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Abstract. In this paper, we compute the stationary states of the multicomponent phase-
field crystal model by formulating it as a block constrained minimization problem. The
original infinite-dimensional non-convex minimization problem is approximated by a
finite-dimensional constrained non-convex minimization problem after an appropriate
spatial discretization. To efficiently solve the above optimization problem, we propose
a so-called adaptive block Bregman proximal gradient (AB-BPG) algorithm that fully
exploits the problem’s block structure. The proposed method updates each order pa-
rameter alternatively, and the update order of blocks can be chosen in a deterministic
or random manner. Besides, we choose the step size by developing a practical linear
search approach such that the generated sequence either keeps energy dissipation or
has a controllable subsequence with energy dissipation. The convergence property of
the proposed method is established without the requirement of global Lipschitz conti-
nuity of the derivative of the bulk energy part by using the Bregman divergence. The
numerical results on computing stationary ordered structures in binary, ternary, and
quinary component coupled-mode Swift-Hohenberg models have shown a significant
acceleration over many existing methods.
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1 Introduction

Multicomponent systems, such as alloys, soft matters, are an important class of materi-
als, particularly for technical applications and processes. The microstructures of materi-
als play a central role for a broad range of industrial application, such as the mechanical
property of the quality and the durability, optical device, high-capacity data storage de-
vices [23,37–39,48]. Advances in modeling and computation have significantly improved
the understanding of the fundamental nature of microstructure and phase selection pro-
cesses. Notable contributions have been made through using the phase-field methodol-
ogy [20,21], which has been successful at examining mesoscale microstructure evolution
over diffusive time scales. Recently, phase field crystal (PFC) models have been proposed
to efficiently simulate eutectic solidification, elastic anisotropy, solute drag, quasicrystal
formation, solute clustering and precipitation mechanisms [14, 38, 46]. Besides, binary
and ternary component phase field models have attracted many research interests from
the computation perspective [2, 3, 5, 11, 15, 43, 54].

The PFC model for a general class of multicomponent systems is formulated con-
sisting s components in d dimensional space. The concentrations of the components are
described by s vector-valued functions {φi(r)}s

i=1 =(φ1(r),··· ,φs(r)). The variable φα(r),
so-called order parameter, denotes the local fraction of phase α. The free energy func-
tional of PFC model of a s-component system can be described by two contributions, a
bulk free energy F[{φi(r)}s

i=1] and an interaction potential G[{φi(r)}s
i=1], which drive the

density fields to become ordered by creating minimal in the free energy for these states.
Formally, we can write the free energy functional of the multicomponent system as

E[{φi(r)}s
i=1;Θ]=G[{φi(r)}s

i=1;Θ]+F[{φi(r)}s
i=1;Θ], (1.1)

where Θ are relevant physical parameters. F has polynomial or logarithmic formulation
[12, 16, 47] and G is the interaction potential, such as high-order differential terms or
convolution terms [12, 42]. Usually, some constraints are imposed on the PFC model,
such as the mass conservation or incompressibility which means the order parameter
{φi(r)}s

i=1 belong to a feasible space.
To understand the fundamental nature of multicomponent systems, it often involves

finding stationary states corresponding to ordered structures. Denote Vi (i = 1,2,··· ,s)
to be a feasible space of the i-th order parameter, the above problem is transformed into
solving the minimization problem

min E[{φi(r)}s
i=1;Θ], s.t. φi(r)∈Vi (i=1,2,··· ,s), (1.2)

with different physical parameters Θ, which brings a tremendous computational burden.
Different methods have been proposed for computing the stationary states of multi-

component models and can be classified into two categories through different formula-
tions and numerical techniques. One is to solve the steady nonlinear Euler-Lagrangian
system of (1.2) through different spatial discretization approaches. The other class of
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approaches has been constructed via the formulation of the minimization problem (1.2).
Among these methods, great efforts have been made for solving the nonlinear gradi-
ent flow equations. Numerically, a gradient flow equation is discretized in both space
and time domains via different discretization techniques, and the stationary state is ob-
tained with proper choices of initialization and step sizes. Typical energy stable schemes
to gradient flows include convex splitting [49, 52], stabilized factor methods [45], expo-
nential time differencing scheme [17,18,32,56], and recently developed invariant energy
quadrature [54], and scalar auxiliary variable approaches [43]. When designing the fully
discretized scheme, choosing proper time steps greatly impacts the performance of the
methods. Most existing methods fix the time step or obtain the time step using heuristic
methods [41].

In this work, instead of designing a numerical scheme for the gradient flow, we for-
mulate the infinite-dimensional problem (1.2) as a finite-dimensional block-wise non-
convex problem via appropriate spatial discretization schemes. Similar ideas have shown
success in computing stationary states of many physical problems, such as the Bose-
Einstein condensate [50], the calculation of density functional theory [34] and one com-
ponent PFC models [27]. It is noted that extending single component systems to multi-
component models is not trivial due to the following two reasons. First, the direct exten-
sion may fail convergence, even for the simplest steep descent method [40]. Second, the
update order’s choice is not unique, leading to difficulty in analyzing the convergence of
the numerical algorithm. Therefore, it deserves to develop specialized numerical algo-
rithms for the multicomponent systems, which require carefully examine or extend the
corresponding analysis in a single component system.

In this paper, based on the newly developed optimization techniques, we propose an
adaptive block Bregman proximal gradient (AB-BPG) method for solving the discretized
problem with multi-block structures. The proposed algorithm has the desired energy
dissipation and mass conservation properties. Theoretically, we prove the convergence
property of the proposed algorithm without the global Lipschitz constant requirement.
It guarantees that the algorithm converges to a stationary state given any initial point.
Our method updates each order parameter function with adaptive step sizes by the line
search method in practice. Compared with our previous work [27] for single-component
PFC models, the main contributions of this paper include:

• We propose an AB-BPG algorithm for arbitrary multiple components PFC mod-
els by involving in the block structures. The sequence of blocks can be updated
either deterministically cyclic or randomly shuffled for each iteration. Moreover,
the convergence property without the global Lipschitz constant assumption of the
derivative of the bulk energy F is rigorously proved once each block is updated at
least once in every T iterations;

• Together with a practical line search strategy, the sequence {Φk = {φk
i }s

i=1} gener-
ated by the proposed method has the generalized energy dissipation property, i.e.,
one of the following properties holds:
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1. The sequence has the energy dissipation property;

2. There exist a subsequence {Φk j}⊂ {Φk} and a constant M∈N such that 1≤
kj+1−kj ≤M+1 and E(Φk j+1)−E(Φk j)≥0, ∀j;

• Extensive numerical experiments on computing the stationary states in the binary,
ternary, and quinary coupled-mode Swift-Hohenberg model has shown the advan-
tages of the proposed method in terms of computational efficiency.

The rest of this paper is organized as follows. Section 2 presents a concrete multi-
component PFC model, i.e., the coupled-mode Swift-Hohenberg (CMSH) model, and a
spatial discretization formulation based on the projection method. In Section 3, we pro-
pose the adaptive block Bregman proximal gradient (AB-BPG) methods for solving the
constrained non-convex multi-block problems with proved convergence. In Section 4,
we apply the proposed approaches to the CMSH model with two choices of Bregman
divergence. Numerical results are reported in Section 5 to illustrate the efficiency and
accuracy of our algorithms.

2 Problem formulation

There are several multicomponent PFC models to describe the phase behaviors of alloys
and soft-matters [2,3,19,24,26,28,36,38,38,39,48]. In this work, we consider the coupled-
mode Swift-Hohenberg (CMSH) model of multicomponent systems, which extends the
classical Swift-Hohenberg model from one length scale to multiple length scales [26, 28,
47]. The CMSH model allows the study of the formation and relative stability of periodic
crystals and quasicrystals. Define the integral average

−
∫

=







1
|Ω|
∫

Ω
, for periodic crystals,

lim
R→∞

1
|BR|
∫

BR
, for quasicystals,

(2.1)

where Ω is a bounded domain and BR is a ball centered at origin with radii R. The free
energy of the CMSH model for s component system is

E[{φj(r)}s
j=1]=−

∫

{1

2

s

∑
j=1

[(∇2+q2
j )φj(r)]

2+∑
Is,n

τi1,i2,···,is

s

∏
j=1

φ
ij

j (r)
}

dr, (2.2)

where φj is the j-th order parameter, qj > 0 is the j-th characteristic length scale, τi1,i2,···,is

is interaction intensity related to the physical conditions, and Is,n is the index set defined
as

Is,n :=

{

(i1,i1,··· ,is) : ij ∈N (j=1,2,··· ,s), 1≤
s

∑
j=1

ij ≤n

}

.
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Moreover, to conserve the average density, each order parameter φj satisfies

−
∫

φj(r)dr=0. (2.3)

Theoretically, the ordered patterns including periodic and quasiperiodic structures cor-
respond to local minimizers of the free energy functional (2.2) with respect to order pa-
rameters φj (j=1,2,··· ,s). Thus, denote

Gj[φj]=−
∫

1

2
[(∇2+q2

j )φj(r)]
2dr, F[{φj(r)}s

j=1]=−
∫

∑
Is,n

τi1,i2,···,is

s

∏
j=1

φ
ij

j (r)dr, (2.4)

we focus on solving the minimization:

min E[{φj(r)}s
j=1]=

s

∑
j=1

Gj[φj(r)]+F[{φj(r)}s
j=1]

s.t. −
∫

φj(r)dr=0, j=1,2,··· ,s. (2.5)

Throughout this paper, we assume that n≤4 in (2.4) which means that bulk energy F is a
4th order polynomial.

In this work, we pay attention to the periodic and quasiperiodic crystals and use the
projection method [30] to discretize the CMSH free energy functional. After discretiza-
tion, the infinite-dimensional problem (2.5) can be formulated to a finite-dimensional
minimization problem in the form of

min
Φ̂

E(Φ̂)=
s

∑
j=1

Gj(φ̂j)+F(Φ̂), s.t. e⊤1 φ̂j =0, j=1,2,··· ,s, (2.6)

where φ̂j∈C
Nj is the truncated Fourier coefficients corresponding to φj and Φ̂={φ̂j}s

j=1∈
CN with N=∑

s
j=1 Nj. Gj(φ̂j)=

1
2〈φ̂j,Djφ̂j〉 and Dj∈C

Nj×Nj is a diagonal matrix. F({φ̂j}s
j=1)

are n-dimensional convolutions in the reciprocal space. A direct evaluation of the non-
linear term F({φ̂j}s

j=1) is extremely expensive, however, F({φ̂j}s
j=1) is a simple multipli-

cation in the n-dimensional physical space. Thus, the pseudospectral method takes the
advantage of this observation by evaluating Gj(φ̂j) in the Fourier space and F({φ̂j}s

j=1)

in the physical space via the Fast Fourier Transformation. For the self-containess, we
leave the concrete discretization to Appendix A.

