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Abstract. Mathematical oncology is a rapidly evolving interdisciplinary field that uses
mathematical models to enhance our understanding of cancer dynamics, including tu-
mor growth, metastasis, and treatment response. Tumor-immune interactions play
a crucial role in cancer biology, influencing tumor progression and the effectiveness
of immunotherapy and targeted treatments. However, studying tumor dynamics in
isolation often fails to capture the complex interplay between cancer cells and the im-
mune system, which is critical to disease progression and therapeutic efficacy. Math-
ematical models that incorporate tumor-immune interactions offer valuable insights
into these processes, providing a framework for analyzing immune escape, treatment
response, and resistance mechanisms. In this review, we provide an overview of math-
ematical models that describe tumor-immune dynamics, highlighting their applica-
tions in understanding tumor growth, evaluating treatment strategies, and predicting
immune responses. We also discuss the strengths and limitations of current modeling
approaches and propose future directions for the development of more comprehensive
and predictive models of tumor-immune interactions. We aim to offer a comprehen-
sive guide to the state of mathematical modeling in tumor immunology, emphasizing
its potential to inform clinical decision-making and improve cancer therapies.

AMS subject classifications: 92C42, 92B05, 92B10
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1 Introduction

Cancer, often described as a malignant tumor, represents a complex and dynamic ecosys-
tem [12, 51, 66]. This ecosystem, known as the tumor microenvironment (TME) (Fig. 1),
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Figure 1: A global map of the tumor microenvironment.

comprises not only malignant tumor cells capable of rapid proliferation and metasta-
sis but also includes various non-cancerous components such as immune cells, stro-
mal cells, fibroblasts, and vascular endothelial cells [12, 66, 89, 119]. The TME plays
a pivotal role in the processes of tumor growth, progression, metastasis, and drug re-
sistance [66, 89, 119, 204, 239]. Within this environment, tumors actively shape condi-
tions favorable to their survival and proliferation through mechanisms such as the se-
cretion of cytokines, immune-modulating factors, and the expression of immune check-
point molecules [133,240]. Meanwhile, immune cells infiltrate tumor tissue via migration,
chemotaxis, and recruitment, influencing tumor development [133, 218, 227].

Tumor-immune system interactions are marked by a dynamic and complex interplay
of mutual promotion, competition, and adaptation [93, 236]. These interactions not only
influence tumor growth, metastasis, and regression but also modulate the immune sys-
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tem’s composition, function, and responsiveness [76–78, 265]. Recent advances in single-
cell sequencing and other biotechnological tools have significantly enhanced our under-
standing of these tumor-immune interactions [138,244,316]. However, the inherent com-
plexity of these interactions poses challenges that experimental techniques alone cannot
fully address, necessitating the use of mathematical modeling as a powerful complemen-
tary approach to uncover underlying patterns and mechanisms.

Mathematical models provide a framework for describing and simulating complex
biological systems, allowing researchers to abstract and quantify interactions with the
tumor-immune landscape [7, 9, 42, 94, 250]. These models offer several key advantages in
studying tumor-immune dynamics:

(1) Quantitative description. Mathematical models enable the quantitative analysis of
tumor-immune interactions through differential equations and algorithms, offer-
ing new perspectives on the complex processes underlying these interactions.

(2) Systematic analysis. By modeling tumor-immune interactions as integrated sys-
tems, these approaches capture feedback loops and multicomponent interactions,
providing insights into the regulation of tumor growth, immune evasion, and im-
mune cell dynamics.

(3) Multi-scale simulation. Mathematical models can simulate biological processes
across multiple scales, from molecular and cellular to tissue levels, facilitating
a comprehensive understanding of the dynamic nature of tumor-immune inter-
actions.

(4) Treatment predictions. These models are also valuable tools for predicting the ef-
fects of various treatment strategies, aiding in the design of personalized thera-
pies, and supporting clinical decision-making through the simulation of therapeu-
tic outcomes.

Despite their potential, mathematical models of tumor-immune interactions face sig-
nificant challenges [41,55,154,209]. The complexity of tumor-immune dynamics involves
multiple time scales, diverse cellular components, and intricate regulatory networks, re-
quiring an interdisciplinary approach that integrates knowledge from applied mathe-
matics, computational science, tumor immunology, and clinical medicine. Additionally,
the acquisition and processing of multi-source data are critical yet challenging aspects of
model development, necessitating robust data integration and validation methods to en-
sure model reliability. Finally, interpatient variability in tumor types and immune charac-
teristics adds another layer of complexity, underscoring the need for adaptable modeling
approaches that can account for individualized tumor behavior and biomarker variabil-
ity.

In this review, we comprehensively analyze the current landscape of mathematical
models in tumor immunology, focusing on their methodologies, applications, and im-
pact on understanding tumor dynamics and treatment responses. In Section 2, we dis-
cuss key immunological mechanisms and recent research. Section 3 delves into modeling
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approaches and regulatory networks of tumor-immune interactions. In Section 4, we ex-
plore the application of these models to various cancer treatment strategies. Finally, we
discuss current limitations and propose future directions for the advancement of mathe-
matical models in the study of tumor-immune systems.

2 Biological background of immunological mechanisms

2.1 Hallmarks of cancer

The hallmarks of cancer define the fundamental characteristics that drive cancer deve-
lopment and progression (Fig. 2) [110–112]. In 2000, Hanahan and Weinberg [111] identi-
fied six original hallmarks: self-sufficiency in growth signals, insensitivity to anti-growth
signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and
tissue invasion and metastasis. In 2011, four additional hallmarks were introduced:
avoiding immune destruction, tumor-promoting inflammation, genome instability and
mutation, and deregulating cellular energetics [112]. By 2022, four more hallmarks were
recognized: unlocking phenotypic plasticity, non-mutational epigenetic reprogramming,
polymorphic microbiomes, and the influence of senescent cells [110].

These hallmarks provide a comprehensive framework for understanding the progres-
sion and evolution of cancer. Recently, Bull and Byrne [36] proposed the “hallmakers” of
mathematical oncology, which define how mathematical models can help elucidate the

Figure 2: The hallmarks of cancer [110–112].
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complex processes of tumor initiation and progression. The integration of mathematics,
oncology, and immunology is driving new advances in cancer research.

The hallmarks of cancer emphasize the unique distinctions between tumor cells and
normal cells, many of which are closely linked to the immune system. For example,
immunosuppressive cells and tumor-associated fibroblasts contribute to the formation
of pre-metastatic niches, facilitating tumor invasion and metastasis [66, 111]. Tumor-
promoting inflammation is driven by the infiltration of inflammatory cells and cytokines,
which significantly impact tumor-immune interactions [104, 112]. The interplay between
polymorphic microbiomes, tumors, and the immune system forms a cancer-immune-
microbiome axis that influences tumor progression and therapeutic response [110, 322].
Mathematical modeling of tumor-immune interactions is central to mathematical oncol-
ogy, providing quantitative insights into the dynamics of cancer development and pro-
gression.

2.2 Immune cells

The immune system is a complex and highly coordinated defense network that safe-
guards the body against infections, diseases, and abnormal cells, including cancer [68,
230]. It consists of various cells, tissues, and organs that collaborate to identify and elimi-
nate harmful pathogens as well as damaged or malignant cells. The system’s core consists
of immune cells, primarily lymphocytes and myeloid cells [68, 89, 230] (Fig. 3). Lympho-
cytes, which originate from lymphoid organs, are key players in the adaptive immune
response against tumors. They are further classified based on their distinct functions and
surface markers into T lymphocytes, B lymphocytes, natural killer (NK) cells, and natu-
ral killer T (NKT) cells. Myeloid cells, a crucial component of innate immunity, include
granulocytes, myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), mono-
cytes, and macrophages, all of which play vital roles in the body’s immediate response to
threats.

T lymphocytes are primarily involved in cellular immunity, recognizing and binding
to specific antigens to initiate immune responses [307]. Due to their robust tumor-killing
abilities, T cells have become a central focus in contemporary tumor immunology re-
search. Naive T cells can differentiate into effector T cells under the influence of various
cytokines, resulting in distinct subtypes such as helper T cells (Th), regulatory T cells
(Treg), and cytotoxic T lymphocytes (CTL) [225, 330, 331].

Th cells are a subset of T lymphocytes that play a crucial role in regulating and coor-
dinating the immune response by aiding in the activation and function of other immune
cells through the secretion of specific cytokines. They are further divided into subtypes,
including Th1, Th2, Th17, and follicular helper T cells (Tfh), based on their transcription
factors and cytokine profiles:

• Th1 cells differentiate from naive CD4+ T cells under the influence of IL-12 and
primarily secrete IL-2, IFN-γ, and TNF-α [185,225,330,331]. Th1 cells enhance CTL
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Figure 3: Immune cell lineage.

expansion through IL-2 and exert direct anti-tumor effects by secreting IFN-γ and
TNF-α, which contributed to the killing of cancer cells.

• Th2 cells can promote tumor growth by secreting cytokines such as IL-4, IL-5, and
IL-10 [185, 225, 330, 331]. The differentiation of naive CD4+ T cells into the Th2
subtype is driven by IL-4, produced by granulocytes, mast cells, and already dif-
ferentiated Th2 cells.

• Th17 cells are a subpopulation of effector CD4+ T cells known for secreting IL-17.
Recent research indicates that TGF-β, IL-6, and IL-23 promote the differentiation of
naive CD4+ T cells into the Th17 cells, whereas IFN-γ and IL-4 inhibit this process
[281, 331].

• Tfh cells are primarily located in peripheral immune organs and play a crucial role
in the formation of germinal centers [57].

Tregs are a subset of T cells with potent immunosuppressive functions, known for
secreting high levels of immunosuppressive cytokines such as IL-10 and TGF-β [25, 333].
Tregs can be classified into two main types: naturally occurring Treg (nTreg) derived
from the thymus, and induced adaptive Treg (iTreg). Within the TME, Tregs predom-
inantly refer to iTreg, which facilitates tumor immune evasion, suppresses anti-tumor
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immune responses, and contributes to the establishment of an immunosuppressive mi-
croenvironment.

