length of stay in
hospital is 10 days in China. The largest median length of stay in hospital is 20 days in
Wuhan and the smallest one is 5 days in Hainan [35]. These results are incorporated in
our application study.

4 Application to early outbreak of COVID-19 in China

4.1 Trajectory datasets

Data collection and cleaning

We collected the trajectory data of diagnosed people and normal people in the early stage
of the COVID-19 in China, including trajectories between Jan 1st, 2020 and Jan 28th,
2020 of around 9000 confirmed subscribers who were diagnosed before Feb 1st, 2020 and
trajectories from Jan 17th, 2020 to Jan 31st, 2020 of 120 thousands normal people sampled
in 25 regions of China. The general description of the track data field is shown in the
Table 1. We have desensitized personal data in accordance with privacy management
regulations.

The User ID can be used as the unique identification of the subscriber, and the District
ID can be used to judge the spatial range of activities. The relationship of Lac ID and Cell
ID is one-to-many. The higher the population density, the smaller the base station cell
signal covers [36] and the more Cell IDs corresponding to the same Lac ID are. In this
study, we use District ID&Lac ID&Cell ID to identify a base station cell, and the spatial
distribution is shown in Fig. 2.

Telecommunication signaling data are noisy due to its huge real-time volume. Data
cleaning is necessary before we can apply our model on it. For example, wireless signals
are subject to drift due to the influence of surrounding. In order to ensure seamless cover-
age of wireless signals and uninterrupted communication during mobile phone moving,
multiple base station cells signals often overlap in one place. When a users track records
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Table 1: Description of trajectory data.

Variable name Explanation

User ID Encrypted subscriber identifier

District ID Code of district where eNodeB located

Lac ID Encrypted Location Area Code identity

Cell ID Encrypted cell identity

Lat Latitude of cell

Lng Longitude of cell

Timestamp Timestamp of subscriber entering a base station cell

Figure 2: Distribution of the base stations cell covered by the trajectory datasets.

switch back and forth between different base station cells in short time, which are defined
as ‘A-B-A’-switch in short time, where A, B are base station cells, we discard the record
of base station cell B of this timestamp, and believe user is still at base station cell A.

The trajectory data contains information about subscriber’s movement status. Us-
ing the spatial displacement and time difference of the adjacent timestamp trajectory,
subscriber’s historical switching speeds can be obtained. We calculate the switching
speed between different base station cells and perform clustering analysis using K-means
method on the effective speed. Results are given in Fig. 3.

Clustering results using K-means method show that speeds of 83% trajectory records
are below 38km/h. We keep these records for further analysis. Exclusion of high-speed
movement samples from our analysis is based on the following logic: if a confirmed
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Figure 3: Clustering results of switching speed.

case passes a BSC when traveling by car, train, airplane, etc, his viral shedding to region
covered by this BSC is almost negligible by all means due to the fast movement and
enclosed space. In addition, we also exclude record with dwell time less than 300 seconds
assuming viral shedding needs more than 5 minutes to happen.

Data splitting

In order to evaluate our model, we divide the entire trajectory dataset of confirmed cases
into two subsets according to their confirmed date. The first subset contains subscribers
diagnosed before Jan 25th, and the second one includes subscribers diagnosed after Jan
25th, and the ratio of the size of these two subset is 7 : 2. The first dataset is used to train
our model, while the second one is used to conduct cross validation and hindcast.

Sampling of normal people

Due to the huge amount of normal samples and the distinctive difference between num-
ber of confirmed and health cases, we use stratified sampling to randomly sample a total
of 120 thousands subscribers in 25 regions, and results of sampling ratio of normal sub-
scribers are shown as Fig. 4. And we employ the same trajectory data extraction method
of diagnosed people and obtain proportion of dwell time of base station cells to evaluate
our model.

4.2 Assessment of COVID-19 risk maps in China

We calculate COVID-19 risk map in China using HiRES model and the trajectory dataset
described in the previous subsection for the period of Jan 1st to Jan 27th, 2020. These
maps cover over 100,000 communication base station cells each day, and the radius of
each BSC range from 500 meters to 1000 meters, approximately. Thus our HiRES risk
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Figure 4: Spatial sampling of normal subscribers.