Compared to the single-component case, the problem (2.6) has the block structure
in terms of the order parameters. Besides, the objective function is the summation of
non-separable bulk energy and separable interaction energy that facilitates the numerical
algorithm’s design. In the next section, we aim at designing efficient optimization-based
algorithms for solving the non-convex and multi-block problem (2.6). It is worth noting
that the proposed AB-BPG method can also be applied to other spatial discretization
methods.
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3 The proposed method

In this section, we consider the minimization problem in the form of

min
X

E(X)= f (X)+
s

∑
j=1

gj(xj)

s.t. xj ∈Sj, j=1,2,··· ,s, (3.1)

where xj ∈C
Nj , Sj is the feasible space of variable xj, X= {xj}s

j=1 ∈CN with N=∑
s
j=1 Nj.

It is easy to know that the problem (2.6) can be reduced to (3.1) by setting f = F, gj =Gj

and Sj = {φ̂j : e⊤1 φ̂j =0}. Throughout this paper, we make the following assumptions on
the objective function (see the concrete definition of notations in the next subsection).

Assumption 3.1.

1. f : CN → (−∞,∞] is proper and continuously differential on CN but may not be
convex.

2. gj : C
Nj → (−∞,∞] is proper, lower semicontinuous and convex.

3. Sj ⊆domgj is a nonempty, closed and convex set.

4. E is bounded below, and level bounded.

5. For all X∈domE, πj(B(X))⊆ ridomgj where B(X) is the closed ball that contains
the sub-level set [E≤E(X)]∩∏

s
j=1Sj.

Before presenting our numerical algorithm, we first introduce some notations and
useful definitions in the following analysis. Then, we give an abstract framework of the
first order method with proved convergence. Two kinds of concrete numerical algorithms
to the CMSH model based on the abstract formulation for solving (2.6) will be presented
in Section 4.

3.1 Notations and definitions

We denote ∏
s
j=1Sj :={X=(x1,··· ,xs) : xj ∈Sj, ∀j=1,··· ,s} and the projection operator is

defined as πj : CN →C
Nj ,X 7→ xj. For a subset S⊆CN , πj(S) := {xj : xj =πj(X), ∀X∈S}.

Let Ck(S) be the k-th continuously differential functions on S. The domain of a function
f : CN →R is defined as dom f := {x : f (x)<+∞} and the relative interior of dom f is
defined as ridom f := {x ∈ dom f : ∃ r > 0,B(x,r)∩affdom f ⊆dom f}, where affdom f is
the smallest affine set that contains dom f and B(x,r) := {y : ‖y−x‖≤ r}. f is proper if
f >−∞ and dom f 6=∅. For α∈R, [ f ≤α] :={x : f (x)≤α} is the α-(sub)level set of f . We
say that f is level bounded if [ f ≤α] is bounded for all α∈R. f is lower semicontinuous
if all level set of f is closed. The subgradient of f at x∈domg is defined as ∂ f (x)= {u :
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f (y)− f (x)−〈u,y−x〉≥0, ∀y∈dom f}. For a∈R, we denote [a]+ :=max{0,a}. Moreover,
the next table summarizes the notations used in this work.

Throughout this paper, we assume that h : CN → (−∞,+∞] is a strongly convex func-
tion and give the following useful definitions.

Definition 3.1 (Bregman divergence [33]). The Bregman divergence with respect to h ∈
C1(intdomh) is defined as

Dh(x,y)=h(x)−h(y)−〈∇h(y),x−y〉, ∀ (x,y)∈domh×intdomh. (3.2)

It is noted that Dh(x,y)≥0 and Dh(x,y)=0 if and only if x=y due to the strongly con-
vexity of h. Moreover, D(·,y) is also strongly convex for any fixed y∈intdomh. The Breg-
man divergence with h= ‖·‖2/2 reduces to the Euclidean distance. Using the Bregman
divergence, we can generalize the Lipschitz condition to the so-called relative smooth-
ness as follows.

Definition 3.2 (Relative smoothness [8]). A function f is called R f -smooth relative to h if
there exists R f >0 such that R f h(x)− f (x) is convex for all x∈domh.

When h=‖·‖2/2, the relative smoothness reduces to the Lipschitz smoothness which
is an essential assumption in the analysis of many scheme in computing gradient flows
(such as semi-implicit [22] or stabilized semi-implicit [45]). However, this assumption
greatly limits its application range in practical computation. In this work, we overcome
this difficulty from numerical optimization using this novel tool. To deal with the multi-
block problem of form (3.1), we generalize the definition of relative smoothness to block-
wise function as Definition 2.4 in [1].

Definition 3.3 (Block-wise relative smoothness). For a block-wise function f (X), we call
f (X) is (R1

f ,R
2
f ,··· ,Rs

f )-smooth relative to (h1,h1,··· ,hs) if for each j-th block and fixed x 6=j,

• hj : C
Nj → (−∞,+∞] is γi-strongly convex and domhj ⊆{u : f (u,x 6=i)<∞}.

• Fj(u) := f (u,x 6=j) is R
j
f -smooth relative to hj with respect to u.

Now, we are ready to present the numerical algorithm in the next subsection.

3.2 AB-BPG algorithm

Our main idea is to develop a kind of block coordinate descent methods which minimize
E cyclically over each of x1,x2,··· ,xs while fixing the remaining blocks at their last up-
dated values, i.e., the Gauss-Seidel fashion. Precisely, given feasible Xk,Xk−1 ∈∏

s
j=1Sj,

our AB-BPG method can pick bk ∈ {1,2,··· ,s} deterministically or randomly, then Xk =
(xk

1,xk
2,··· ,xk

s) is updated as follows










xk+1
i = xk

i , if i 6=bk,

xk+1
i =argmin

z∈Si

{

gi(z)+〈∇i f (yk,xk
6=i),z−yk〉+ 1

αk
Dhi

(z,yk)
}

, if i=bk,
(3.3)
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Table 1: Summary of notations.

Notation Definition

s the total number of blocks

bk the update block selected at the k-th iteration

nk
j the number of updates to xj within the first k iterations

xk
j the value of xj after the k-th iteration

x̃n
j the value of xj after n-th update

yk the value of extrapolation point y at the k−th iteration

wk the extrapolation weight used at the k−th iteration

mk mk =argminj{E(X j) : [k−M]+≤ j≤k}
X X=(x1,x2,··· ,xs)

x 6=j the value of (x1,··· ,xj−1,xj+1,··· ,xs)

∇j f (X) the partial gradient of f (X) with respect to xj

where αk >0 is the step size and yk is the extrapolation

yk=(1+wk)xk
i −wkx

prev
i =(1+wk)x̃

nk
i

i −wk x̃
nk

i −1

i . (3.4)

The extrapolation weight wk∈ [0,w̄] for some w̄>0 and x
prev
i is the value of xi before it is

updated to xk
i . The definitions of x̃i and nk

i can be found in Table 1.
To ensure the convergence, we make mild assumptions for the distance generating

function hi, i=1,2,··· ,s and the block update order [53].

Assumption 3.2. There exist strongly convex functions hj, j=1,2,··· ,s, and positive con-

stants R
j
f , j=1,2,··· ,s such that Sj⊆ intdomhj, j=1,2,··· ,s, and f is (R1

f ,R
2
f ,··· ,Rs

f )-smooth

relative to (h1,h1,··· ,hs).

Assumption 3.3. With any T≥ s consecutive iterations, each block should be updated at
least once, i.e., for any k, it has {1,2,··· ,s}⊆{bk,bk+1,··· ,bk+T}.

In the following context, we show some properties of the iterates (3.3). First, define

the j-th block Bregman proximal gradient mapping T
j
α : ∏

s
i=1Si →C

Nj as

T
j
α(X) :=argmin

z∈Sj

{

gj(z)+〈∇j f (X),z−xj〉+
1

α
Dhj

(z,xj)
}

. (3.5)

The next lemma shows the well-posedness of T
j
α.

Lemma 3.1. Suppose Assumption 3.1 and Assumption 3.2 hold. The map T
j
α defined in (3.5) is

nonempty and single-valued from ∏
s
i=1Si to Sj.
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Proof. Since f ∈C1(Cn) and Sj ⊂ intdomhj, ∇j f (X) and Dhj
(·,xj) is well-defined. Let

Γj(z) := αgj(z)+α〈∇j f (X),z−xj〉+Dhj
(z,xj),

we know that Γj is strongly convex due to the convexity of D(·,xj) and gj. Thus, Γj

is coercive [9, Corollary 11.17]. According to the Corollary 3.23 in [13], Γj achieves its
minimum on Sj and the strongly convexity implies the uniqueness of minimum.

Remark 3.1. In Assumption 3.1, Sj is convex for all j. Thus, Lemma 3.1 implies that the

iteration xk+1
i = Ti

αk
(yk,xk

6=i) in (3.3) is well-defined as long as Xk,Xk−1 ∈∏
s
j=1Sj is set in

the initialization.

The next lemma shows that the mapping T
j
α has the descent property.

Lemma 3.2 (Sufficient decrease property). Suppose Assumption 3.1 and Assumption 3.2 hold.

Let X={xi}s
i=1∈∏

s
i=1Si and x+j =T

j
α(X), then we have

E(X)−E(x+j ,x 6=j)≥
(

1

α
−R

j
f

)

γj

2
‖x+j −xj‖2, (3.6)

where γj is the strong convexity coefficient of hj.