CTLs are derived from naive CD8+ T cells and are central to the anti-tumor immune
response. CTLs specifically recognize cancer cells through the interaction of their T cell
receptors (TCRs) with major histocompatibility complex (MHC) expressed on the sur-
face of cancer cells [307]. CTLs directly induce tumor cell death via the FasL-Fas sig-
naling pathway and can also trigger apoptosis indirectly by secreting granzymes and
perforin [21]. However, recent studies have shown that intratumoral CTLs often display
an exhausted phenotype, marked by impaired immune function [203, 312]. Addressing
CTL exhaustion presents a significant therapeutic opportunity in cancer treatment.

B cells primarily contribute to humoral immunity. Within the tumor-immune system,
plasma cells derived from B cells secrete antibodies that recognize and bind to tumor anti-
gens, facilitating the immune system’s ability to target and eliminate cancer cells [269].
Additionally, B cells act as antigen-presenting cells (APCs), presenting tumor antigens to
other immune cells and thereby initiating immune responses. Recent studies have shown
that B cells support the maintenance of secondary lymphoid organ structures and pro-
mote the formation of intratumoral tertiary lymphoid structures (TLS) [86, 266]. TLS are
clusters of immune cells that develop in non-lymphoid tissues and are typically found
in chronically inflamed areas of cancers. Their presence is often associated with better
survival outcomes for patients [86, 266].

NK cells are the archetypal innate immune cells, capable of recognizing and destroy-
ing tumor cells in a non-specific manner. NK cells eliminate cancer cells by releasing cy-
tolytic mediators such as perforin and granzyme [53,86]. Another typical function of NK
cells is their ability to kill tumor cells by CD16 receptor-mediated antibody-dependent
cell-mediated cytotoxicity (ADCC) [53, 86]. Although they are traditionally considered
part of the innate immune system, some NK cells display adaptive-like traits, including
clone specificity and memory. Additionally, activated NK cells can secrete a range of
cytokines and chemokines, further regulating the immune response [53, 86].

DC cells, as the most potent professional APCs, play a crucial role in mediating in-
nate immune responses and inducing adaptive immunity [82, 307]. They are central to
initiating, regulating, and sustaining anti-tumor immune responses. Immature DCs effi-
ciently capture, process, and present tumor-associated antigens (TAAs) released by can-
cer cells. Once activated, DCs upregulate MHC molecules, which present antigens to
T cell receptors (TCRs) on naive T cells, providing the first signal required for T cell acti-
vation. Simultaneously, DCs deliver the second activation signal through costimulatory
molecules. Moreover, activated DCs secrete chemokines that promote T cell recruitment
and cytokines such as IL-12, which drive the differentiation of Th1 and CTLs, providing
the third signal for effective immune responses [82, 307]. Together, these mechanisms
orchestrate a robust anti-tumor immune response.

Tumor-associated macrophages (TAMs) are classified into two main types, M1 and
M2, based on their functional roles and activation states within the TME [28]. The dif-
ferentiation of macrophages into these phenotypes is known as polarization. M1 macro-
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phages are generally considered anti-tumor, as they secrete pro-inflammatory cytokines
like IL-12, IFN-γ, and TNF-α [28,91,223]. On the other hand, M2 macrophages are linked
to tumor progression, producing anti-inflammatory cytokines such as IL-4, IL-6, and
CCL7 [28, 91, 223]. Macrophage polarization demonstrates significant plasticity: factors
like M-CSF and TGF-β promote the transition of TAMs from the M1 to the M2 pheno-
type, while TNF-α and IL-12 drive the reverse transition from M2 to M1 [22, 28, 91, 223].
Understanding this bidirectional polarization is crucial for unraveling the complexities
of tumor-immune interactions and their regulatory mechanisms.

Neutrophils, the most abundant granulocytes, serve as the body’s first line of de-
fense against infections. Within the TME, neutrophils can adopt distinct phenotypes
[99, 257, 272]. N1 neutrophils exhibit anti-tumor properties, while N2 neutrophils pro-
mote tumor progression [99, 257, 272]. TGF-β is a key driver of neutrophil polarization
towards the tumor-promoting N2 phenotype [257], while type I interferons facilitate po-
larization towards the anti-tumor N1 phenotype [257]. N1 neutrophils combat tumors by
releasing reactive oxygen species (ROS) to kill cancer cells, and by promoting T cell acti-
vation and macrophage recruitment [99, 257, 272]. In contrast, N2 neutrophils contribute
to tumor growth through angiogenesis, suppression of NK cell activity, and recruitment
of Tregs [99, 257, 272].

MDSCs are a heterogeneous group of myeloid cells with strong immunosuppres-
sive capabilities [117]. They are categorized into two major subtypes: polymorphonu-
clear MDSCs (PMN-MDSCs), which resemble neutrophils, and monocytic-MDSCs (M-
MDSCs), which are more akin to monocytes [105]. In the TME, MDSCs exert potent pro-
tumor and immunosuppressive effects through various mechanisms, including the intro-
duction of immunosuppressive cells, inhibition of lymphocyte trafficking, production of
reactive oxygen species, and expression of immune checkpoint molecules [105, 117, 177].
Emerging evidence suggests that MDSCs are a hallmark of malignant tumors and repre-
sent a promising target of cancer immunotherapy [105, 117, 177].

2.3 Cancer immunoediting

Cancer immunoediting describes the dynamic interplay between tumors and the im-
mune system, evolving across three distinct phases: elimination, equilibrium, and escape
(Fig. 4) [76–78, 265]. These phases capture the dynamic struggle between tumor growth
and immune surveillance, highlighting the interactions between the immune system and
cancer progression.

The elimination phase marks the onset of immune surveillance, where the immune
system identifies and attacks developing tumors (Fig. 4). DCs detect TAAs released by
tumor cells and present them to T lymphocytes, initiating an immune response [307].
Upon antigens recognition, naive T cells differentiate into effector T cells, which target
and destroy tumor cells by engaging specific antigens on the tumor surface. In addition,
innate immune cells such as NK cells contribute to this phase by directly identifying and
eliminating cancer cells using their inherent cytotoxic abilities [106]. This phase is charac-
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Figure 4: Mechanistic framework and dynamic perspectives on cancer immunoediting [106,137,332].

terized by the coordinated actions of both innate and adaptive immune systems, aiming
to eliminate tumor cells at an early stage. While successful completion of this phase can
result in the clearance of tumors, factors such as tumor heterogeneity, the complexity of
the TME, and immune system limitations often allow for the survival of residual cancer
cells [106, 137, 332].

The equilibrium phase is a critical stage in cancer immunoediting marking a pro-
longed standoff between the tumor and immune system (Fig. 4). This phase is character-
ized by a sustained balance, where tumor cells enter a dormant state to evade immune
detection and destruction [106,137,332]. During equilibrium, tumors continue to evolve,
accumulating mutations that promote immune escape and modulate tumor antigen ex-
pression [3, 199, 258]. Although the immune system persists in eliminating detectable
tumor cells, only the most immunogenic subsets are cleared. If this phase is prolonged,
tumors may accumulate enough genetic alterations to evade immune control, setting the
stage for eventual immune escape and recurrence [106, 137, 332]. Under this continu-
ous immune pressure, the tumor evolves through mutation and selection, progressively
developing traits that enable immune evasion.

The escape phase is the final stage of cancer immunoediting (Fig. 4). At this point, the
tumor gains the ability to evade immune destruction, leading to clinical progression and
malignancy. Tumor immune escape is driven by two main mechanisms [106, 137, 332].
First, tumors reduce their immunogenicity by downregulating antigen expression, allow-
ing them to slip past immune surveillance. Second, tumors enhance immune suppression
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by upregulating immune checkpoints, which induces T cell apoptosis or impairs their
function, weakening immune attacks. Tumor cells also secrete cytokines and chemokines
to limit lymphocyte infiltration into the TME, while promoting the recruitment of MD-
SCs and Tregs. This creates an immune-privileged niche that supports tumor growth and
survival.

2.4 Cancer-immunity cycle

The cancer-immunity cycle is a mechanistic model that outlines the sequential events be-
tween tumors and the immune system, providing a framework for understanding tumor
immunology [48, 205]. This cycle consists of seven key steps, each contributing to the
initiation and amplification of the immune response against cancer (Fig. 5):

(1) Release of cancer antigens. Genetic alterations in cancer cells lead to the production
of TAAs, which are immunogenic proteins specific to the tumor [173]. As tumors
grow and undergo apoptosis, these antigens are released into the TME, serving as
signals to initiate a tumor-specific immune response (Step 1 in Fig. 5).

(2) Cancer antigen presentation. APCs capture and process TAAs, displaying them on
their surface via MHC molecules. These APCs then travel through the lymphatic
system to tumor-draining lymph nodes, where antigen presentation occurs, initi-
ating an immune response (Step 2 in Fig. 5) [307]. This step is crucial for triggering
a T-cell response against the tumor.

(3) Priming and activation of T cells. In the tumor-draining lymph nodes, naive T cells
recognize the peptide-MHC complexes on APCs through their TCRs. This recogni-
tion activates the T cells, causing them to differentiate into effector T cells capable
of targeting tumor cells (Step 3 in Fig. 5) [307]. The priming and activation of T cells
are critical to the immune system’s ability to fight the tumor.

(4) Trafficking of T cells to tumors. Once activated, effector T cells exit the lymph
nodes and travel the bloodstream towards the tumor site, guided by various che-
motactic signals (Step 4 in Fig. 5) [66, 239].

(5) Infiltration of T cells into tumors. Effector T cells infiltrate the tumor tissue in
response to chemokine signals, dispersing throughout the TME to locate tumor
cells (Step 5 in Fig. 5) [133, 218, 227].

(6) Recognition of cancer cells by T cells. Effector T cells identify tumor cells by rec-
ognizing specific antigens on their surface via their TCRs (Step 6 in Fig. 5) [89].
This recognition step is essential for the immune system to selectively target and
destroy cancer cells.

(7) Killing of cancer cells. After recognizing the tumor cells, T cells release cytotoxic
molecules such as granzyme and perforin, which induce apoptosis in the tumor
cells (Step 7 in Fig. 5). The death of tumor cells releases additional antigens, which
continue to fuel the cancer-immunity cycle, creating a feedback loop (Step 1 in
Fig. 5) [48, 205].
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Figure 5: Cancer-immunity cycle [48].