(a) City-level risk (b) Community-level risk

Figure 5: Visualization example of HiRES risk map.

map has a dynamic spatial resolution, ranging from 500 meters to 1000 meters. The risk
map of Jan 27th is shown in Fig. 5 as an illustration. It can be observed that Wuhan urban
area has the highest risk value, and risk of infection radiates to surrounding cities and
counties with Wuhan as the center. This is consistent with the situation that, in China,
COVID-19 firstly outbreak in Wuhan in January and spread rapidly to the surrounding
cities and counties, indicating that HiRES risk map is able to capture the macro spatial
pattern of COVID-19’s spreading risk.

In addition, we analyze the correlation between the daily total confirmed cases and
the regional averaged risk in the HiRES risk map from Jan 20th to 28th over China, Bei-
jing, and Wuhan, respectively. The estimated correlation coefficients for China, Beijing,
and Wuhan are 0.9492, 0.9665 and 0.9967. This reveals that the regional risk estimated by
the HiRES risk map has a strong positive correlation with the total number of confirmed
cases in that region. As is shown in Fig. 6(a), from a macro perspective, the HiRES risk
map can reasonably estimate the total regional risk and the size of the infected popula-
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(a) Regional evolution of epidemic risk in China (b) Local evolution of epidemic risk in Beijing

(c) Local evolution of epidemic risk in Wuhan (d) Evolution of epidemic risk in local markets

Figure 6: 2020/1/01-2020/1/27 Evolution of epidemic risk.

tion, thus can be used as a scientific support for the macro policy-making of the epidemic
prevention and control.

We also investigate local temporal variability of representative locations in Wuhan
and Beijing. Six categories of locations are investigated, which are hospital, commercial
district, station, school, residence and randomly selected area. 10 samples are collected
for each category in each city. Totally 120 locations are evaluated. Based on the daily
HiRES risk map, the epidemic risk of each location is calculated as the sum of the risk
values of the base station cells within the specified radius of the location, and radius of
each location is set according to actual conditions for each category as specified in Table
2.

Table 2: Coverage radius of location category.

Location category Coverage radius

Hospital 300m

Market 100m

School 20-500m

Station 500m

Residence 100m

Random area 100m
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Fig. 6(b) and (c) shows the temporal evolution of COVID-19 risk estimated by the
HiRES map for each category of local locations in Beijing and Wuhan, respectively. It’s
clearly observed that in Jan 2020, local risk evolution in Beijing and Wuhan are totally
different, with those in Wuhan exhibiting a significant trend of increase. But location
category of high-risk identified from the HiRES risk map are consistent between Beijing
and Wuhan, which are station, hospital and school. These findings coincident with com-
mon sense and the actual situations since these are all locations with dense crowds and
infected cases often gather.

In addition, among the ten designated hospitals for COVID-19, Tongji Hospital of
Huazhong University of Science and Technology, Wuhan Union Hospital, and Wuhan
Pulmonary Hospital have higher risk values. Among them, Risk of Tongji Hospital is
several times higher than other hospitals, which is confirmed by the fact that Tongji ad-
mitted the most confirmed cases during the early outbreak in Wuhan. In the category of
supermarket, the Southern China Seafood Market in Wuhan, as a well known gathering
place of confirmed cases in the early stages of the outbreak, has been singled out with
consistently and significantly higher risk estimate as shown in Fig. 6(d); its risk started to
increase rapidly from Jan 4th and reached a peak around mid of Jan, then experienced a
sharp decline after the closure of the city.

During its early outbreak, the COVID-19 risk in Beijing is mostly identified in stations
as suggested by the HiRES maps. No trend of increase observed in January indicates that
transmission of the virus were sporadic at that time. Two risk peaks are identified in
Beijing’s stations in Jan 12th and Jan 24th, which probably corresponds to the first risk
peak observed in Wuhan Southern China Seafood Market and risk caused by the traffic
flow out of the Wuhan city by locking down, respectively.

We further investigate the spatio-temporal variability of the epidemic risk of COVID-
19 in China based on the HiRES risk maps. We use the box-plot of daily HiRES risk
estimates to visualize the daily spatial variability of COVID-19 epidemic risk during Jan
1st to Jan 27th, 2020 within each location category. Results show that spatial variability
of the COVID-19 epidemic risk usually increase as the risk values increase. In other
words, when the risk of COVID-19 epidemic increased, the risk changes within each
category of high-risk locations such as hospital and station became larger as shown in
Fig. 7. Thus real-time high-resolution risk monitoring is indispensable in order to achieve
efficient deployment of medical and social resources, especially when the epidemic risk
is spreading fast.