Proof. Due to the block-wise relative smoothness of f (X), the function Fj(u) :=R
j
f hj(u)−

f (u,x 6=j) is convex for any fixed x 6=j. Thus, for any z∈ intdomhj, we have

f (u,x 6=j)≤ f (z,x 6=j)+〈∇j f (z,x 6=j),u−z〉+R
j
f Dhj

(u,z). (3.7)

Together with the definition of mapping T
j
α, we know that

E(X)= f (X)+gj(xj)+∑
i 6=j

gi(xi)

= f (X)+
[

〈∇j f (X),z−xj〉+
1

α
Dhj

(z,xj)+gj(z)
]

z=xj

+∑
i 6=j

gi(xi)

≥ f (X)+〈∇j f (X),x+j −xj〉+
1

α
Dhj

(x+j ,xj)+gj(x+j )+∑
i 6=j

gi(xi)

≥ f (x+j ,x 6=j)−R
j
f Dhj

(x+j ,xj)+
1

α
Dhj

(x+j ,xj)+gj(x+j )+∑
i 6=j

gi(xi)

=E(x+j ,x 6=j)+

(

1

α
−R

j
f

)

Dhj
(x+j ,xj)≥E(x+j ,x 6=j)+

(

1

α
−R

j
f

)

γj

2
‖x+j −x‖2.

The second inequality holds by setting u= x+j and z= xj in (3.7), and the last inequality

holds from the γi-convexity of hi.
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Restart technique. Let i = bk, the iteration (3.3) can be written as Xk+1 = Ti
αk
(yk,xk

6=i),

then Lemma 3.2 implies that E(yk,xk
6=i)≥E(Xk+1) as long as αk∈(0,1/Ri

f ]. However, this

descent property is not enough for investigating the iterates {E(Xk)} as the relationship
between E(yk,xk

6=i) and E(Xk) is not clear. Thus, it may lead to the energy oscillation in

the sequence {E(Xk)}. To overcome this weakness, we propose a restart technique by
setting (yk,xk

6=i)=Xk when the sharp oscillation is detected. In concrete, given αk >0 and
i=bk, define

zk =Γi
αk
(yk,xk

6=i)=argmin
z∈Si

{

gi(z)+〈∇i f (yk,xk
6=i),z−yk〉+ 1

αk
Dhi

(z,yk)

}

. (3.8)

Given some non-negative integer constant M, we define

mk = argmax
[k−M]+≤j≤k

E(X j), (3.9)

and set Xk+1=Xk, wk+1=0 if the following inequality

E(Xmk)−E(zk,xk
6=i)≥σ‖xk

i −zk‖2 (3.10)

does not hold where σ> 0 is a small constant. Otherwise, we obtain Xk+1 via xk+1
i = zk,

xk+1
j = xk

j (j 6= i) and update wk+1∈ [0,w̄].

Remark 3.2. When M = 0, it guarantees that {E(Xk)} is monotone decreasing. When
M>0, the scheme has the generalized descent property, i.e., the subsequence {E(Xmk)}
is decreasing (see Lemma 3.3).

Step size estimation. Let i= bk, Lemma 3.2 shows that E(yk,xk
6=i)≥E(Xk+1) is ensured

by step size αk ∈ (0,1/Ri
f ] which may be too conservative. Thus, we propose a non-

monotone backtracking line search method [35] for finding the appropriate step αk which
is initialized by the similar idea of BB method [7], i.e.,

αk =











α0, wk =0,

〈uk
i ,uk

i 〉
〈uk

i ,vk
i 〉

or
〈vk

i ,uk
i 〉

〈vk
i ,vk

i 〉
, wk 6=0,

(3.11)

where uk
i = yk−xk

i and vk
i =∇i f (yk,xk

6=i)−∇i f (Xk). Let η ∈ (0,σ] be a constant and zk

is obtained from (3.8), we adopt the step size αk ∈ [αmin,αmax] whenever the following
inequality holds

max(E(yk,xk
6=i),E(X

mk))−E(zk,xk
6=i)≥η‖yk−zk‖2. (3.12)
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Let

R := max
j=1,2,···s

{Rj} and γ= max
j=1,2,···s

{γj}.

Lemma 3.2, the inequality (3.12) holds whenever 0< αmin <γ/(2η+γR). Thus, the line
search scheme will terminate in finite iterations. In summary, we present the detailed
algorithm for estimating step sizes in Algorithm 1 and the proposed AB-BPG method in
Algorithm 2.

Algorithm 1 Estimation of αk at yk with respect to block i

1: Inputs: Xk, yk, ς∈ (0,1) and η>0, α0,αmin,αmax>0.
2: Initialize αk by (3.11);
3: Calculate the smallest index ℓ≥0 such that (3.12) holds at zk defined in (3.8) with step

size ςℓαk ≥αmin.
4: Output: step size αk =max(min(ςℓαk,αmax),αmin).

Algorithm 2 AB-BPG method

1: Initialize X−1=X0∈∏
s
j=1Sj, σ≥η>0 and w0=0, w̄,α0,M≥0, k=0.

2: while stopping criterion is not satisfied do

3: Pick i=bk ∈{1,2,··· ,s} in a deterministic or random manner;

4: Update yk=(1+wk)x̃
nk

i
i −wk x̃

nk
i −1

i
5: Obtain αk via Algorithm 1.
6: Calculate zk via (3.8).
7: if (3.10) holds then

8: Set xk+1
i =zk,xk+1

j = xk
j (j 6= i) and choose wk+1∈ [0,w̄].

9: else

10: Restart by setting Xk+1=Xk and wk+1=0.
11: end if

12: k= k+1.
13: end while

The next lemma establishes the generalized descent property of the sequence {Xk}
generated by Algorithm 2.

Lemma 3.3. Suppose Assumption 3.1 and Assumption 3.2 hold. Let {Xk} be the sequence gen-
erated by Algorithm 2. Then, we have mk+1≥mk and {E(Xmk)} is non-increasing.

Proof. By the definition of mk, it is easy to know mk+1 ≥mk. If the non-restart condition
(3.10) does not hold, we know Xk+1=Xk which implies

E(Xmk)−E(Xk+1)≥0. (3.13)



144 C. Bao, C. Chen and K. Jiang / CSIAM Trans. Appl. Math., 3 (2022), pp. 133-171

If the non-restart condition (3.10) holds, we have

E(Xmk)−E(Xk+1)≥σ‖Xk−Xk+1‖2≥0. (3.14)

Combing (3.13) with (3.14), we obtain

E(Xmk+1)=max{E(X j)|[k+1−M]∗≤ j≤ k+1)}
≤max{E(X j)|[k−M]∗≤ j≤ k)}=E(Xmk ).

This completes the proof.

Remark 3.3. Lemma 3.3 implies that the line search approach ensures a general energy
dissipation property associating with the constant M≥0. For M=0, the energy sequence
{E(Xk)} is monotone decreasing. For M > 0, the Algorithm 2 can find a controllable
subsequence with energy dissipation.

3.3 Convergence analysis

In this subsection, we give a rigorous proof of energy and sequence convergence for
Algorithm 2. Since m0 = 0, the sequence {Xk} generated by Algorithm 2 is contained in
the sub-level set [E≤E(X0)]. From the Assumption 3.1, we know [E≤E(X0)] is compact.
Together with Lemma 3.1, we have {Xk}⊆ [E≤E(X0)]∩∏

s
j=1Sj ⊆B(X0) where B(X0) is

the closed ball that contains [E≤E(X0)]∩∏
s
j=1Sj. The next lemma establishes that E(X)

is Lipschitz continuous on B(X0).

Lemma 3.4. Suppose Assumption 3.1 and Assumption 3.2 hold. Then, there exists LE >0 such
that E(X) is LE-Lipschitz continuous on B(X0) for all X0.

Proof. Since B(X0) is a compact subset of CN , then πj(B(X0))⊆C
Nj is closed. It’s easy

to know that πj(B(X0)) is bounded by the fact that ‖xj‖≤‖X‖. Thus, gj is L
j
g-Lipschitz

continuous on πj(B(X0))⊆ ridomgj [9, Corollary 8.41]. As a result, we have

∣

∣

∣

∣

∣

s

∑
j=1

gj(xj)−
s

∑
j=1

gj(yj)

∣

∣

∣

∣

∣

≤
s

∑
j=1

|gj(xj)−gj(yj)|≤
s

∑
j=1

L
j
g‖xj−yj‖

≤ s

(

max
j=1,2,···s

L
j
g

)

‖X−Y‖, ∀X,Y∈B(X0).

Together with the fact that F ∈ C1(CN), we conclude that there exists LE > 0 such that
E=F+∑

s
j=1 gj is LE-Lipschitz continuous on the compact set B(X0).

Lemma 3.5. Suppose Assumption 3.1 and Assumption 3.2 hold. Let {Xk} be the sequence gen-
erated by Algorithm 2, there exists E∗>−∞ such that

lim
k→∞

‖Xk+1−Xk‖=0, lim
k→∞

E(Xk)=E∗. (3.15)
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Proof. We show the proof similar to the framework in [35]. Since {E(Xmk)} is non-
increasing from Lemma 3.3 and E(X) is bounded below, there exists E∗>−∞ such that
lim
k→∞

E(Xmk)=E∗. Define dk =Xk+1−Xk and combine (3.13) with (3.14), we have

E(Xmk)−E(Xk+1)≥σ‖dk‖. (3.16)

Assume k≥M, we prove that the following relations hold for any finite j≥1 by induction

lim
k→∞

‖dmk−j‖=0, lim
k→∞

E(Xmk−j)=E∗. (3.17)

Substituting k by mk−1 in (3.16), we obtain

σ‖dmk−1‖2≤E(Xmmk−1)−E(Xmk)≤E(Xmk−M−1)−E(Xmk),

where the last inequality holds since mk≥ k−M. Let k→∞, we get

lim
k→∞

‖dmk−1‖=0.

Since E is LE-Lipschitz continuous on B(X0) and {Xk}⊆B(X0), we have

|E(Xmk−1)−E(Xmk)|≤ LE‖Xmk−1−Xmk‖= LE‖dmk−1‖→0 (k→∞).

Thus, one has

lim
k→∞

E(Xmk−1)= lim
k→∞

E(Xmk)=E∗,

which implies that (3.17) holds for j=1. Suppose now that (3.17) holds for some j>1, we
show that it also holds for j+1. Substituting k by mk− j−1 in (3.16), it gives

σ‖dmk−j−1‖2≤E(Xmmk−j−1)−E(Xmk−j)≤E(Xmk−M−j−1)−E(Xmk−j).