2.5 Cancer immunotype

The term “cancer immunotype” refers to the distinct patterns of interaction between tu-
mors and the immune system [75, 218]. One of the most common ways to classify cancer
immunotypes is by distinguishing between “cold” and “hot” tumors (Fig. 6) [75,189,326].
Cold tumors are characterized by weak or absent immune responses, with three defining
features: (1) minimal immune cell infiltration, (2) low expression of immune checkpoint
molecules, and (3) poor response to treatment. In contrast, hot tumors exhibit strong
immune activity, with high levels of immune cell infiltration and immune checkpoint
expression. These tumors generate a robust anti-tumor immune response, often leading
to more favorable treatment outcomes. The primary difference between cold and hot
tumors lies in the degree of immune system engagement.

Based on the biological mechanisms of the cancer-immunity cycle, tumors can also be
classified into three categories: immune-desert, immune-excluded tumors, and immune-
inflamed (Fig. 6) [8, 49, 146, 205]. Immune desert tumors lack immune cell infiltration in
the TME, resulting in minimal response. Immune-excluded tumors display immune cells
that surround the tumor but fail to penetrate its interior, leading to ineffective immune
surveillance and action. Immune-inflamed tumors feature substantial immune cell in-
filtration, particularly T cells, which are crucial for anti-tumor responses. These tumors
are associated with elevated IFN-γ signaling and high tumor mutational burden, both
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Figure 6: Cancer immunotype [49].

of which enhance immune activity against the tumor. Additionally, immune-inflamed
tumors often develop TLS within the TME, which are linked to better clinical outcomes
for patients [86, 266].

3 Mathematical formulations of tumor-immune interactions

Mathematical oncology is an emerging interdisciplinary field (Fig. 7) that leverages foun-
dational knowledge in tumor immunology and real clinical data to explore cancer dy-
namics. By applying mathematical models and computational methods, it investigates
key aspects of cancer such as tumor evolution, metastasis, drug resistance, prognosis
prediction, and optimized treatment strategies [7, 9, 42, 94, 250]. This approach provides
valuable insights into cancer behavior, helping to refine therapeutic approaches and en-
hance patient outcomes.

Mathematical models of tumor-immune interactions offer powerful tools and analyt-
ical frameworks for exploring key dynamics in tumor-immune systems [15, 81, 198]. In
this review, we present two primary categories of modeling approaches for mathemati-
cally representing these interactions. The first category is equation-based models (EBMs),
which use differential equations to capture the temporal and spatial dynamics of genes,
cells, and molecules. These models are grounded in principles such as mass action laws,
enzyme reaction kinetics, and fluid dynamics. EBMs, which are typically continuous
models, include various formulations: ordinary differential equations (ODEs), delayed
differential equations (DDEs), stochastic differential equations (SDEs), partial differential
equations (PDEs), integral differential equations (IDEs), and quantitative systems phar-
macology (QSP). The second category is rule-based models (RBMs), also known as agent-
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Figure 7: Venn diagrams and related professional keywords of interdisciplinary and intersectional research meth-
ods in the field of mathematical oncology.

based models (ABMs). These models describe system dynamics by simulating interac-
tions between individual entities, such as protein molecules or cells, with rules derived
from experimental data and biological mechanisms. ABMs are generally discrete models.
While continuous models focus on the macroscopic interactions between tumors and the
immune system, discrete models emphasize the stochasticity and uncertainty present at
the microscopic level.

3.1 Ordinary differential equation model

The ODE model is a fundamental mathematical tool for describing tumor cell interac-
tions with the immune system, providing a strong framework for analyzing tumor dy-
namics over time. By applying ODEs, researchers can thoroughly explore how tumors
interact with various immune system components, such as immune cells, receptors, and
cytokines. In this review, we present a unified framework for the ODE model of the
tumor-immune system, represented as

dXi(t)

dt
=Gi+

n

∑
j=1

Fi,j

(

X(t);Θ
)

+Di, (3.1)

where X=(X1,X2,. . .,Xn) represents the cell numbers of different components in the tu-
mor immune system, Fi,j captures the interactions between components j and i, Θ =
(θ1,θ2,. . .,θm) denotes the set of parameters. Additionally, Gi and Di represent the dy-
namic behaviors of cell growth and death, respectively.

The growth rate term Gi in Eq. (3.1) can be expressed using several well-known
growth models, classified into six types: exponential, power law, logistic, Hill function,



C. Li and J. Lei / CSIAM Trans. Life. Sci., 1 (2025), pp. 200-257 213

Gompertzian, and von Bertalanffy models [23,95,167,259,291]. These models are detailed
below:

• Exponential model. The simplest form, Gi = riXi, assumes that cells grow at a con-
stant rate, often used to describe tumor growth where tumor size is assumed to
increase proportionally to its current size over time.

• Power law model. This generalization of the exponential is given by Gi = riX
αi
i ,

where the growth rate is proportional to the current cell population raised to the
power of α.

• Logistic model. In this model,

Gi= ri

(

1−
Xi

Ki

)

Xi,

growth slows as the cell population approaches its carrying capacity, Ki. A variant
based on evolutionary game theory, the competitive logistic model,

Gi= ri

(

1−
1

Ki

n

∑
j=1

aijXj

)

Xi,

describes competition among different cell subtypes [309]. The logistic model can
be generalized further to

Gi= ri

(

1−

(

Xi

Ki

)αi
)

Xi,

providing more flexibility in describing growth dynamics.

• Hill model. Here, growth is expressed as a Hill model

Gi=
ri

1+(Xi/Ki)αi
Xi,

where Ki represents the half effective inhibitory concentration. The Hill model is
often used to model growth regulated by cytokines in the microenvironment [24,
167].

• Gompertzian model. This model,

Gi= ri log

(

Ki

Xi

)

Xi,

describes tumor growth with an exponentially decreasing rate, commonly applied
to model tumor vascular growth [108, 222].

• von Bertalanffy model. A lesser-known model,

Gi= aiXi
αi−biXi,

which describes tumor growth in a form known as “type II growth” [310].
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These models provide various mathematical formulations for cell growth and are used
in literature to describe different cell types within the tumor-immune interaction frame-
work.

The mathematical form of the remaining terms in Eq. (3.1) varies depending on the
specific biological mechanisms and modeling objectives, offering flexibility to capture the
complexity of tumor-immune interactions.

A growing number of mathematical models have been developed to explain the com-
plex regulatory mechanisms between tumors and the immune system, based on the prin-
ciples of ODE model construction [15, 81, 198]. This review focuses on summarizing the
applications of these mathematical models in describing tumor-immune regulatory net-
works, as well as providing an overview of the development of ODE models in tumor-
immune interactions modeling over the past three decades (Fig. 8).

The Lotka-Volterra model, traditionally used to describe predator-prey dynamics in
ecological systems, has been adapted to many mathematical models. In the 1990s, Kuzne-
tsov and Makalkin [157] applied the Lotka-Volterra model principles to tumor-immune
interactions (Fig. 8a), highlighting how tumor growth stimulates immune responses and
the phenomenon of tumor dormancy. Later, Kirschner and Panetta [150] expanded this
research by incorporating the role of IL-2, a cytokine that enhances T cell proliferation
and function, in tumor-immune interactions (Fig. 8b). This model has been instrumental
in exploring adoptive cellular immunotherapy and analyzing behaviors such as short-
term oscillations and long-term tumor recurrence. Wei et al. [308] further performed bi-
furcation analyses of the key parameters in [150], providing insights into their biological
significance. Arciero et al. [16], building on Kirschner’s model, incorporated the immuno-
suppressive and growth-promoting effects of TGF-β in tumor immunology (Fig. 8c).
Their model predicted that increasing the production rate of TGF-β could enhance tu-
mor growth and its ability to evade immune surveillance.

Pillis et al. [65] introduced an analytical framework to investigate the roles of NK cells
and CD8+ T cells in tumor-immune surveillance (Fig. 8d), introducing a new functional
form for tumor cell killing by CD8+ T cells, which emphasized the different dynamics be-
tween NK and CD8+ T cells in tumor immunity. However, this model did not account for
immune suppression. Subsequently, Pillis et al. [63, 64] extended their model to include
circulating lymphocytes, further exploring the effects of chemotherapy and immunother-
apy on tumor evolution (Fig. 8e), marking one of the early efforts to study optimal control
in drug treatment. Similarly, Castiglione et al. [45, 46] established a population dynamics
model of tumor-immune competition (Fig. 8f) and used optimal control theory to identify
the optimal dosing strategies for immunotherapy.

Tumor-immune interactions are exceedingly complex. While no single model can en-
compass all cell types and signaling molecules, overly simplified models fail to capture
the intricate dynamics observed in experiments and clinical settings. Building on mod-
els involving IL-2 [150], TGF-β [16], effector cells [65], and Tregs [171], Robertson-Tessi
et al. [248] developed a comprehensive mathematical model of tumor-immune interac-
tions (Fig. 8g). This model introduced an immune suppression mechanism, incorporating
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Figure 8: Application of ODE models in the description of tumor-immune regulatory networks. The content in
the grey box indicates article information, with serial numbers corresponding to references. Solid lines represent
cellular-level mechanisms, while dashed lines represent cytokine-level interactions. Arrows indicate proliferation
or activation, and blocking arrows represent killing or inhibitions.

a negative feedback loop in the activation of the immune system. It suggested that tumors
not only activate immune responses but also regulate immune suppression, weakening
T cell function. Robertson-Tessi et al. [249] later extended this model to capture the inter-
actions between tumors, the immune system, and chemotherapy. Soto-Ortiz et al. [278]
built on these models, developing one that couples anti-angiogenic therapy targeting the
tumor vasculature with immunotherapy targeting the tumor.