Above all, the HiRES risk map is shown to be capable of providing accurate estima-
tions of the COVID-19 epidemic risk in China during its early outbreak, at both macro
and micro scales. The spatio-temporal variability of the COVID-19 epidemic risk is large
based on our HiRES risk maps. Therefore, high-resolution quantification of epidemic risk
is necessary to guide the policy-making and practice of epidemic prevention and control
in order to achieve efficient and economic prevention and control effects.
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(a) Boxplot of 10 stations at Beijing (b) Boxplot of 10 hospitals at Wuhan

Figure 7: Spatio-temporal variability of COVID-19 epidemic risk given by HIRES risk map.

4.3 Detection of suspected individuals

Based on the HiRES risk maps, we calculate the HiRES-p score for the 2757 confirmed
cases in the training dataset and for 100000 normal subscribers obtained from the sam-
pling dataset for comparison. We apply both statistical methods and machine learning
methods to detect suspected cases in this mixed dataset, which represents scenario with
3% population infection rate.

To conduct hypothesis testing, we firstly derive the cumulative distribution function
under null hypothesis. F0 is estimated by the empirical cumulative distribution function
F̂0 of 100000 HiRES-p scores calculated for the normal group on Jan 24th, 2020. Conse-
quently the 95% quartile of F̂0 is taken to be the critical value of the test, which is 1.19955.
Thus the significant level of the test is expected to be 5%, or in other words, we control
the type I error of false alarm at 5%. Then, we calculate testing statistic for each individ-
ual in the training dataset, i.e., their HiRES-p scores, and compare them with the critical
value. If the HiRES-p score is larger than the critical value, this individual is declared to
be detected as a suspected case. A total of 2186 are detected out of 2757 confirmed cases,
indicating an overall detection rate around 80%. Detection rates with respect to the date
of diagnosed are presented in the following Fig. 8. When controlling the false alarm rate
to be 5%, the detection rate of our statistical inference based method is about 80% with
low temporal variability during the 5-day period.

For machine learning based detecting method, we firstly extract data feature by defin-
ing an explicit function form for calculating HiRES-p score. Since machine learning
method is good at dealing with high dimensional data, it’s not necessary to reduce the
dimension of the score series during the incubation period such as through summation
or taking maximum. If we assume the incubation period parameter T=14, a simple fea-
ture would be a T-dimension vector containing the T HiRES-p scores calculated during
the past incubation period. Unfortunately, trajectory data for the normal group only start
from Jan 17th. Thus, due to limitation of our dataset, our machine learning algorithms
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Figure 8: Detection rate of statistical inference method.

use only 8 features which are the HiRES-p scores obtained from Jan 17th to Jan 24th.
This is a classical binary classification problem, and we assume “diagnosed” to be 1 and
“healthy” to be −1. We select 80% of the mixed dataset as the training set with the rest
of them to be the testing set. We try three classical classifiers: Support Vector Machine,
Decision Tree and Random Forest. A successful detection is defined as a correct classifi-
cation. We evaluate the performance of the machine learning based method in terms of
accuracy (ACC) and results are given in Table 3.

For statistical inference based method, detection rate is defined by successful identifi-
cation of suspected cases. For comparison purpose, we transform the detection rate of the
inference based method to a classification accuracy estimation, i.e., (2186+95000)/(2757+
100000)≈ 94.58%. Therefore, we conclude machine learning based method slightly out-
performs the inference based method in terms of detection accuracy when population
infection rate is 3%.

Observed situations in China and recent research have reported different population
infection rate of COVID-19, ranging from 1% to 30% [18]. We design more numerical
experiments to simulate scenarios with different population infection rate ranging from
1% to 50% by changing the size of the normal group. The accuracy of classification is
shown in Fig. 9. Negative linear relationship is observed between our accuracy and the
rate of population infection. The performance of machine learning based method is bet-
ter than statistical inference based method when the population infection rate is below
10%, true in most cases; while the inference based method outperforms machine learning
based method as rate of population infection increases. In general, the statistical inference
based method is more robust.

In summary, based on our numerical experiments, HiRES-p score has been proven to
be an accurate measurement of individual’s epidemic risk for COVID-19, and can be used
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Table 3: Accuracy of machine learning detection method.