Together with (3.17), it means that

lim
k→∞

‖dmk−j−1‖=0.

Similarly, we have

lim
k→∞

E(Xmk−j−1)= lim
k→∞

E(Xmk−j−dmk−j)= lim
k→∞

E(Xmk−j)=E∗.

Then (3.17) is also holds for j+1. By induction, we prove that relations (3.17) hold for any
finite j≥1.

From the definition of mk, we have the fact that

mk+1−mk ≤M+1, ∀k≥0, (3.18)
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Thus, we obtain {Xk}∞
k=M+1⊂∪M+1

j=0 {Xmk−j}∞
k=M+1. Using (3.17), it follows that

lim
k→∞

E(Xmk−j)=E∗, ∀j∈ [0,M].

Then, we have

lim
k→∞

E(Xk)=E∗.

Moreover, we know

lim
k→∞

‖dk‖2≤ 1

σ
lim
k→∞

(

E(Xmk)−E(Xk)
)

→0 (k→∞).

Then, we obtain lim
k→∞

‖dk‖=0.

Remark 3.4. If M=0, Lemma 3.5 can be easily obtained since mk≡k and we do not require
to assume πj(B(X0))⊆ ridomgi in Assumption 3.1.

Lemma 3.6. Suppose Assumption 3.1, Assumption 3.2 and Assumption 3.3 hold. Let {Xk} be
the sequence generated by Algorithm 2. Then, there exists a positive constant C such that

dist(0,∂E(Xk))≤C
k

∑
l=k−3T+1

‖Xk−Xk−1‖, ∀k>3T, (3.19)

where dist(0,∂E(Xk)) := inf{‖y‖ : y∈∂E(Xk)}.

Proof. If Xk =Xk−1, we only need to consider (3.19) holds at Xk−1 and it is easy to know
Xk−2 6=Xk−1 from the monotonicity when wk−1=0 as shown in Lemma 3.2. Thus, we only
consider the case Xk 6=Xk−1.

It is noted that ∂E(X) =∇ f (X)+U where U = (u1,··· ,us), ui ∈ ∂gi(X), 1≤ i ≤ s. We
first assume that the non-restart condition (3.10) is satisfied at the k-th iteration. For
each i∈{1,2,··· ,s}, we denote lk

i as the last iteration at which the update of i-th block is
achieved within the first k-th iteration, i.e., lk

i = argmax{ℓ|bℓ = i,ℓ≤ k}. Note that lk
bk
= k

and x
lk
i

i = x̃
nk

i
i . By the optimal condition of the proximal subproblem (3.3), we have

0∈∂gi(xlk
i )+∇i f (ylk

i −1,x
lk
i −1

6=i )+
1

αlk
i −1

(

∇hi(x
lk
i

i )−∇hi(y
lk
i −1)

)

. (3.20)

Since that B(X0) is compact, we let

ρh := max
j=1,2,···,s

(

max
X∈B(X0)

‖∇2hj(X)‖
)
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and ρ f be the local Lipschitz constant of ∇ f on B(X0). Due to {Xk}⊆B(X0), we know

ylk
i −1= x̃

nk
i −1

i +wlk
i −1(x̃

nk
i −1

i − x̃
nk

i −2

i )∈B0(X
0). (3.21)

Together with (3.20) and (3.21), we get

inf
ui∈∂gi(xk

i )
‖∇i f (Xk)+ui‖

≤
∥

∥

∥

∥

∇i f (Xk)−∇i f (ylk
i −1,x

lk
i −1

6=i )− 1

αlk
i −1

(

∇hi(x
lk
i

i )−∇hi(y
lk
i −1)

)
∥

∥

∥

∥

≤
∥

∥∇i f (Xk)−∇i f (ylk
i −1,x

lk
i −1

6=i )
∥

∥+
1

αlk
i −1

∥

∥∇hi(x
lk
i

i )−∇hi(y
lk
i −1)

∥

∥

≤ ρ f

∥

∥Xk−(ylk
i −1,x

lk
i −1

6=i )
∥

∥+
ρh

αmin

∥

∥x
lk
i

i −y
lk
i −1

i

∥

∥. (3.22)

If i=bk, it follows that lk
i = k. Then, we have

‖Xk−(ylk
i −1,x

lk
i −1

6=i )‖=‖Xlk
i −(ylk

i −1,x
lk
i −1

6=i )‖=‖x
lk
i

i −y
lk
i −1

i ‖, i=bk. (3.23)

If i 6=bk, we know

‖Xk−(ylk
i −1,x

lk
i −1

6=i )‖≤
k

∑
l=lk

i +1

‖Xl−Xl−1‖+‖Xlk
i −(ylk

i −1,x
lk
i −1

6=i )‖

=
k

∑
l=lk

i +1

‖Xl−Xl−1‖+‖x
lk
i

i −y
lk
i −1

i ‖. (3.24)

Combining (3.22), (3.23) and (3.24), we have

inf
ui∈∂gi(xk

i )
‖∇i f (Xk)+ui‖≤







ρ1‖x
lk
i

i −y
lk
i −1

i ‖, i=bk,

ρ f ∑
k
l=lk

i +1
‖Xl−Xl−1‖+ρ1‖x

lk
i

i −y
lk
i −1

i ‖, i 6=bk,

where ρ1 = ρ f +ρh/αmin. Moreover, for each i, we know that k−lk
i ≤ T by the Assump-

tion 3.3 and there exist k1
i ,k2

i ∈ [k−3T,k] such that x
k1

i
i = x̃

nk
i −1

i , x
k2

i
i = x̃

nk
i −2

i . Thus, we have

‖x
lk
i

i −y
lk
i −1

i ‖≤‖x̃
nk

i
i − x̃

nk
i −1

i ‖+w̄‖x̃
nk

i −1

i − x̃
nk

i −2

i ‖ and

dist(0,∂E(Xk))= inf
U∈∂gi

(

s

∑
i=1

‖∇iF(X
k)+ui‖2

)1/2

≤
s

∑
i=1

inf
ui∈∂gi

‖∇iF(X
k)+ui‖

≤ ρ f ∑
i 6=bk

k

∑
l=lk

i +1

‖Xl−Xl−1‖+ρ1

s

∑
i=1

‖x
lk
i

i −y
lk
i −1

i ‖
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≤ ρ f (s−1)
k

∑
l=k−3T+1

‖Xl−Xl−1‖+ρ1

s

∑
i=1

(

‖x̃
nk

i
i − x̃

nk
i −1

i ‖+w̄‖x̃
nk

i −1

i − x̃
nk

i −2

i ‖
)

≤ ρ f (s−1)
k

∑
l=k−3T+1

‖Xl−Xl−1‖+(1+w̄)ρ1

k

∑
l=k−3T+1

‖Xl−Xl−1‖.

Define C :=(s−1)ρ f +(1+w̄)ρ1, we obtain (3.19).

Together with Lemma 3.5 and Lemma 3.6, we immediately have the following sub-
sequence convergent property.

Theorem 3.1. Suppose Assumption 3.1, Assumption 3.2 and Assumption 3.3 hold. Let {Xk} be
the sequence generated by Algorithm 2, then any limit point X∗ of {Xk} is a critical point of E,
i.e., 0∈∂E(X∗).

Proof. From Remark 3.2, we know {Xk}⊂ [E ≤ E(X0)] and thus is bounded. Then, the
set of limit points of {Xk} is nonempty. For any limit point X∗ = (x∗1 ,x∗2 ,··· ,x∗s ), there
exists a subsequence {Xk j} such that lim

j→∞
Xk j = X∗. By Lemma 3.5 and Lemma 3.6, we

immediately obtain

lim
j→∞

dist(0,∂E(Xk j))=0. (3.25)

Moreover, from Lemma 3.4, we know E(X) is LE-Lipschitz smooth on B(X0). Using
the fact that {Xk}⊆B(X0) and B(X0) is compact, we know X∗ ∈B(X0). Thus, we get
E(Xk j)→E(X∗) as j→∞. For any uj ∈∂E(Xk j), we know

E(X)≥E(Xk j)+〈uj,X−Xk j〉, ∀X∈domE,

which implies
{

u : u= lim
j→∞

uj, uj∈∂E(Xk j )
}

⊂∂E(X∗)

by setting j→∞. Together with (3.25), we conclude that 0∈∂E(X∗).

When M = 0 and E is a KL function [10], the sub-sequence convergence can be
strengthen to the whole sequence convergence.

Definition 3.4 (KL function [10]). E(x) is the KL function if for all x̄∈dom∂E :={x : ∂E(x) 6=
∅}, there exists η > 0, a neighborhood U of x̄ and ψ∈Ψη := {ψ∈C[0,η)∩C1(0,η), where ψ is

concave, ψ(0)=0, ψ
′
>0 on (0,η)} such that for all x∈U∩{x : E(x̄)<E(x)<E(x̄)+η}, the

following inequality holds,

ψ
′
(E(x)−E(x̄))dist(0,∂E(x))≥1. (3.26)
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Theorem 3.2 (Sequence convergence). Suppose Assumption 3.1, Assumption 3.2, Assump-
tion 3.3 hold. Let {Xk} be the sequence generated by Algorithm 2 with M = 0. If E is a KL
function, then there exists some X∗ such that

lim
k→∞

Xk =X∗, 0∈∂E(X∗). (3.27)

Proof. The proof is in Appendix B.

In the following context, we introduce two kinds of h and present corresponding
numerical algorithms for solving (2.6).

4 Application to the CMSH model

As discussed above, let f =F, gi=Gi and Si={φ̂ : e⊤1 φ̂=0}, then the problem (2.6) reduces
to (3.1). In this section, we apply the Algorithm 2 to solve the finite dimensional CMSH
model (2.6). Let i= bk, a key component of efficiently implementing AB-BPG method is
fast solving the following constrained subproblem

min
φ̂∈Si

Gi(φ̂)+〈∇iF(ψ̂
k,φ̂k

6=i),φ̂−φ̂k
i 〉+

1

αk
Dhi

(φ̂,φ̂k
i ), (4.1)

where ψ̂k =(1+wk)φ̂
k
i −wkφ̂

prev
i is the extrapolation and φ̂

prev
i is the value of φ̂i before it

is updated to φ̂k
i . Solving (4.1) depends on the form of hi. In the following context, we let

hj(x) :=h(x)=
a

4
‖x‖4+

1

2
‖x‖2, a≥0 (4.2)

for all j and propose two classes of numerical algorithms for solving (2.5) based on dif-
ferent choices of a. For each algorithm, we will show that the subproblem (4.1) is well
defined and can be solved efficiently.