Macrophage polarization and transformation are typical biological phenomena where
cancer cells remodel the TME. Breems et al. [69] developed a model of macrophage po-
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larization (Fig. 8i), which integrated interactions between two types of tumor cells, two
subsets of Th cells, and two types of macrophages. Their results showed that tumor
growth is strongly correlated with the Type II immune response characterized by Th2
and M2. Similarly, Shu et al. [273] proposed a model describing the interactions between
tumor cells, M1 and M2 macrophages (Fig. 8p), demonstrating that cancer evolution de-
pends not only on tumor-induced activation of M1 and M2 macrophages but also on
transitions between these macrophage states. Eftimie [79] explored the impact of M1-
to-M2 transformation driven by tumor cells (Fig. 8o), analyzing how macrophage phe-
notype conversion influences tumor growth, control, and decay. Additionally, Eftimie
et al. [80] investigated the role of transitional macrophages in tumor evolution. Anal-
ogous to M2 macrophages, MDSCs also exert potent immunosuppressive effects in the
TME. Shariatpanahi et al. [271] developed a model examining the interactions between
tumors, CTLs, NK cells, and MDSCs (Fig. 8n), assessing the impact of anti-MDSC drugs
on tumor growth and immune system restoration. More recently, Anderson et al. [11]
proposed an ODE model that provides insights into the tumor, T cell, and MDSC inter-
actions (Fig. 8w), and suggested combining immune checkpoint inhibitors (ICIs) with
MDSC inhibitors as a therapeutic strategy.

Sontag [277] proposed an immune recognition model (Fig. 8l) incorporating systems
biology mechanisms such as negative feedback, incoherent feedforward loops, and bista-
bility. This model captured the complex interactions among tumors, CTLs, and Tregs,
using mathematical theory to elucidate key biological mechanisms. In recent years, sig-
nificant research has focused on applying mathematical methods to tumor immunology
models involving the regulation of three interacting elements. Tsur et al. [293] developed
a model (Fig. 8q) incorporating tumors, CTLs, and DCs to predict the efficacy of ICIs
in melanoma and analyze the system’s local and global dynamics. Pei et al. [231] estab-
lished a model (Fig. 8x) incorporating tumors, T cells, and DCs to analyze the combined
effects of RNA interference and ICIs in breast cancer, using machine learning methods to
optimize treatment strategies.

Wilson et al. [313] explored the synergistic effects of anti-TGF-β and vaccine therapies
by dividing the tumor immune response into four modules: tumor, CTLs, Tregs, and
TGF-β (Fig. 8h). Building on this, Khajanchi et al. [142] integrated the interactions be-
tween tumors, macrophages, CTL, TGF-β, and IFN-γ to examine tumor control through
immunotherapy (Fig. 8j). Coletti et al. [56] developed a model (Fig. 8s) incorporating
two types of tumor cells, DCs, Tregs, CTLs, and IL-2, using bistability to explain the
heterogeneity of tumor evolution. He et al. [114] proposed a model of the regulatory
mechanisms within the TME (Fig. 8k), demonstrating that combined therapies reduce
Tregs and improve patient survival. Arabameri et al. [14] created a mathematical model
of tumor-immune interactions, focusing on DC mechanisms (Fig. 8m), which highlighted
the role of DC vaccines in tumor progression. More recently, Sardar et al. [260] developed
a nine-dimensional tumor immune dynamical system (Fig. 8z) and employed a quasi-
steady-state approximation to reduce it to a four-dimensional ODE model, capturing tu-
mor immunity dynamics in response to various cytokines. Similarly, Xue et al. [317] es-
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tablished a four-dimensional ODE model of tumor immunity (Fig. 8y), conducting Hopf
bifurcation analysis and evaluating the combined therapeutic efficacy. This body of work,
combining theoretical analysis with numerical simulations, provides a foundation for fu-
ture studies in mathematical oncology.

T cell activation is crucial in the tumor-immune response, directly impacting the
body’s ability to mount an effective anti-tumor immune reaction. Smalley et al. [276] con-
structed a tumor-immune interaction network (Fig. 8r) to investigate the activation pro-
cesses of CD4+ and CD8+ T cells, as well as their involvement in anti-tumor immune re-
sponses, using computer simulations to model dynamic responses to anti-PD-1 therapies.
Messan et al. [206] developed a mathematical model for cancer vaccine treatment (Fig. 8t),
focusing on DC activation, antigen presentation, and T cell-mediated immune attack on
tumor cells. Similarly, Mirzaei et al. [212] constructed a mathematical model (Fig. 8v) that
encompasses T cell activation and explores the intricate regulatory interactions between
cells and cytokines. Shafiekhani et al. [270] further examined the combined efficacy of
chemotherapy and immunotherapy by developing a mathematical model driven by both
cellular and cytokine interactions (Fig. 8u).

3.2 Delay differential equation model

Time delays are an essential aspect of biological processes in the mathematical modeling
of tumor-immune systems. These delays arise from various processes such as molecular
production, cell proliferation and differentiation, tumor recognition and phagocytosis by
the immune system, and the migration of cells between different tissues–each requiring
a certain amount of time. Therefore, incorporating discrete time delays into mathematical
oncology models helps improve the understanding of the dynamic interactions between
tumors and the immune system. Based on Eq. (3.1), we can generalize the DDE model of
the tumor-immune system in a unified form as

d~X(t)

dt
=~F
(

~X(t),~X(t−τ1),~X(t−τ2),. . .,~X(t−τk);Θ
)

, (3.2)

where τ1, τ2, . . ., τk represent the time delays. This review highlights several represen-
tative DDE models of tumor-immune interactions developed over the past two decades,
with a particular focus on the biological mechanisms governed by discrete time delays.
The regulatory networks and time-delay factors incorporated in these DDE models are
visualized in Fig. 9.

Villasana et al. [297] were pioneers in developing a DDE model (Fig. 9a) that described
interactions between tumor cell subpopulations in the interphase and mitotic phases with
the immune system, examining the influence of cycle-specific drugs on tumor growth.
Their theoretical and numerical analyses demonstrated that periodic solutions can arise
through Hopf bifurcations. Additionally, Yafia [318] expanded the work of Kuznetsov
et al. [157] by introducing a two-dimensional DDE model (Fig. 9b) of tumor-immune in-
teractions, with a time delay representing the immune system’s response time following
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tumor cell recognition. This model revealed that system dynamics are largely governed
by the delay parameter, with Hopf bifurcations in this parameter predicting the emer-
gence of limit cycles from non-trivial steady states. Similarly, Banerjee et al. [19] extended
the model by Sarkar et al. [262] to a three-dimensional DDE model framework (Fig. 9c)
by incorporating biologically relevant mechanisms and delays related to the conversion
of resting cells to effector cells.

Bi and Ruan [26] developed a two-dimensional tumor-immune model with two de-
lays (Fig. 9d), deriving general formulas to assess the direction, period, and stability of
both codimension-one and codimension-two bifurcation periodic solutions. Building on
this, Bi et al. [27] advanced a similar two-dimensional model with three delays (Fig. 9e),
with each delay representing tumor proliferation, tumor-stimulated effector cell growth,
and effector cell differentiation, respectively. Concurrently, Dong et al. [73] introduced
a three-dimensional DDE model with two delays (Fig. 9f), focusing on the immune acti-
vation delay of effector cells and the activation delay of Th cells. In computational model-
ing, Qomlaqi et al. [238] developed a comprehensive nine-dimensional DDE model with
three delays (Fig. 9g), effectively illustrating the dynamic evolution of the tumor-immune
interactions.

Khajanchi et al. [140, 141, 143–145] proposed a series of influential DDE models for
tumor-immune systems. Initially, Khajanchi et al. [141] incorporated a discrete delay into
the recruitment term for effector cells based on the model by Kuznetsov [157], deriving
explicit expressions for the direction of Hopf bifurcation and periodic solution stability
using normal form theory and the center manifold theorem. Subsequently, Khajanchi
et al. [143] introduced a five-dimensional DDE model with four nonlinear delay terms
(Fig. 9h), demonstrating the influence of multiple delays on tumor-immune interactions.
In [145], they also proposed a three-dimensional model depicting the interaction between
tumors, effector cells, and healthy host cells (Fig. 9i), which explores how tumor cells per-
sist despite transient immune responses. Further models by [144] and [140] focused on
interactions between tumors, CTLs, and Th cells (Fig. 9l), incorporating delays associated
with Th cell-mediated CTL activation. Recently, Sardar et al. [261] developed an advanced
tumor-immune interaction model with three discrete delays (Fig. 9o), reducing a nine-
dimensional ODE model to a four-dimensional DDE model through a quasi-steady-state
approximation of cytokine levels. Their study extensively examined the model’s founda-
tional properties, including existence, uniqueness, positivity, boundedness, and uniform
persistence.

Das et al. [59, 61, 62] have made notable contributions to advancing DDE models in
tumor-immune dynamics. In [59], they introduce a DDE model featuring Monod-Hal-
dane response dynamics (Fig. 9j), capturing the interactions among tumors, effector cells,
and IL-2. Further expanding this framework, [62] and [61] developed a more comprehen-
sive DDE model (Fig. 9m) involving tumors, effector cells, Th cells, and IL-2, incorporat-
ing cytokine-mediated cell signaling with time delays to coordinate immune responses.
Additionally, [61] explored an optimal control approach for combined immunotherapy
and chemotherapy.
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Figure 9: Application of DDE models in describing tumor-immune regulatory networks. The grey box contains
article information, with serial numbers corresponding to the references. Solid lines represent cellular-level
mechanisms, while dashed lines represent cytokine-level mechanisms. Sharp arrows indicate proliferation or
activation, and blocked arrows indicate killing or inhibition. Red, blue, green, and purple lines correspond to
the 1st, 2nd, 3rd, and 4th time delays, respectively.

Rihan et al. [245–247] have also contributed groundbreaking work to the field of DDE
models of tumor-immune systems. Based on the foundational models in [150] and [59],
Rihan et al. [246] introduced a model with two delay processes (Fig. 9k), examining
tumor-immune dynamics and optimal control under immunochemotherapy. Building on
this, [247] introduced a fractional-order DDE model (Fig. 9n) that analyzed conditions for
stability and Hopf bifurcations with two distinct delays. More recently, Rihan et al. [245]
developed a DDE model incorporating stochastic noise, demonstrating that stochastic
fluctuations can suppress tumor cell growth and that white noise can potentially lead to
tumor dormancy or eradication.

Recently, more biologically detailed DDE models have been formulated. Among
them, Dickman and Kuang [71, 72] presented a two-compartment DDE model that dis-
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tinguishes the peripheral blood from the TME and integrates key mechanisms, including
DC maturation and CTL cell activation. This work marks a substantial evolution from
single-compartment to multi-compartment DDE models. Additionally, Wang et al. [306]
introduced a DDE model featuring two specific delays to represent the dynamics between
tumors and the lymphatic system, characterizing tumor proliferation and the maturation
process of T lymphocytes.