Population Infection rate Algorithm ACC Computing time(s)

1%

Support Vector Machine 99.11% -

Decision Tree 98.86% 0.9199

Random Forest 99.11% 1.65

2%

Support Vector Machine 98.48% 618.91

Decision Tree 97.92% 0.4199

Random Forest 98.47% 0.77

3%

Support Vector Machine 98.01% 196.57

Decision Tree 97.43% 0.2900

Random Forest 98.03% 0.56

10%

Support Vector Machine 94.74% 37.84

Decision Tree 93.75% 0.089

Random Forest 95.06% 0.17

15%

Support Vector Machine 92.34% 22.66

Decision Tree 91.45% 0.060

Random Forest 93.07% 0.1099

23%

Support Vector Machine 88.52% 10.0400

Decision Tree 89.14% 0.0300

Random Forest 91.09% 0.0799

50%

Support Vector Machine 74.79% 4.2400

Decision Tree 84.96% 0.0300

Random Forest 84.12% 0.0600

Figure 9: Accuracy of detection v.s. rate of population infection.
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to detect suspected cases. Machine learning based methods in general outperform the
statistical inference based method in terms of detection accuracy under scenarios close
to the real world; while the statistical inference based method is more robust. If the
population infection rate is controlled below 20%, accuracy of classification is always
above 90%.

We use Python3.7 to conduct numerical experiments on server with 4 cpus, cpu Core:
8, model: Intel(R) Xeon(R) CPU E5630 @ 2.53GHz. It takes about 0.75 seconds per 10000
pieces of trajectory data collected to get the HiRES risk map, and about 128 seconds per
10 thousand individuals to obtain the HiRES-p scores. Therefore if sufficient computing
power is provided, reporting-lag of the HiRES risk map can be easily controlled to an
hour and minute-level update of HiRES-p score is also feasible.

5 Conclusion and discussion

Based on the trajectory data of diagnosed cases and the mean field theory, we propose a
high-resolution spatio-temporal model for epidemic risk assessment, with a fine and dy-
namic spatial resolution. Using a series of epidemic risk maps produced by HiRES model,
we develop the objective personal risk scoring model, i.e., HiRES-p, to obtain explicitly
quantified risk of infection for every authorized individual. Based on HiRES-p scores,
we adopt statistical inference approach and machine learning approach respectively, to
predict early infection of suspected individual. Models and methods are applied to inves-
tigate the epidemic risk in China during the early outbreak of 2019 Novel Coronavirus,
i.e., Jan 1st, 2020 to Jan 28th, 2020.

Results show that HiRES risk maps can capture the spatio-temporal pattern of COVID-
19 epidemic risk at both macro and micro scale with satisfactory accuracy. The regional
risk estimated by the HiRES maps are highly positively correlated to the total number
of confirmed cases in that area. High-risk locations such as hospitals, stations and the
Southern China Seafood Market in Wuhan can be easily distinguished by using their risk
values on the HiRES map. The spatio-temporal variability of the COVID-19 epidemic
risk is shown to be large based on our HiRES risk maps, and the variability increase as
risk values increase. Therefore, high-resolution quantification of epidemic risk is neces-
sary to guide the policy-making and practice of epidemic prevention and control in order
to achieve efficient and economical prevention and control effects as well as efficient de-
ployment of medical resources.

We conduct numerical experiments using trajectory data of COVID-19 confirmed
cases and normal individuals to exam the detecting ability of our HiRES-p model for
suspected cases. We employ both statistical inference based method and machine learn-
ing based method. In our experiment, the accuracy is linearly and negatively related to
the population infection rate. The performance of both detecting methods in terms of
accuracy are in general above 90% under scenarios with different population infection
rate ranging from 1% to 20%. The performance of machine learning based method is bet-
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ter than inference based method when the population infection rate is below 10%, true
in most cases; while the inference based method outperforms machine learning based
method as rate of population infection increase. In general, the inference based method
is more robust. Results indicate great application potential in epidemic risk prevention
and control of HiRES-p methodology. The trajectory data we used is from one of the three
major telecommunication carriers in China. It can only provide the trajectory data for a
sample of confirmed case population, which results in lack of coverage of the HiRES risk
map. Thus the detection capability of HiRES-p may be further improved if the trajectory
data for all confirmed cases is available.

The COVID-19 epidemic most possibly will not vanish in short time, and may present
periodic pattern of outbreaks if the vaccine cannot be successfully developed. We need
more objective data-driven tools such as HiRES and HiRES-p to monitor its evolution
over space and among population. In the future, trajectory big data can be employed to
automatically identify the route of confirmed and suspected cases, to verify the consis-
tency of the patient claims collected through epidemiological investigation, as well as to
conduct traceability analysis of epidemic disease. In addition, through joint application
of the trajectory data and personal health data, more accurate detection method could be
developed since we simultaneously take internal and external factors, i.e., the individ-
ual’s physical health condition and external exposure situations, into account.
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