Case I: a=0. In this case, hj(x)=‖x‖2/2 and the Bregman divergence of Dh becomes the
Euclidean distance, i.e.,

Dh(x,y)=
1

2
‖x−y‖2. (4.3)

Thus, the iteration scheme (4.1) is reduced to the accelerated block proximal gradient
method [6, 53]. We can find the closed-form solution of the constrained minimization
problem (4.1) by applying Lemma 4.1 in [27].

Lemma 4.1. Given αk > 0, Φk and ψ̂k ∈Si, the subproblem (4.1) with h(x)= ‖x‖2/2 is well-
defined and has analytical solution

φ̂k+1
i =(αkDi+ I)−1

(

ψ̂k−αkP1∇iF(ψ̂
k,φ̂k

6=i)
)

, (4.4)

where Di is a Ni-order diagonal matrix as defined in (A.7) and P1= I−e1e⊤1 is the projection onto
Si.
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From the feasibility assumption, it is noted that ψ̂k ∈ Si holds as long as the initial
point Φ0∈∏

s
j=1Sj. The concrete algorithm is given in Algorithm 3 with K=2.

Case II: a> 0. Since F(Φ̂) can be represented as a 4th-degree polynomial function, it is
known that F is not block wise relatively smooth with respect to h(x)= ‖x‖2/2. In this
case, we choose a,b>0. The next lemma shows the optimal condition of minimizing (4.1),
which can be obtained from Lemma 4.2 in [27].

Lemma 4.2. Given αk >0, Φk and ψ̂k ∈Si, the subproblem (4.1) with h(x)= a
4‖x‖4+ b

2‖x‖2+
1 (a,b>0) is well-defined and has the closed form as follows

ψ̂i=[αkDi+(ap∗+b)I]−1
(

∇h(ψ̂k)−αkP1∇F(ψ̂k,φ̂k
6=i)
)

, (4.5)

where Di is given in (A.7) and p∗ is the fixed point of p=‖φ̂k+1
i ‖2 := r(p).

It is noted that the iterate (4.5) requires solving a nonlinear scalar equation, which
can efficiently be solved by many existing solvers. In our implementation, the Newton
method is used. The concrete algorithm is given in Algorithm 3 with K=4.

Algorithm 3 AB-BPG-K method for PFC model

Require: Φ̂0= Φ̂−1∈∏
s
j=1Sj, ρ∈ (0,1), σ≥η>0 and w0=0, w̄,α0,M>0, k=0.

1: while stopping criterion is not satisfied do

2: Pick i=bk ∈{1,2,··· ,s} in a deterministic or random manner
3: Update ψ̂k =(1+wk)φ̂

k
i −wkφ̂

pre
i

4: Estimate αk by Algorithm 1
5: if K=2 then

6: Calculate zk =(αkDi+ I)−1
(

ψ̂k−αkP1∇iF(ψ̂
k,φ̂k

6=i)
)

7: else if K=4 then

8: Calculate the fixed point of (4.5).

9: Calculate zk =[αkDi+(ap∗+b)I]−1
(

∇h(ψ̂k)−αkP1∇iF(ψ̂
k,φ̂k

6=i)
)

10: end if

11: if E(Φ̂mk)−E(zk,φ̂k
6=i)≥σ‖φ̂k

i −zk‖2 then

12: φ̂k+1
i =zk, φ̂k+1

j = φ̂k
j (j 6= i) and choose wk+1∈ [0,w̄].

13: else

14: Restart by setting Φ̂k+1= Φ̂k and wk+1=0.
15: end if
16: k= k+1.
17: end while

4.1 Convergence analysis of Algorithm 3

The convergence analysis of Algorithm 2 can be directly applied for Algorithm 3 if all
required assumptions in Theorem 3.1 are satisfied. We first show that the energy function
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E of CMSH model satisfies Assumption 3.1, Assumption 3.3. Then, Assumption 3.2 is
analyzed for Case (P2) and Case (P4) independently.

Lemma 4.3. Let E(Φ̂)=F(Φ̂)+∑
s
j=1 Gj(φ̂j) be the energy function of (2.6). Then, it satisfies

1. E is bounded below and level bounded,

2. ridomGi=C
Nj , thus πj(B(Φ̂0))⊆ ridomGi for all j.

Proof. From the continuity and the coercive property of F, i.e., F(Φ̂)→+∞ as Φ̂→∞, the
sub-level set [E ≤ α] is compact for any α ∈R. Since domGi =C

Nj , we directly get that
ridomGj=C

Nj .

Lemma 4.4. Let F(Φ̂) be defined in (2.4). Then, we have

1. If h is chosen as case (P2), then F is block-wise relative smooth with respect to hi ≡h in any
compact set [E≤E(X0)].

2. If h is chosen as the case (P4), then F is block-wise relatively smooth to hi ≡h.

Proof. Denote Φ̂⊗k := Φ̂⊗Φ̂⊗···⊗Φ̂ where ⊗ is the tensor product. Then, F(Φ̂) is the
4th-degree polynomial, i.e., F(Φ̂) = ∑

4
k=2〈Ak,Φ̂⊗k〉 where the kth-degree monomials are

arranged as a k-order tensorAk. For any compact set [E≤E(X0)], ∇F is bounded and thus
F is block-wise relative smooth with respect to any polynomial function in [E≤ E(X0)]
which includes case (P2). Moreover, for any fixed φ̂6=j, Fj(ψ̂) = F(ψ̂,φ̂6=j) is still a 4th-
degree polynomial. When h is chosen as (P4), according to Lemma 2.1 in [33], there

exists R
j
F >0 such that Fj(ψ̂) is R

j
F-smooth relative to h.

Combining Lemma 4.3, Lemma 4.4 with Theorem 3.1, we can directly give the con-
vergence analysis of Algorithm 3.

Theorem 4.1. Let E(Φ̂)= F(Φ̂)+∑
s
j=1 Gj(φ̂j) be the energy function which is defined in (2.6).

Then any limit point Φ̂∗ of {Φ̂k} is a critical point of E, i.e., ∇E(Φ̂∗)=0, if the sequence {Φ̂k}
generated by Algorithm 3 satisfies one of the following conditions:

1. K=2 in Algorithm 3 and {Φ̂k} is bounded.

2. K=4 in Algorithm 3.

It is noted that when h is chosen as (P2), we cannot bounded the growth of F as F is a
fourth order polynomial. Thus, the boundedness assumption of {Φ̂k} is imposed which
is similar to the requirement as the semi-implicit scheme [45].

If M=0, Theorem 3.2 implies that the sub-sequence convergence can be strengthened
by the requirement of the KL property of E. According to Example 2 in [10], it is easy
to know that E(Φ̂) in our model is a semi-algebraic function, then it is a KL function by
Theorem 2 in [10]. Thus, the sequence convergence of Algorithm 3 with M=0 is obtained
as follows.



152 C. Bao, C. Chen and K. Jiang / CSIAM Trans. Appl. Math., 3 (2022), pp. 133-171

Theorem 4.2. Let E(Φ̂)=F(Φ̂)+∑
s
j=1 Gj(φ̂j) be the energy function defined in (2.6) and M=0

in Algorithm 3. If the sequence {Φ̂k} generated by Algorithm 3 satisfies one of the conditions in
Theorem 4.1, then there exists some Φ̂∗ such that lim

k→∞
Φ̂k = Φ̂∗ and ∇E(Φ̂∗)=0.

From the above analysis, we know that the proposed AB-BPG method has the proven
convergence to some stationary point compared to the current gradient flow based meth-
ods. Moreover, it has shown that the generated sequence has the (generalized) energy
dissipation and mass conservation properties.

5 Numerical results

In this section, we apply the AB-BPG-K approaches (Algorithm 3) to binary, ternary,
quinary component systems based on the CMSH model. The efficiency and accuracy of
our methods are demonstrated through comparing with existing methods, including the
first-order semi-implicit scheme (SIS), the second-order Adam-Bashforth with Lagrange
extrapolation approach (BDF2) [26], the scalar auxiliary variable (SAV) method [43], the
stabilized scalar auxiliary variable (S-SAV). Note that these employed methods all guar-
antee the equality constraint, i.e., mass conservation.

The step sizes αk in the AB-BPG approaches are adaptively obtained via the linear
search technique. To be fair, adaptive time stepping are applied to gradient flow methods.
The SIS and BDF2 scheme use the adaptive time stepping [55]

αk =max

{

αmin,
αmax

√

1+ρ|E′(Φk)|2

}

, (5.1)

where E is the energy functional defined in the model. The constant αmin,αmax, and ρ are
set to αmin = 0.001,αmax = 0.1 and ρ= 50 as [55] suggested. The adaptive SAV scheme is
implemented as Algorithm 1 in [44], where a semi-implicit first-order SAV scheme and
a semi-implicit second-order SAV scheme based on Crank-Nicolson are computed at one
step iteration. The adaptive time stepping is in the form of

αk+1=max

{

αmin, min

{

ρ

(

tol

ek+1

)1/2

αk,αmax

}}

, (5.2)

where ρ is a default safety coefficient, tol is a reference tolerance, ek+1 is the relative error
between a first-order SAV scheme and a second-order SAV scheme at each time level.
en+1 is the relative error between first-order SAV scheme and second-order scheme at
each time level. The original parameters (ρ=0.9, tol=10−3, αmin=10−5, αmax=10−2) taken
in work [44] are inefficient to compute stationary states. In our implementation, we care-
fully choose appropriate parameters case by case to ensure better numerical performance.
Compared to the adaptive SAV scheme, the S-SAV scheme adds a first-order stabilization
term S1(Φ

k+1−Φk) and a second-order stabilization term S2(Φk+1−2Φk+Φk−1) [45] to
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the SAV-SI scheme and the SAV-CN scheme, respectively. In our computation, we let
S1=S2=10 and use the adaptive times stepping (5.2) with ρ=0.9, tol=10−3, αmin=10−5,
αmax=1.