3.3 Stochastic differential equation model

Stochastic perturbations accompany nearly all living processes, encompassing intrinsic
noise arising from molecular-level fluctuations and external noise stemming from envi-
ronmental changes [292, 324]. Integrating stochastic terms into models to capture these
influences – such as intercellular communication and protein perturbations – on tumor-
immune interactions is essential. Stochastic models can be constructed by introducing
stochastic processes or parameters, providing a robust framework to study how random-
ness affects tumor-immune dynamics. SDE models allow for analysis of tumor-immune
system behavior under stochastic perturbations, including asymptotic and stability anal-
yses, periodic solutions, and tumor heterogeneity evolution. This review describes a gen-
eral SDE model of the tumor-immune system as

d~Xt=~µ(t,Xt;Θ)dt+~σ(t,~Xt;Θ)d~Wt, (3.3)

where ~Xt represents the stochastic state variable, ~µ(t,~Xt;Θ) is the drift term modeling the
trend of changing, ~σ(t,~Xt;Θ) is the diffusion term reflecting stochastic fluctuations, and
~Wt is a Wiener process capturing stochastic disturbances.

Mukhopadhyay et al. [217] developed an SDE model for tumor-immune interactions,
simulating white noise perturbations around system boundaries and equilibrium points–
a standard method for adding stochastic perturbations to deterministic models. Car-
avagna et al. [44] extended the [150] model to a hybrid stochastic framework, combin-
ing stochastic processes to capture cellular dynamics and differential equations for in-
terleukin dynamics. Xu et al. [315] investigated stochastic bifurcations in the tumor-
immune system under symmetric non-Gaussian Lévy noise, linking bifurcation patterns
with noise intensity and stability. Li et al. [176] adapted a simplified tumor-immune
ODE model to an SDE framework with Gaussian white noise, providing insights into
the stochastic dynamics of tumor growth, immune response, and immunoediting.

Subsequently, Caravagna et al. [44] examined the effects of stochastic shocks on tumor
suppression, while Deng et al. [70] developed a pulsed stochastic tumor-immune model
with mode transitions, emphasizing the link between stochastic and pulsed perturba-
tions on system behavior. Liu et al. [188] constructed a continuous time Markov chain
model based on the branching processes theory to characterize the dynamics of tumor-
immune interactions. Li et al. [50, 179] extended the classical two-dimensional tumor-
immune ODE model [157] to an SDE framework, utilizing stochastic Lyapunov analysis,
comparison theorem, and strong ergodicity theorem to explore the system’s asymptotic
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properties. Yang et al. [320] introduced a stochastic model for pulsatile therapy, exam-
ining the impact of fluctuations and combined immunotherapy and chemotherapy on
treatment outcomes. Han and Hao et al. [109, 113] studied the most probable trajectories
of the proposed stochastic tumor-immunity model.

Recently, several three-dimensional SDE models have emerged to model tumor-im-
mune interactions more accurately [6, 31, 60, 121, 234, 319]. For example, Bose et al. [31]
investigated an SDE model involving tumors, effector cells, and tumor-detecting cells,
showing that noise correlation parameters strongly influence tumor-immune dynamics.
Phan et al. [234] developed an SDE model to simulate viral therapy, while Yang et al. [319]
introduced a pulsed SDE model to describe interactions between the tumor, Th cells, and
CTLs. Alsakaji et al. [6] proposed a stochastic delay differential model to simulate the
tumor-immune system under white noise and treatment.

More recently, Lai et al. [162] developed an SDE model that characterizes the clinical
course of chronic myeloid leukemia (CML) patients achieving treatment-free remission
post-therapy. By modeling feedback interactions between leukemic stem cells and the
bone marrow microenvironment, they identify early relapse and long-term remission as
typical clinical manifestations following treatment cessation. This model suggests that
the leukemic cell proportion in blood and the TME index could be important for TFR
outcomes, representing a recent clinical application of SDE models in oncology.

3.4 Partial differential equation model

PDE models effectively describe the spatiotemporal dynamics of tumors and immune
cells, capturing changes in tumor-immune interactions. Recent research has highlighted
the complex interactions among immune cells in the TME during tumor progression. In
this review, we summarize mathematical models using reaction-diffusion equations to
characterize tumor-immune interactions. The following unified framework describes the
spatiotemporal dynamics of the tumor-immune system:

∂Xi

∂t
+∇·(~ui Xi)−δi∇

2Xi= fi(X1,··· ,Xn), ~X=(X1,··· ,Xn)∈Ω(t) (3.4)

where

∇=

(

∂

∂x
,

∂
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Here, ~ui denotes the advective velocities, δi > 0 are diffusion coefficients. The compo-
nents Xi can denote different cells or molecules, each exhibiting unique advective veloc-
ities and diffusion rates. Notably, in modeling molecular-scale dynamics, the convection
term ∇·(~uiXi) can be set to zero (i.e. ~ui =~0) to reflect the negligible effect of intercellu-
lar pressures on smaller molecules, distinguishing it from cellular-scale dynamics. The
tumor is represented by Ω(t)⊂R

3 and is subject to a moving boundary condition.
To simplify the model, it is often assumed that the tumor is spherical, with all vari-

ables radially symmetric. Consequently, the variables depend only on time t and radial
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distance r, where r=|~x|. The velocity and bounded region are expressed as ~u=u(r,t)~x/|~x|
and Ω(t)={r<R(t)}, respectively. In spherical coordinates, Eq. (3.4) becomes

∂Xi

∂t
+

1

r2

∂

∂r

(

r2uXi

)

−δXi

1

r2

∂

∂r

(

r2 ∂Xi

∂r

)

= fi(X1,. . .,Xn). (3.5)

The free boundary r=R(t) moves with the speed of the cellular population, hence [163]

dR(t)

dt
=u
(

R(t),t
)

, (3.6)

where the velocity u is derived from pressure exerted by proliferating cancer cells. If
we assume a constant total cell density, such that ∑

m
i=1 Xi(r,t) = X0. Integrating the cell

dynamic equations allows for the derivation of u(r,t), satisfying

1

r2

∂

∂r
(r2u)=

m

∑
i=1

fi. (3.7)

One notable study on a PDE model for combination therapy in breast cancer is by
Lai et al. [163], which integrates eight cellular-level dynamic behaviors and fourteen
molecular-level elements to assess therapeutic efficacy using evaluation indices. Their
results demonstrate a positive correlation between BET inhibitors and CTLA-4 inhibitors
in breast cancer, showing that tumor volume decreases as dosages increase for each drug.
In a subsequent model, Lai et al. [160] explored breast cancer treatment by combining
anti-angiogenic agents with chemotherapy. Given the antagonistic interaction observed
between bevacizumab and docetaxel, the model examines various dosing strategies, sug-
gesting that non-overlapping regimens may yield superior outcomes.

The BRAF mutation is one of the most commonly prevalent in melanoma patients.
Lai et al. [159] developed a PDE model for combined targeted therapy using BRAF in-
hibitors and ICIs in melanoma. This study reveals that the drugs have a synergistic effect
at low doses, whereas high doses lead to antagonism. Thus, identifying these antagonis-
tic regions early through animal studies or initial clinical trials is crucial to optimizing
dosing in clinical applications. Similarly, Friedman et al. [88] established a PDE model
to investigate the efficacy of combining BRAF inhibitors with anti-CCL2, anti-PD-1, and
anti-CTLA-4 antibodies, aiming to identify strategies that mitigate resistance induced by
BRAF inhibition. Additionally, Liao et al. [182] introduced a PDE model that incorporates
both proinflammatory and anti-inflammatory effects of IFN-γ for melanoma treatment
using ICIs.

PDE models are frequently employed to explore the biological mechanisms underly-
ing tumor evolution. Szomolay et al. [290] constructed a model to examine the role of
GM-CSF in promoting vascular endothelial growth factor (VEGF) inactivation, which in
turn slows tumor growth. Lee et al. [165] used a chemotaxis-reaction-diffusion model
to analyze the interactions between tumor cells and neutrophils that drive tumor inva-
sion. Kim et al. [147] coupled this model with receptor dynamics to elucidate the dual
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role of cellular senescence in cancer progression. In other studies, Friedman et al. [87,274]
developed a PDE model to study tumor-immune interactions, focusing on the role of
exosomes–extracellular vesicles containing mRNA, microRNA, and proteins–as predic-
tive biomarkers for tumors. Jacobsen et al. [129] created a PDE model to investigate the
impact of CNN1, an extracellular matrix protein, on oncolytic virus therapy in gliomas,
finding that CCN1 limits therapeutic efficacy by enhancing the activation and migration
of pro-inflammatory macrophages.

In recent years, numerous PDE models have emerged to study the dynamic evolution
of cancer under combination therapies. Lai et al. [161] developed a model explaining the
effects of combined radiotherapy and anti-PD-L1 treatment. Their findings indicate that
patients receiving concurrent therapy benefited more than those on weekly alternating
schedules. Siewe et al. [275] presented a PDE model for dual immunotherapy combining
anti-PD-1 and anti-CSF-1. Kim et al. [148] also contributed a model analyzing the role of
NK cells in treating primary glioblastoma with oncolytic viruses (OV) and protease in-
hibitors, finding that NK cells exhibit significant anti-tumor effects, which increase when
exogenous NK cells are injected into the tumor.

PDE models have also been used to quantify cancer immunoediting. Li et al. [178]
developed a PDE model that encapsulates the interactions among tumor cells, immune
cells, cancer-associated fibroblasts, and angiogenic cells, describing the phases of cancer
evolution: Elimination, Equilibrium, and Escape. The model demonstrates how immune
cells and cancer-associated fibroblasts facilitate transitions between these states, offering
new insights into how changes in the TME influence cancer immunoediting.