Our methods, the adaptive SIS and the adaptive BDF2 use a Gauss-Seidel manner to
update order parameters in a fixed cyclic order. While the adaptive SAV and adaptive
S-SAV method keep the same as Algorithm 1 in [44], which uses a Jacobian manner to
update all order parameters simultaneously in one step iteration. In our implementation,
all approaches are stopped when ‖∇E(Φ̂)‖∞ < 10−7 or the energy difference between
two iterations is less than 10−14. All experiments were performed on a workstation with
a 3.20 GHz CPU (i7-8700, 12 processors). All codes were written by MATLAB without
parallel implementation.

5.1 Binary component systems

We first choose s= 2 in (2.2) and take the two-dimensional decagonal quasicrystal as an
example to examine our approaches’ performance. The decagonal quasicrystal can be
embedded into a four-dimensional periodic structure. Therefore, we carry out the pro-
jection method in four-dimensional space. The 4-order invertible matrix B associated
with the four-dimensional periodic structure is chosen as I4. The corresponding com-
putational domain in physical space is [0,2π)4. The projection matrix P in (A.5) of the
decagonal quasicrystals is

P=

(

1 cos(π/5) cos(2π/5) cos(3π/5)
0 sin(π/5) sin(2π/5) cos(3π/5)

)

. (5.3)

We use 384 plane wave functions to discretize the binary CMSH energy functional. The
parameters in (2.2) are given in Table 2. The initial configuration of order parameters
is chosen as references [27, 28] suggest. The stationary quasicrystals, including physical
space morphology and Fourier spectra, are given in Fig. 1.

Table 2: The non-zero model parameters used in computing binary decagonal quasicrystal.

c=20, q1=1, q2=2cos(π/5), τ0,2=τ2,0=−0.1, τ0,3=τ3,0=−0.3,

τ1,2=τ2,1=−2.2,τ0,4=τ4,0=τ1,1=τ2,2=τ1,3=τ3,1=1.

5.1.1 Algorithm study

In this subsection, we take the binary CMSH model as an example to show our proposed
AB-BPG method’s performance by choosing different hyperparameters, including the
choice of the step sizes, the descent subsequence, and the block update manner. Similar
results exist in the following ternary and quinary cases. For simplicity, we only present
the results in the computing binary CMSH model.
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(a) (b) (c)

Figure 1: The stationary decagonal quasicrystal in the binary CMSH model. (a): The spatial distribution of
density, where the red and blue colors correspond to the rich concentration of φ1 and φ2, respectively; (b): The
Fourier spectra of φ1; (c): The Fourier spectra of φ2. Only Fourier spectral points whose coefficient intensities

are larger than 10−4 are presented.

The step size of the AB-BPG methods is adaptively obtained by Algorithm 1. In our
implementation, we set α0 = 0.1, ς=(

√
5−1)/2, η = 10−12, αmin = 10−6 and αmax = 10 in

Algorithm 1. Fig. 2(a) illustrates the adaptive step sizes versus the iteration when M=0
and a=1.

In Fig. 2(b), it shows the total energy of the sequence {Φ̂k} and the subsequence {Φ̂mk}
defined in (3.9) versus the iterations with M=5 and a=0. It is observed that the subse-
quence {E(Φ̂mk}) is monotone decreasing which validates the generalized energy dissi-
pation property proved in Lemma 3.3.

In the next, we consider the different choices of the update blocks. One is the cyclic
rule that updates Φ̂1 and Φ̂2 alternatively in the Gauss-Seidel fashion. The other is to
randomly choose the update block, and Φ̂1 and Φ̂2 should be updated at least once in 10
consecutive iterations. In this case, we set a=M=0, and we independently run the ran-
dom update rule 50 times and report its terminated iteration numbers for each trial. The
result is shown in Fig. 2(c). Compared to the random update manner, it is observed that
the cyclic rule needs fewer iterations for the desired accuracy. Therefore, in the following
simulations, we only consider the cyclic update order when carrying out the AB-BPG
algorithms.

5.1.2 Comparison with other methods

We compare AA-BPG methods with alternative methods, including adaptive SIS, adap-
tive BDF2, adaptive SAV and adaptive S-SAV. Theoretically, the SAV method always has
a modified energy dissipation through adding a sufficiently large positive scalar auxil-
iary variable C which guarantees the boundedness of the bulk energy term. In practice,
the original energy dissipation property might depend on the selection of C. When com-
puting the decagonal quasicrystal in the binary CMSH model, the adaptive SAV scheme
keep the original energy dissipate when C = 108. The times stepping for adaptive SAV
scheme is obtained by formula (5.2) with αmin = 10−5, αmax = 0.5, ρ= 0.9, tol= 10−3. For
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(a) (b) (c)

Figure 2: (a): The adaptive step size obtained by the AB-BPG-4 (M=0, a=1). The mean step sizes of φ1 and

φ2 are 0.6033 and 0.7062, respectively. (b): The tendency of energy {Ek=E(Φ̂k)} and energy {Emk =E(Φ̂mk)}
in AB-BPG-2 (M = 5, a= 0). The green o’s mark the position of (mk,Emk). (c): Numerical behavior of the
AB-BPG-2 (M= 0, a= 0) via updating order parameters in a random manner. The blue dotted line and the
pink points denote the convergent iterations of the AB-BPG methods via cyclic and random order update,
respectively.

Table 3: Numerical results of computing binary decagonal quasicrystal.

M a Iterations CPU Time (s) Gradient error (10−8) |E−Es| (10−14)

0 54 72.56 9.74 4.07

0.1 46 66.04 9.42 51.540

1 45 69.17 7.95 13.78

0 65 86.62 4.91 0.76

0.1 59 85.10 9.25 23.085

1 57 82.79 7.99 18.62

0 65 85.88 4.01 0.06

0.1 59 85.31 9.60 95.6110

1 56 79.38 7.13 2.98

Adaptive SIS 293 163.10 9.98 152.28

Adaptive BDF2 305 276.98 9.77 142.73

Adaptive SAV 94 283.14 8.86 117.56

Adaptive S-SAV 236 742.46 9.81 141.65

the AB-BPG approaches, we choose different values of M in (3.9) and a in Bregman di-
vergence (4.2) for comparison. The linear search technique can obtain the step size of the
AB-BPG methods.

Table 3 shows the corresponding numerical results of the AB-BPG, adaptive SIS, adap-
tive BDF2, adaptive SAV and adaptive S-SAV schemes. We choose a reference energy
value Es =−1.54929536255898×10−2 , which is computed via the semi-implicit scheme
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Figure 3: Numerical behaviors of our algorithms, adaptive SIS, adaptive BDF2, adaptive SAV, adaptive S-SAV
for computing binary decagonal quasicrystal. First row: M=0; Second row: M=5; Left: Relative energy over
iterations; Middle: Relative energy over CPU time; Right: Gradient error over iterations; The green ×s mark
where restarts occurred.

using 564 plane wave functions. The minimal iteration steps and the least CPU time are
emphasized via the bold font. From Table 3, one can find that the proposed approaches
are superior to other methods. In particular, when a=1, the AB-BPG method with M=0
takes 45 iterations (69.17 seconds) to reduce the gradient error of 10−7, which is 2.35 times
faster than the adaptive SIS, 4 times than the adaptive BDF2 and adaptive SAV schemes,
10.73 times than the adaptive S-SAV scheme. Moreover, a great deal of the adaptive time
stepping for gradient flow methods is that empirical parameters are involved in the for-
mula (5.1) and (5.2), where the best-performing parameters usually cannot be guided in
advance. Unsuitable choice of parameters may lead to too small step size (inefficient per-
formance) or too large step size (divergence). While in our AB-BPG methods, efficient
performances are shown in a wild range of choice of parameters. More importantly, the
original energy dissipation and convergence are both guaranteed within any choice of
parameters in our methods. Fig. 3 presents the iteration process of relative energy differ-
ence, CPU time, and gradient error of different approaches.

5.2 Ternary component systems

We consider the ternary component system when s= 3 in the CMSH model. A periodic
structure of the sigma phase, which is a complicated spherical packed structure discov-
ered in multicomponent material systems [31], is used to examine the performance of



C. Bao, C. Chen and K. Jiang / CSIAM Trans. Appl. Math., 3 (2022), pp. 133-171 157

Table 4: The non-zero model parameters used in computing ternary sigma phase.

c=1, q1 =q2 =q3 =1, τ2,0,0=τ0,2,0=τ0,0,2=−0.2, τ3,0,0=τ0,3,0=τ0,0,3=−0.3,

τ4,0,0=τ0,4,0=τ0,0,4=0.1, τ2,1,1=τ1,2,1=τ1,1,2=−0.1.

Figure 4: The stationary sigma phase in ternary CMSH model from two perspectives.

our algorithms. For such a pattern, we implement our algorithm on a bounded com-
putational domain [0,27.7884)×[0,27.7884)×[0,14.1514) and 200×200×100 plane wave
functions are used to for discretization. The initial value of each component of the sigma
phase is input, as suggested in [4, 51]. The parameters in the ternary CMSH model are
given in Table 4. The stationary sigma phase is present in Fig. 4.

Similar to the binary case, we report the AB-BPG algorithms’ performance with dif-
ferent choices of a and M. In the adaptive SAV method, the auxiliary parameter C is set
to 108 and the parameters in formula (5.2) are chosen as αmin = 10−5, αmax = 0.2, ρ= 0.8,
tol=10−3. Table 5 presents the corresponding numerical results and Fig. 5 gives the iter-
ation process of different methods. The reference energy value Es =−1.16910245253091
is obtained numerically via semi-implicit scheme by using 256×256×128 plane wave
functions. As is evident from these results, the AB-BPG methods demonstrate a great ad-
vantage in computing such a complicated periodic structure over other schemes. More
precisely, when M=5 and a=1, the AB-BPG method spends 416 iterations to achieve the
prescribed error, which converges 16.5 times faster than the adaptive SIS and adaptive
BDF2 methods, 3 times than the adaptive SAV method and 6.5 times than the adaptive
S-SAV method. From the cost of CPU time, the AB-BPG algorithm with M=5, a=1 takes
1358.93 seconds to achieve an accuracy of 10−7 in error, almost 10.7%, 10.8%, 11.9% and
6.5% the time employed by the adaptive SIS, adaptive BDF2, adaptive SAV and adaptive
S-SAV schemes.