3.5 Integral differential equation model

Tumor cells are generally viewed as cells with malignant proliferative potential, result-
ing from genetic mutations that arise during the prolonged self-renewal processes of stem
cells. In the 1970s, the G0 cell cycle model was introduced to describe the regenerative
dynamics of homogeneous stem cells (Fig. 10a) [40, 197]. Lei et al. [170] were the first
to incorporate epigenetic factors into models of stem cell regeneration, with the aim of
exploring how genetic and epigenetic regulation interact in stem cell renewal. Building
on this, to further characterize the regeneration dynamics of heterogeneous tumor stem
cells (Fig. 10b), Lei [167, 168] proposed an IDE model framework. This framework pro-
vides a general mathematical description of tumor stem cell regeneration dynamics with
epigenetic transitions

∂Q(t,~x)

∂t
=−Q(t,~x)

(

β(c,~x)+κ(~x)
)

+2
∫

Ω
β
(

cτ(~y),~y
)

Q
(

t−τ(~y),~y
)

e−µ(~y)τ(~y)p(~x,~y)d~y,

c(t)=
∫

Ω
Q(t,~x)ζ(~x)d~x.

(3.8)
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Figure 10: Mechanism illustration and general mathematical framework for stem cell regeneration dynamics.
a. Mechanistic diagram of homogeneous stem cell regeneration dynamics. b. Mechanism diagram of heteroge-
neous stem cell regeneration dynamics. c. The framework of the mathematical model for heterogeneous stem
cell regeneration. Here, Q denotes the number of stem cells in the resting phase; ~x represents epigenetic status;
Ω is the space encompassing all possible epigenetic states; β represents the rate at which resting-phase cells
return to the proliferating phase; κ is the clearance rate (including differentiation, death, and senescence) of
cells in the resting phase (G0); τ denotes the cell cycle duration; µ is the apoptosis rate; p(~x,~y) represents the
probability that a daughter cell in state ~x originates from a mother cell in state ~y after division; c is the effective
concentration of growth-inhibitory cytokines; and ζ(~x) is the rate of cytokine secretion by a cell in state ~x.

This equation extends the G0 cell cycle model to include stem cell heterogeneity and
plasticity and can be applied to describe biological processes associated with stem cell
regeneration, including development, aging, and tumor evolution [167, 168, 181, 325].

In modeling the dynamic mechanisms underlying tumor evolution, Eq. (3.8) connects
various components: epigenetic states ~x, tumor dynamics (β(c,~x), κ(~x), µ(~x)), cell cycle
duration τ(~x), cytokine secretion (ζ(~x)), and the inheritance probability of epigenetic
states p(~x,~y) (Fig. 10c). The functions β(c,~x), κ(~x), µ(~x), and τ(~x), which describe cell
cycle kinetics, are collectively termed the cell’s kinetotype as proposed in [167].

The inheritance function p(~x,~y) in Eq. (3.8) is essential for capturing cell plasticity
during the cell cycle. Although determining the exact form of p(~x,~y) biologically is chal-
lenging due to the complexity of biochemical processes involved in cell division, it can
be considered as a conditional probability density

p(~x,~y)=P(state of daughter cell = ~x |state of mother cell =~y).
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This allows us to focus on the epigenetic states before and after cell division, bypass-
ing the intermediate processes. Huang et al. [122–124] developed a computational model
based on epigenetic mechanisms, specifically, histone modifications, showing that inher-
itance probabilities can be described using a conditions Beta distribution.

The framework provided in Eq. (3.8) establishes a foundational model encompass-
ing the key elements of stem cell regeneration, including cell cycling, heterogeneity, and
plasticity. This model can be extended to account for gene mutations and cell lineage
evolution [167]. However, stem cell systems in biological processes may need to be in-
corporated, such as gene networks within the cell cycle, cell-to-cell interactions within
specific niches, and interactions between cells and the microenvironment. For further
discussion, please refer to [169].

Utilizing the modeling mechanisms outlined by Lei et al. [170], Guo et al. [107] de-
veloped a multi-scale computational model to simulate the progression from inflamma-
tion to tumorigenesis. This model effectively reproduces the pathway of transformation
from inflammation to cancer, comprising two primary stages: the transition from nor-
mal tissue to precancerous lesions and the progression from these lesions to malignant
tumors. Computational results suggest that long-term, mild inflammation can initiate
the development of precancerous lesions from a normal state, though it appears insuffi-
cient to drive full malignancy. In contrast, moderate and severe inflammation markedly
enhances the progression from a precancerous state to tumor development.

Liang et al. [181] applied a generalized framework for heterogeneous stem cell regen-
eration to investigate the dynamics of epigenetic states in a one-dimensional context. The
biological background of this study is to understand dynamic blood disorders, specifi-
cally fluctuations in blood cell counts. The model elucidates the influence of changes in
cellular heterogeneity and plasticity on population dynamics, particularly cyclic and os-
cillatory behaviors. Results suggest that alterations in cellular heterogeneity and plastic-
ity can affect conditions that give rise to oscillatory phenomena in stem cell regeneration
systems.

In recent years, chimeric antigen receptor T (CAR-T) cell therapy has shown promis-
ing clinical benefits in treating B-cell acute lymphoblastic leukemia (B-ALL). Zhang et al.
[325] combined biological experiments with a mathematical model to explore CAR-T-
induced cellular plasticity leading to tumor recurrence. This study successfully repli-
cates tumor evolution dynamics observed in biological models, predicting that CAR-T-
induced cellular plasticity following CD19 CAR-T therapy could drive B-ALL recurrence.
Both the model and experiments suggest that a combined CAR-T therapy targeting CD19
and CD123 at specific ratios may prevent disease relapse.

Ma et al. [196] recently developed a mathematical model based on Eq. (3.8) to evaluate
how heterogeneous PD-L1 expression affects disease progression in cancer patients. This
model attributes tumor cell heterogeneity to stemness and PD-L1 expression levels, while
T-cell heterogeneity is influenced by PD-1 expression. Results show that during the early
stages of anti-PD-L1 therapy, response rate and efficacy correlate with PD-L1 expression
levels in virtual patients. For patients with high PD-L1 expression, anti-PD-L1 treat-
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ment more effectively controls tumor growth. The model also reveals that a maximum-
tolerated dose strategy offers superior survival benefits for PD-L1-positive esophageal
cancer patients.

In addition, Su et al. [287] conducted theoretical research on Eq. (3.8), focusing on the
eigenvalue problems and asymptotic behaviors of both monogenotypic and polygeno-
typic stem cell regeneration models with epigenetic transitions. They examined the long-
term dynamical and steady-state solutions associated with the three classes of quasilin-
ear nonlocal diffusion evolution equations derived from these models, providing explicit
formulas for thresholds pertinent to tissue development, degeneration, and abnormal
growth.

3.6 Quantitative systems pharmacology model

QSP is a methodology that leverages traditional pharmacokinetics, pharmacology, and
systems biology to quantitatively describe interactions between drugs and patients
(Fig. 11). QSP models focus on population characteristics, variability in drug response
markers, and disease progression in drug analysis. In tumor-immune modeling, they
highlight the mechanisms underlying tumor-immune interactions and the dynamic mi-
gration of immune cells across different compartments. The objective of QSP models is to
provide quantitative descriptions of drug efficacy and predictive models for disease pro-
gression. In this review, we explore QSP models grounded in tumor-immune interactions
and present recent advancements in the field.

Milberg et al. [210] developed a QSP model to predict the response of immune check-
point blockade in melanoma treatment. This model examined the response of monother-
apy, combination therapy, and sequential therapy with anti-PD-1, anti-PD-L1, and anti-
CTLA-4, revealing the therapeutic variations among patients. Such models provide pow-
erful tools for assessing the efficacy of immunotherapy and guiding clinical decisions.
Similarly, Wang et al. [303] developed a QSP model to investigate the pharmacokinetics
and pharmacodynamics of anti-PD-1, anti-PD-L1, and anti-CTLA-4 therapies individu-
ally and in combination. Ma et al. [194, 195] used QSP models to evaluate the efficacy of
T-cell engager (TCE) monotherapy, anti-PD-L1 monotherapy, and combination therapy
in colorectal cancer patients.

Wang et al. [304] created a QSP model to conduct virtual clinical trials and identify
predictive biomarkers. Their model, designed to evaluate immune checkpoint blockade
therapy combined with epigenetic modulators in HER2-negative breast cancer, explored
immune cell migration across four compartments: central, peripheral, tumor, and lymph
node. The study confirmed that epigenetic modulators enhance ICIs’ effects, proposing
that tumor mutational burden, tumor-infiltrating effector T cell density, and the effector-
to-regulatory T cell ratio in the TME as potential biomarkers for clinical trials.

In another application, Wang et al. [302] used a QSP model to predict the effectiveness
of ICIs and chemotherapy in triple-negative breast cancer, optimizing drug dosages and
treatment regimens. Recognizing the importance of TAMs as critical immunosuppressive
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cells, Wang et al. [305] expanded the QSP model to include TAM heterogeneity, examining
their impact on tumor evolution within the TME.

Figure 11: Schematic illustration of research methods integrating multi-source data with QSP models. a. Multi-
source data help infer QSP model mechanisms and networks or guide the generation of effective virtual patients.
b. A multi-compartmental QSP model is constructed based on tumor immunology’s mechanisms and interaction
networks. c. Calibration and simulation lead to selecting valid virtual patients for in silico clinical trials. d. QSP
models can then be applied clinically to identify predictive biomarkers, project cancer progression, analyze
survival, and optimize doses to enhance treatment sensitivity, especially in non-responders.
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Sové et al. [279] developed a modular QSP platform for immuno-oncology (IO) re-
search, which integrates essential tumor-immune interaction mechanisms. This modular
approach allows for the creation of IO-QSP models with specific mechanisms to address
targeted research questions. This work has facilitated and advanced the progress of QSP
modeling research. Sové et al. [280] also used this framework to examine ICIs in hep-
atocellular carcinoma, predicting clinical trial outcomes using a random forest model.
Ippolito et al. [126] leveraged an IO-QSP model to explore the potential of conditionally
activated molecules, which can enhance anti-tumor responses while reducing systemic
toxicity, for breast cancer immunotherapy. Recently, Wang et al. [300] focused on design-
ing pharmacokinetic and pharmacodynamic modules within a QSP model to simulate
the effects of targeted therapy combined with PD-L1 inhibitors in advanced non-small
cell lung cancer.

With advancements in imaging technologies and spatial transcriptomics, tumor spa-
tial data is increasingly critical in guiding QSP models for improved predictive accuracy.
Gong et al. [103] and Nikfar et al. [221] developed a hybrid computational modeling plat-
form, spQSP-IO, to simulate non-small cell lung cancer growth and immunotherapeutic
responses based on spatial data, accounting for tumor heterogeneity and patient vari-
ability. Zhang et al. [327] used single-cell sequencing and the spQSP platform to predict
immunotherapy outcomes in triple-negative breast cancer. Ruiz-Martinez et al. [253] ex-
tended the spQSP platform to analyze tumor growth dynamics across spatial and tem-
poral scales.

Arulraj et al. [17] recently developed a transcriptome-informed QSP model to investi-
gate metastasis in triple-negative breast cancer and predict PD-1 inhibitor efficacy. This
model identified 30 key biomarkers, with Treg density variation within lymph nodes
emerging as a promising indicator. Wang et al. [301] further developed an immunogeno-
mic-driven QSP model to forecast PD-L1 inhibitor response in non-small cell lung cancer
patients. By adjusting model parameters, this study generated virtual patient cohorts to
predict clinical responses and identify potential biomarkers, examining the pharmacoki-
netics of PD-L1 inhibitors and using compressed latent parameterization to account for
individual variations in drug response.

3.7 Agent-based model

Tumor growth and development is a complex, multi-scale biological process encompass-
ing molecular, cellular, microenvironmental, and tissue-level interactions [9]. ABM is
a computational approach that simulates complex systems by representing the behav-
iors of individual agents [1, 311]. ABM’s capacity to model biological processes at the
computational element level makes it an effective tool for simulating the multiscale na-
ture of tumor development. Within ABMs, agents are entities with specific behaviors
and functions, representing biological components like genes, proteins, blood vessels, or
cells. In this review, we highlight ABM operational rules, available software packages,
and primary applications in modeling tumor-immune system interactions.
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Typically, cellular behaviors modeled in ABMs include migration, proliferation, dif-
ferentiation, apoptosis, growth, morphological changes, secretion, and cell-cell inter-
actions (Fig. 12a). ABM frameworks are generally divided into two main paradigms:
lattice-based and off-lattice methods. Lattice-based models use either structured or un-
structured meshes. Structured meshes are easier to implement programmatically but
have limitations in visualizing data and representing complex biological mechanisms.
Unstructured meshes, like the hexagonal grids often used for tumor-immune models,
help overcome these limitations. Off-lattice methods, meanwhile, include center-based
and boundary-based models.

Cellular Automata (CA) is one of the most foundational lattice-based approaches
[294], where each grid cell can accommodate at most one biological cell (Fig. 12b). Op-
erating within a discrete space-time framework, CA models update cell states based on
predefined rules encompassing rest, movement (to adjacent sites), death (vacating a site),
and division (placing daughter cells in adjacent grids). Another popular lattice-based ap-

Figure 12: The biological mechanisms, modeling methods, and toolkits of ABMs for tumor-immune interactions.
a. Biological mechanisms in ABMs. b. Cellular automaton method. c. Lattice-gas cellular automaton method.
d. Cellular Potts method. e. Center-based method. f. Subcellular element method. g. Vertex-based method.
h. Immersed boundary method. i. Toolkits of ABMs.
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proach, the Lattice-Gas Cellular Automaton (LGCA), allows multiple cells to occupy the
same grid space (Fig. 12c) [314]. LGCA models follow simple particle movement and col-
lision rules based on physical principles, ensuring the conservation of mass, momentum,
and energy. LGCA has proven useful in simulating the spread of tumor cells, including
their infiltration into surrounding tissues and distant metastasis. These models capture
cell population dynamics effectively without requiring detailed descriptions of individ-
ual cell morphologies. In contrast, the Cellular Potts Model (CPM) uses multiple lattice
sites to represent a single cell, enabling detailed modeling of cell morphology and me-
chanical properties (Fig. 12d) [267]. Although CPM offers more detailed representations
of cellular shape and behavior, it requires higher computational resources.

Center-based Model (CBM) is an off-lattice approach that characterizes cell behaviors
and interactions within a system [202]. In CBM, cells exert forces dependent on the dis-
tance from their neighbors, including repulsive forces when in close proximity, attractive
forces when farther apart, and the chemokine-induced pulling force (Fig. 12e). Another
off-lattice model, the Subcellular Element Model (SEM), focuses on the dynamics and
interactions of subcellular structures within cells (Fig. 12f) [256]. SEM can simulate pro-
cesses such as the binding of signaling molecules – like hormones, antigens, and neu-
rotransmitters – to cell membrane receptors, triggering biochemical cascades within the
cell. In drug discovery, SEM models simulate drug-target binding, aiding in predictions
of mechanisms of action and potential side effects. Beyond CBM and SEM, boundary-
based models, which simulate dynamic changes in complex systems, have gained promi-
nence. The Vertex-based Method (VBM) represents cells as polygons or polyhedra and
calculates forces on vertices to depict cell morphological changes (Fig. 12g) [85]. VBM
is crucial for processing vertex data in mesh models and identifying key points in imag-
ing. The Immersed Boundary Method (IBM), a biomechanical approach, models tissues
as clusters of heterogeneous cells (Fig. 12h) [243], emphasizing biomechanical properties
and cell-microenvironment interactions.

A range of open-source ABM software packages has emerged based on the principles
of ABM construction [1, 311]. Here, we highlight toolkits valuable for studying tumor
evolution and tumor-immune interactions (Fig. 12i). Initial studies focused on intra-
cellular signaling pathways and gene networks in tumor growth, resulting in software
packages like CompuCell [128], CompuCell3D [54], MaBoSS [285], MaBoSS 2.0 [283],
tugHall [219], and UPMaBoSS [284]. As the importance of the TME was recognized,
new toolkits emerged to analyze the TME and multicellular interactions, including Cell-
Sys [120], EPISIM [289], Chaste [211], Biocellion [135], PhysiCell [97], PhysiBoSS [172],
PhysiBoSS 2.0 [235], and FitMultiCell [4]. These tools bridge molecular-level cellular
signaling and gene networks with the TME, facilitating multi-scale integration. Con-
currently, tools for mathematical oncology models in spatially complex systems such as
BioFVM [96], HAL [34], and PhysiCell-EMEWS [228], have been developed. Emulating
Darwinian evolution, cancer is seen as an evolving system with competing subpopula-
tions. Consequently, toolkits like J-SPACE [13] and SMITH [286] focus on tumor branch-
ing evolution and heterogeneity.
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Numerous multi-scale models have been developed to explore intricate tumor-immu-
ne interactions. Anderson et al. [10] pioneered a multi-scale cancer invasion model, en-
abling studies of how the microenvironment affects solid tumor growth and therapeutic
responses. Building on this, Sun et al. [288] developed a multi-scale ABM to evaluate tyro-
sine kinase inhibitor (TKI) efficacy in brain tumors, incorporating biological and physical
features such as blood flow and pressure from tumor growth. This model showed that
tumor growth is influenced by the EGFR signaling pathway and cell cycle. Addition-
ally, Liang et al. [180] employed multi-scale modeling to predict the synergistic effects of
targeting both EGFR and VEGFR pathways in brain tumor treatment.

Recently, ABMs have advanced the study of tumor heterogeneity and drug resistance.
Gong et al. [102] developed an ABM to model tumor-immune interactions, focusing on
the effects of ICIs on tumor progression. This study categorized tumors as PD-L1+ and
PD-L1− and demonstrated decreasing T cell distribution over time in tumor sites, along-
side spatial and temporal variations in cell type distributions. Jenner et al. [130] used
ABM to assess locoregional gemcitabine treatment efficacy in pancreatic cancer, account-
ing for cancer cell sensitivity, drug resistance, and drug distribution. Genderen et al. [296]
studied prostate TME with ABM, revealing spatial constraints on tumor growth and im-
mune regulation.

ABMs have increasingly integrated machine learning, statistical techniques, and
multi-modal imaging to enhance quantitative analyses of tumor-immune interactions.
Cess et al. [47] combined ABM with neural networks to create a multi-scale model ex-
amining how macrophage-based immunotherapies may alter immune responses. Bull
et al. [37] employed spatial autocorrelation and clustering methods to analyze ABM-
generated data, quantifying spatial and phenotypic heterogeneity in simulated tumors,
offering novel perspectives and approaches for comprehending the complexity and dy-
namics of tumor progression. Hickey et al. [118] integrated multi-modal imaging with
multi-scale modeling, capturing intricate biological processes in tumors. This approach
provides valuable tools for understanding tumor dynamics and enhancing cancer ther-
apy development.

The fusion of hybrid modeling, multi-scale modeling, and machine learning in mathe-
matical oncology has introduced innovative approaches to tumor research [127,282,309].
These interdisciplinary studies have advanced tumor immunology and offer theoreti-
cal and practical foundations for developing effective immunotherapies. With ongoing
research and technological advancements, tumor immunotherapy continues to evolve,
promising improved treatments and hope for cancer patients.

4 Mathematical models of cancer therapy approaches

Mathematical models are invaluable in cancer research, offering theoretical frameworks
to decipher cancer’s complexity, forecast disease progression, and assess treatment strate-
gies. The immune microenvironment, biological characteristics, and treatment approa-
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ches vary significantly across cancer types. Table 1 presents the most common cancer
types and the corresponding mathematical modeling methods. Fig. 13 illustrates six pri-
mary categories encompassing 15 prominent cancer treatment modalities. The follow-
ing section provides a concise overview of the biological mechanisms and mathematical
models underlying various cancer therapies.

4.1 Chemotherapy and radiotherapy

Chemotherapy, a longstanding cancer treatment, utilizes chemical agents to kill or in-
hibit the proliferation of cancer cells. While it is crucial in preventing cancer spread and
metastasis, chemotherapy can also damage normal tissues and immune cells within the
tumor environment. Recently, researchers have developed mathematical models to ex-
amine metronomic chemotherapy approaches, which involve continuous low-dose regi-
mens [295], as well as pulse chemotherapy, characterized by intermittent high-dose treat-
ments [121, 319]. With the increasing success of combination therapies, mathematical
models have also explored chemotherapy in conjunction with radiotherapy [20], im-
munotherapy [61, 63, 64, 270], or antiangiogenic therapy [160].

Radiotherapy remains one of the most widely used cancer treatments, benefiting
nearly half of all cancer patients. This approach employs high-energy radiation to dam-
age the DNA within tumor cells, thereby inhibiting their growth and replication to achie-
ve therapeutic goals. While few mathematical models focused on radiotherapy in the
past, recent research has led to models addressing standalone radiotherapy [229], chemo-
radiotherapy combinations [20], and radiotherapy paired with immunotherapy [161,268].
These developments underscore the growing role of mathematical modeling as an effec-
tive tool for studying and optimizing cancer treatments.