5.3 Quinary component systems

The last multicomponent system considered in this paper is the five component
CMSH model. We take a two-dimensional chessboard-shaped tiling phase and three-
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Table 5: Numerical results of computing ternary sigma phase.

M a Iterations CPU Time (s) Gradient error (10−8) |E−Es| (10−12)

0 758 2185.19 6.47 3.22

0.1 770 2549.49 9.15 3.570

1 593 1952.63 9.71 4.79

0 739 2068.65 9.50 3.54

0.1 611 1991.94 8.23 2.015

1 416 1358.93 8.51 0.68

0 677 1896.60 7.13 2.40

0.1 595 1959.80 9.22 0.5810

1 560 1865.38 7.32 1.31

Adaptive SIS 6905 12656.52 9.96 6.28

Adaptive BDF2 6896 12549.01 9.99 5.96

Adaptive SAV 1276 11406.12 9.94 6.11

Adaptive S-SAV 2737 20773.66 9.99 5.94

Figure 5: Numerical behaviors of the AB-BPG, adaptive SIS, adaptive BDF2, adaptive SAV and adaptive S-SAV
algorithms for computing ternary sigma phase. First row: M= 0; Second row: M= 20; Left: Relative energy
over iterations; Middle: Relative energy over CPU time; Right: Gradient error over iterations; The green ×s
mark where restarts occurred.
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dimensional body-centered cubic (BCC) spherical structure to examine AB-BPG ap-
proaches’ performance.

5.3.1 Chessboard-shaped tiling

When computing the chessboard-shaped tiling, the parameters in five-component CMSH
model are given in Table 6. The corresponding computational domain in physical space is
Ω=[0,2π)2 and 1024×1024 plane wave functions are used to discretize the computational
domain. The initial solution of j-th component is

φj(r)= ∑
h∈Λ

j
0

φ̂(h)eih⊤r, r∈Ω, (5.4)

where initial lattice points set Λ
j
0 ⊂ Z2 can be found in the Table 7 only on which the

Fourier coefficients φ̂(h) located are nonzero. The convergent stationary morphology is
given in Fig. 6.

Table 8 presents the numerical results of the AB-BPG, adaptive SIS, adaptive BDF2,
adaptive SAV and adaptive S-SAV methods. The scalar auxiliary parameter C of adaptive

Table 6: The non-zero model parameters when computing quinary chessboard-shaped tiling.

c=10, q1=q2 = ···=q5 =1,

τ3,0,0,0,0=τ0,3,0,0,0=τ0,0,3,0,0=τ0,0,0,3,0=τ0,0,0,0,3=−0.10,

τ4,0,0,0,0=τ0,4,0,0,0=τ0,0,4,0,0=τ0,0,0,4,0=τ0,0,0,0,4=0.10,

τ1,0,1,0,0=−0.70, τ0,1,0,1,1=0.05, τ1,1,0,0,1=−0.12, τ0,1,0,1,0=−0.44.

Table 7: The initial lattice points of each component when computing quinary chessboard-shaped tiling.

φ1 φ2 φ3 φ4 φ5

Λ
j
0 (±1,0) (0,±1) (±2,0) (0,±2) (0,0)

Figure 6: The stationary chessboard-shaped phase in quinary CMSH model. The morphologies of φ1, φ3 (left),
φ2, φ4 (middle) and φ5 (right).
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Table 8: Numerical results of computing the quinary chessboard-shape tiling.

M a Iterations CPU Time (s) Gradient error (10−8) |E−Es| (10−14)

0 111 75.56 6.97 2.90

0.1 142 101.52 5.44 1.480

1 204 145.30 6.60 1.19

0 193 149.67 6.28 0.46

0.1 174 131.11 9.65 1.385

1 239 171.46 9.91 1.72

0 186 120.03 8.34 2.62

0.1 188 135.34 6.56 0.8410

1 253 186.38 5.37 0.52

Adaptive SIS 18208 8957.85 282.01 4617.51

Adaptive BDF2 17723 8277.81 346.25 7073.17

Adaptive SAV 927 2184.01 9.92 94.23

Adaptive S-SAV 6655 16131.94 9.99 94.51

SAV scheme is set to 1010 and the parameters in formula (5.2) are taken as αmin = 10−5,
αmax =0.7, ρ=0.9, tol=10−3. The reference energy value Es =−0.57163687783216 is ob-
tained via semi-implicit scheme by using 2048×2048 plane wave functions. Correspond-
ingly, Fig. 7 presents the iteration process including the relative energy difference, the
CPU times and the gradient error against iterations, respectively. These results demon-
strate the superiority of the AB-BPG algorithms over the adaptive SIS, adaptive BDF2 and
adaptive SAV methods. As Table 8 shows, the AB-BPG method with M=0, a=0 has the
best performance. Even though the AB-BPG method costs much time as the adaptive SIS
and adaptive BDF2 approaches per iteration due to the linear search technique, its adap-
tive step size compensates the extra work converging to 10−7, almost 0.8%, 0.9%, 3.5%
and 0.4% of CPU time spent by the adaptive SIS, adaptive BDF2, adaptive SAV methods,
and adaptive S-SAV, respectively.

5.3.2 BCC

As last, we consider the quinary BCC structure. The parameters in the five component
CMSH model are given in Table 9. A bounded domain [0,2

√
2π)3 is used as the compu-

tational box and 1283 plane wave functions are employed to compute the BCC spherical
phase. The initial values can be found in [29]. Fig. 8 shows the convergent stationary
solution of different order parameter, which are all BCC phases but with different peri-
odicity.

Table 10 and Fig. 9 compare the numerical behaviors of AB-BPG, adaptive SIS, adap-
tive BDF2, adaptive SAV and adaptive S-SAV methods. The scalar auxiliary parameter
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Figure 7: Numerical behaviors of the AB-BPG and adaptive SIS, adaptive BDF2, adaptive SAV and adaptive
S-SAV for computing the quinary chessboard-shape tiling. First row: M=0; Second row: M=5; Left: Relative
energy over iterations; Middle: Relative energy over CPU times; Right: Gradient error over iterations; The
green ×s mark where restarts occurred.

Table 9: The non-zero model parameters used in computing quinary BCC spherical structure.

c=1, q1=1, q2=1.5, q3=2, q4=2.5, q5 =3,

τ3,0,0,0,0=−0.1, τ0,3,0,0,0=−0.6, τ0,0,3,0,0=−0.4, τ0,0,0,3,0=−0.2, τ0,0,0,0,3=−0.1,

τ4,0,0,0,0=τ0,0,4,0,0=τ0,4,0,0,0=τ0,0,0,4,0=τ0,0,0,0,4=0.1,

τ1,0,1,0,0=0.4, τ0,1,0,1,0=0.3, τ0,1,1,1,0=−0.2, τ1,1,0,0,1=0.8.

C of two SAV scheme is set to 1010. For adaptive SAV scheme, the parameters in for-
mula (5.2) are taken as αmin = 10−5, αmax = 0.2, ρ= 0.9, tol= 10−3. The reference energy
Es =−1.22314417498279 is obtained via semi-implicit scheme by using 2563 plane wave
functions. Again, for this case, the proposed AB-BPG methods are still superior to the
compared algorithms. More precisely, the best performance of AB-BPG (M = 0, a = 0)
spends 182 iterations to achieve the prescribed error which converges 40 times faster
than the adaptive SIS, 30 times than the adaptive BDF2 method, 5.1 times than the adap-
tive SAV scheme and 10.1 times than the adaptive S-SAV scheme. From the cost of CPU
times, the AB-BPG algorithm with M=0 takes 247.22 seconds to achieve an accuracy of
10−7 in the gradient error, almost 3.8%, 5.1%, 7.0% and 2.8% of the CPU time used by the
adaptive SIS, adaptive BDF2, adaptive SAV and adaptive S-SAV schemes.
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Figure 8: The stationary BCC phase in quinary CMSH model. The subfigures from left to right are morphology
of φ1 to φ5.

Table 10: Numerical results of computing the quinary BCC structure.

M a Iterations CPU Times Gradient error (10−8) |E−Es| (10−13)

0 182 247.22 8.17 1.99

0.1 212 309.12 9.58 1.710

1 232 344.20 6.66 1.38

0 259 343.63 3.96 1.37

0.1 262 381.79 5.70 2.145

1 347 515.89 5.84 1.28

0 277 371.94 5.56 1.33

0.1 304 446.41 8.04 1.4010

1 353 505.98 7.38 1.33

Adaptive SIS 7443 6446.39 52.18 439.44

Adaptive BDF2 5628 4802.81 71.90 832.20

Adaptive SAV 933 3498.08 9.94 17.20

Adaptive S-SAV 2204 8766.82 9.95 17.19

6 Conclusion

In this paper, an AB-BPG algorithm is proposed to compute the stationary states of mul-
ticomponent phase-field crystal model with mass conservation. Compared to most exist-
ing methods, the new approaches consider the block structure of multicomponent mod-
els, and the update manner can be chosen deterministically or randomly. Using modern
optimization methods, including the inertia acceleration approach, the restart technique,
and the line search method, the proposed AB-BPG method has the general dissipation
property with efficient implementation. Moreover, with the help of the Bregman diver-
gence, it is proved that the generated sequence converges to a stationary point without
the requirement of the global Lipschitz assumption. Extensive numerical experiments
on computing stationary periodic crystals and quasicrystals in the binary, ternary, and
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Figure 9: Numerical behaviors of the AB-BPG, adaptive SIS and adaptive BDF2, adaptive SAV and adaptive
S-SAV methods for computing the quinary BCC phase. First row: M= 0; Second row: M= 5; Left: Relative
energy over iterations; Middle: Relative energy over the CPU times; Right: Gradient error over iterations; The
green ×s mark where restarts occurred.

quinary coupled-mode Swift-Hohenberg model have shown a significant acceleration
over many existing methods.

In this paper, we have implemented our algorithms for computing multicomponent
model with polynomial type potentials F[{φj}s

j=1]. In fact, the proposed methods can be

applied to deal with non-polynomial type potentials by choosing suitable {hj} to make
our Assumption 3.2 satisfied. This will soon be found in our future work. Besides, al-
though our methods have shown efficient performance in our numerical experiments, we
want to theoretically prove the convergence rates in the future. It is worth mentioning
that in this work, we only consider efficient methods for computing stationary states. Be-
sides, the physical evolution simulation is an important topic in PFC models. It is known
that the classical proximal gradient method is exactly the semi-implicit scheme for gra-
dient flows. From this perspective, we will develop our method to simulate the whole
evolution of process of crystal growth in the further.
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Appendices

A Projection method

The projection method is a general framework to study the periodic and quasiperiodic
crystals [25,30]. Each of the d-dimensional periodic system can be described by a Bravais
lattice

Rd={Adnd, nd∈Z
d},

where Ad∈Rd×d is invertible. The fundamental domain or so-called unit cell of the peri-
odic system is

Ω={Adζ, ζ∈R
d, ζ j ∈ [0,1), j=1,··· ,d}.

The associated primitive reciprocal vectors, Bd=(b1,··· ,bd), bj∈Rd, j=1,··· ,d, satisfy the

dual relationship AdBT
d = Id where Id is the d-order identify matrix. The reciprocal lattice

is

R∗
d ={Bdhd, hd∈Z

d}.

The corresponding periodic function ψ(r), which has translational invariance with re-
spect to the Bravais lattice R, i.e., ψ(r)=ψ(r+R), has the following Fourier expansion

ψ(r)= ∑
h∈Zd

ψ̂(h)ei(Bh)Tr , (A.1)

where

ψ̂(h)=−
∫

ψ(r)e−(Bh)Trdr, r∈Ω. (A.2)

Quasiperiodic functions, or more general almost periodic functions, are an extension of
periodic functions. The definition of quasiperiodic functions is given as follows [25]:

Definition A.1 (Quasiperiodic function). A d-dimensional continuous complex-valued func-
tion f (r) is quasiperiodic, if there exists a n-dimensional periodic function F(rs), rs ∈Rn, n>d,
such that

f (r)=F(PTr),

where P ∈Rd×n is the projection matrix. The column vectors of P are rationally independent.
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From the definition, one can find that the d-dimensional quasiperiodic system is a
d-dimensional subspace of a n-dimensional periodic structure. As describes above, the
Fourier series of F(rs) is

F(rs)= ∑
h∈Zn

F̂(h)ei(Bh)Trs , (A.3)

where B ∈ Rn×n is associated to the periodicity of the n-dimensional periodic system.

F̂(h)=−
∫

F(rs)e−(Bh)Trs drs,rs ∈Ωs, Ωs ={B−Tα, α∈Rn, αj ∈ [0,1), j=1,··· ,n}. Let F̂(h) be

f̂ (h), the projection method for a d-dimensional quasiperiodic function over Rd can be
written as [30]

f (r)= ∑
h∈Zn

f̂ (h)ei(PBh)⊤r, r∈R
d. (A.4)

If consider periodic crystals, the projection matrix becomes the d-order identity matrix,
then the projection reduces to the common Fourier spectral method.

Similarly, the order parameter in multicomponent systems can be expanded as fol-
lows

φj(r)= ∑
h∈Zn

φ̂j(h)e
i(PBh)⊤r, j=1,2,··· ,s. (A.5)

In numerical implementation, we truncate the Fourier coefficients to satisfy

Xj =

{

{φ̂j(h)}h∈Zn : φ̂j(h)=0, ∀|hl |>
Nl,j

2
, l=1,2,··· ,n

}

,

where Nl,j is chosen to be even for convenience. Let φ̂j =(φ̂1,j,φ̂2,j,··· ,φ̂Nj,j)
⊤ ∈C

Nj with

Nj =∏
n
l=1(Nl,j+1). Let Φ̂={φ̂j}s

j=1∈CN with N=∑
s
j=1 Nj. Using the projection method

discretization, the energy functional (2.4) reduce to

Gh,j(φ̂j)=
1

2 ∑
hj,1+hj,2=0

[

q2
j −(PBh)⊤(PBh)

]2
φ̂j(hj,1)φ̂j(hj,2), j=1,2,··· ,s,

Fh(Φ̂)=∑
Is,n

τi1,i2,···,is ∑
∑j,k hj,k=0

s

∏
j=1

(

ij

∏
k=1

φ̂j(hj,k)

)

,

where hj,k∈Zn, φ̂j∈Xj, j=1,2,··· ,s. For simplicity, we omit the subscription h in Gh,j and
Fh in the following context. Then the discretized energy functional can be stated as

E({φ̂j}s
j=1)=

s

∑
j=1

Gj(φ̂j)+F({φ̂j}s
j=1), (A.6)
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where Gj(φ̂j)=
1
2〈φ̂j,Djφ̂j〉 and Dj∈C

Nj×Nj is a diagonal matrix with nonnegative entries

(Dj)h =[q2
j −(PBh)⊤(PBh)]2 with h∈Z

n and φ̂j(h)∈Xj. (A.7)

F({φ̂j}s
j=1) are n-dimensional convolutions in the reciprocal space. In summary, the dis-

cretized version of (2.5) has the form

min
Φ̂

E(Φ̂)=
s

∑
j=1

Gj(φ̂j)+F(Φ̂), s.t. e⊤1 φ̂j=0, j=1,2,··· ,s. (A.8)

B Proof of Theorem 3.2

Before we prove the convergent property, we first present a useful lemma for our analysis.

Lemma B.1 (Uniformized Kurdyka-Lojasiewicz property [10]). Let C be a compact set and
E defined in (2.6) be bounded below. Assume that E is constant on C. Then, there exist ǫ> 0,
η>0, and ψ∈Ψη such that for all ū∈C and all u∈Γη(ū,ǫ), one has,

ψ
′
(E(u)−E(ū))dist(0,∂E(u))≥1, (B.1)

where Ψη = {ψ∈C[0,η)∩C1(0,η) and ψ is concave, ψ(0)= 0,ψ
′
> 0 on (0,η)} and Γη(x,ǫ)=

{y|‖x−y‖≤ǫ,E(x)<E(y)<E(x)+η}.

Proof. The proof is based on the fact that E satisfies the so-called Kurdyka-Lojasiewicz
property on C [10].

Proof of Theorem 3.2. Define two sets Ω2 = {k|wk = 0} and Ω1 =N\Ω2. Since M= 0, we
know mk≡k. From the restart technique (3.10), the following sufficient decrease property
holds

E(Xk)−E(Xk+1)≥σ‖Xk−Xk+1‖2, ∀k. (B.2)

Let S(X0) be the set of limiting points of the sequence {Xk} starting from X0. By the
boundedness of {Xk} and S(Xk)=∩n∈N∪k≥n{Xk}, it follows that {Xk} is a non-empty
and compact set. From Lemma 3.5, we know

E(X)=E∗, ∀X∈S(X0). (B.3)

Then, for all ε1,η>0, there exists k0>0 such that

dist(Xk,S(X0))≤ ε1, E∗
<E(Xk)<E∗+η, ∀k> k0. (B.4)

Applying Lemma B.1, for ∀k> k0 we have

ψ′(E(Xk)−E∗)dist(0,∂E(Xk))≥1. (B.5)
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By the convexity of ψ, we have

ψ(E(Xk)−E∗)−ψ(E(Xk+1)−E∗)≥ψ′(E(Xk)−E∗)(E(Xk)−E(Xk+1)). (B.6)

Denote ∆k,k+1 =ψ(E(Xk)−E∗)−ψ(E(Xk+1)−E∗). From (B.2), we have

∆k,k+1≥
σ‖Xk+1−Xk‖2

dist(0,∂E(Xk))
, ∀k> k0. (B.7)

Next, we prove ∑
∞
k=0‖Xk+1−Xk‖<∞. For any ε>0, we take N>max{k0,3T} large enough

such that

C̄ψ(E(XN+1)−E∗)< ε/2, (B.8)

N

∑
k=N−3T+2

‖Xk+1−Xk‖< ε/2, (B.9)

where C̄=3TC/σ. The existence of N is ensured by the fact that lim
k→∞

E(Xk)=E∗, ψ(0)=0

and lim
k→∞

‖Xk+1−Xk‖=0. We now show that for all ∀K>N, the following inequality holds

K

∑
k=N+1

‖Xk+1−Xk‖< ε, (B.10)

which implies ∑
∞
k=0‖Xk+1−Xk‖<∞ by Cauchy principle of convergence. In fact, together

with Lemma 3.6 and (B.7), we obtain

∆k,k+1 ≥
‖Xk+1−Xk‖2

C1∑
k
l=k−3T+1‖Xl−Xl−1‖

, ∀k>N, (B.11)

where C1=C/σ. By using the geometric inequality, we get

2‖Xk+1−Xk‖≤ 1

3T

k

∑
l=k−3T+1

‖Xl−Xl−1‖+C̄∆k,k+1. (B.12)

Summing up (B.12) for k=N+1,··· ,K, it follows that

2
K

∑
k=N+1

‖Xk+1−Xk‖≤
K

∑
k=N+1

(

1

3T

k

∑
l=k−3T+1

‖Xl−Xl−1‖+C̄∆k,k+1

)

=
1

3T

K

∑
k=N+1

0

∑
l=−3T+1

‖Xl+k−Xl+k−1‖+C̄∆N+1,K+1

=
1

3T

0

∑
l=−3T+1

K+l

∑
k=N+l+1

‖Xk−Xk−1‖+C̄∆N+1,K+1
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≤ 1

3T

0

∑
l=−3T+1

K

∑
k=N−3T+2

‖Xk−Xk−1‖+C̄∆N+1,K+1

=
K

∑
k=N−3T+2

‖Xk−Xk−1‖+C̄∆N+1,K+1

≤
K

∑
k=N−3T+1

‖Xk+1−Xk‖+C̄∆N+1,K+1,

where the first equality is from the fact that ∆p,q+∆q,r =∆p,r. Therefore, we have

K

∑
k=N+1

‖Xk+1−Xk‖≤
N

∑
k=N−3T+1

‖Xk+1−Xk‖+C̄ψ(E(XN+1)−E∗)< ε. (B.13)

As a result, we obtain ∑
∞
k=0‖Xk+1−Xk‖<∞ and lim

k→∞
Xk =X∗. From Lemma 3.5 and the

continuity of E(X) on B(X0), we get

lim
k→∞

E(Xk)=E(X∗)=E∗. (B.14)

This completes the proof.
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