4.2 Targeted therapy

Targeted therapy is a precision-based approach in cancer treatment that disrupts specific
molecular pathways essential for tumor growth and survival, contrasting with traditional
chemotherapy that broadly affects both healthy and cancerous cells [158, 298]. This tar-
geted inhibition of oncogenic pathways leverages unique or dysregulated proteins and
genes within cancer cells, thereby improving treatment specificity.

Angiogenesis, essential for tumor nutrient supply, is a primary target in solid tu-
mors, driven by factors such as VEGF. Anti-VEGF therapies inhibit blood vessel forma-
tion by blocking VEGF signaling, effectively starving the tumor. Mathematical models
have been instrumental in understanding VEGF dynamics, evaluating anti-VEGF effi-
cacy, and predicting resistance patterns. For example, Liang et al. [180] and Hutchinson
et al. [125] developed multiscale models that capture VEGF signaling within the TME,
simulating tumor growth inhibition through VEGF targeting. Additionally, pharmacoki-
netics/pharmacodynamics (PK/PD) models by He et al. [115] and Zheng et al. [329] pre-
dict optimal dosing and timing of anti-angiogenic therapies to improve clinical outcomes.
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Table 1: Mathematical oncology models of various cancer types.

Type Research Model Treatment method

Leukemia

Moore et al. [215] ODE –

Lai et al. [162] SDE Tyrosine kinase inhibitor

Zhang et al. [325] IDE CAR-T therapy

Brain

cancer

Kogan et al. [152] ODE T cell infusion therapy

Sun et al. [288] ABM Tyrosine kinase inhibitors

Khajanchi et al. [142] ODE Immunotherapy

Khajanchi et al. [143] DDE Immunotherapy

Liang et al. [180] ABM anti-EGFR + anti+VEGFR

Anderson et al. [11] ODE –

Bladder

cancer

Bunimovich-

Mendrazitsky et al. [39]
ODE BCG vaccine

Bunimovich-

Mendrazitsky et al. [38]
ODE BCG vaccine + IL-2 treatment

Okuneye et al. [224] ODE Anti-FGFR + Immune checkpoint inhibitor

Li et al. [174] ODE Anti-FGFR + Immune checkpoint inhibitor

Melanoma

Lai et al. [159] PDE BRAF inhibitor + Immune checkpoint inhibitor

Tsur et al. [293] ODE Immune checkpoint inhibitor

Friedman et al. [88] PDE BRAF inhibitor + Immune checkpoint inhibitor

Dickman et al. [72] DDE DC vaccine

Liao et al. [182] PDE Immune checkpoint inhibitor + IFN-γ treatment

Milberg et al. [210] QSP Immune checkpoint inhibitor

Xue et al. [317] ODE DC vaccine + Immune checkpoint inhibitor

Ramaj et al. [241] ODE Oncolytic virotherapy

Prostatic

cancer

Valle et al. [295] ODE Cancer vaccine + Chemotherapy

Kogan et al. [153] ODE Immunotherapy

Ji et al. [131] ODE –

Coletti et al. [56] ODE DC vaccine + Anti-CTLA-4

Genderen et al. [296] ABM Androgen deprivation therapy

Breast

cancer

Lai et al. [163] PDE BET inhibitor + Immune checkpoint inhibitor

Szomolay et al. [290] PDE GM-CSF treatment

Lai et al. [160] PDE VEGF inhibitor + Chemotherapy

Wang et al. [304] QSP Immune checkpoint inhibitor + epigenetic modulator

Wang et al. [302] QSP Chemotherapy + Immune checkpoint inhibitor

Pei et al. [231] ODE RNA interference + Immune checkpoint inhibitor

Mirzaei et al. [212] ODE –

Bitsouni et al. [29] ODE Anti-CD20 ( Rituximab )

Siewe et al. [274] ODE Anti-CD20 ( Rituximab )

Head and

neck cancer

Smalley et al. [276] ODE Immune checkpoint inhibitor

Nazari et al. [220] ODE Anti-IL-6

Pang et al. [229] ODE Radiotherapy

Pancreatic

cancer

Shafiekhani et al. [270] ODE Anti-CD25 + Chemotherapy

Louzoun et al. [193] ODE EGFR silencing + TGF-β silencing

Jenner et al. [130] ABM Chemotherapy
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Table 1: Mathematical oncology models of various cancer types (cont’d).

Type Research Model Treatment method

Lung

cancer

Eftimie et al. [80] ODE –

Lourenco et al. [192] ODE –

Wang et al. [301] QSP Immune checkpoint inhibitor

Wang et al. [300] QSP
Macrophage-targeted therapy

+ Immune checkpoint inhibitor

Colorectal

cancer

Fletcher et al. [83] ABM –

Sameen et al. [255] ODE EGFR inhibitor + Chemotherapy

Lo et al. [190] ODE –

Ma et al. [195] QSP TCE therapy + Immune checkpoint inhibitor

Mirzaei et al. [213] PDE –

Myeloma

Koenders et al. [151] ODE –

Gallaher et al. [90] ODE –

Bouchnita et al. [32] PDE –

Thyroid
Da et al. [58] ODE Radiotherapy

cancer

Liver

cancer

Delitala et al. [67] ODE Radiotherapy

Sové et al. [280] QSP Immune checkpoint inhibitor

Figure 13: Mathematical models and mechanisms of cancer therapy methods.
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Combination therapies are frequently pursued to counteract resistance associated
with monotherapy. Hybrid models incorporating anti-VEGF with immunotherapies,
such as checkpoint inhibitors, reveal enhanced immune cell infiltration and reduced
immune evasion within the tumor [159]. Similarly, models combining anti-VEGF with
chemotherapy illustrate the modulation of tumor sensitivity to chemotherapeutics, sup-
porting strategies that maximize synergistic effects while minimizing toxicity [160].

Fibroblast growth factor receptor (FGFR) targeting is another avenue, especially in
cancers where FGFR contributes to tumor progression and resistance. Mathematical
models by Okuneye et al. [224] and Liet al. [174] explored the co-targeting of FGFR and
VEGF pathways in bladder cancer, revealing that FGFR inhibition can mitigate resistance
mechanisms against anti-VEGF therapy. Additionally, RNA interference (RNAi) thera-
pies show promise in silencing oncogenes and resistance genes, with models developed
by Arcieto et al. [16] and Pei et al. [231] helping predict gene silencing impacts on tumor
progression.

In hormone-dependent cancers like prostate cancer, androgen deprivation therapy
(ADT) plays a crucial role. Models developed by Coletti et al. [56] and West et al. [309]
have elucidated androgen receptor dynamics, illustrating feedback mechanisms leading
to resistance. Such models guide adaptive ADT strategies, aiming to sustain tumor sen-
sitivity over prolonged treatment periods.

Beyond microenvironmental and hormonal targets, direct approaches to disrupt
oncogenic drivers in cancer cells include TKIs, such as imatinib, which selectively targets
the BCR-ABL fusion protein in CML [35, 74], and EGFR-targeting TKIs in non-small cell
lung cancer, like gefitinib and erlotinib, which significantly enhance outcomes by inhibit-
ing tumor growth pathways [132]. PK/PD models for these TKIs help optimize dosing
regimens to balance efficacy and minimize resistance and toxicity [33, 162, 251, 288].

Some therapies aim to directly activate apoptotic pathways in cancer cells. BH3
mimetics, such as Venetoclax, inhibit the anti-apoptotic protein BCL-2, reactivating apop-
tosis in cancers like chronic lymphocytic leukemia (CLL) [233]. Models incorporating
cell-death kinetics and pathway dynamics are used in predicting resistance and optimiz-
ing combination strategies with BH-3 mimetics [18, 164].

Emerging multi-omics and patient-specific data, combined with machine learning,
enhance the predictive power of mathematical models in targeted therapy [216]. Future
research is expected to integrate real-time patient data, enabling adaptive dosing and
personalized treatment adjustments, with the potential to further refine therapeutic re-
sponses and combat resistance effectively.

4.3 Immune checkpoint inhibitors

ICIs target key molecules that regulate immune responses by inhibiting T cell activity, pri-
marily through pathways involving CTLA-4, PD-1, and PD-L1. CTLA-4 reduces T cell ac-
tivation by binding to B7 molecules on APCs, while PD-1 on T cells and PD-L1 on tumor
cells interact to enable immune evasion by tumors. Blocking these immune checkpoints
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with ICIs enables a robust anti-tumor immune response, making a major breakthrough
for patients with advanced cancers.

Mathematical models have evolved alongside the clinical use of ICIs, enhancing un-
derstanding of T cell dynamics, tumor progression, and therapy optimization. Models for
anti-CTLA-4 [56, 163, 210, 280, 303, 317], anti-PD-1 [17, 159, 182, 195, 210, 231, 276, 280, 317],
and anti-PD-L1 [161,210,224,300,301,303] have been widely developed, aiming to simu-
late the effects of ICIs on T cell proliferation and tumor rejection in solid tumors. These
models assist in identifying optimal dosing schedules, assessing TME variations, and ex-
ploring resistance mechanisms, thereby providing actionable insights for improved treat-
ment protocols.

Recent studies have integrated ICIs with combination therapies to reflect current clin-
ical strategies, pairing ICIs with chemotherapy [92, 334], radiotherapy [183], and anti-
angiogenic agents [166]. Quantitative approaches using mathematical models to ana-
lyze such combinations must account for synergistic and antagonistic interactions among
drugs to reflect real-world dynamics. Incorporating multiple layers of immune interac-
tions, tumor heterogeneity, and drug effects, mathematical models of ICIs serve as a the-
oretical foundation for optimizing personalized ICI therapies and could significantly in-
form precision treatment strategies [174, 175].

4.4 Adoptive cell therapy

Adoptive cell therapy (ACT) is a promising strategy in cancer immunotherapy that uses
patients’ own immune cells to target and eliminate tumor cells. The primary ACT meth-
ods currently utilized in clinical settings include tumor-infiltrating lymphocyte (TIL)
therapy and CAR-T therapy. In TIL therapy, lymphocytes are extracted from a patient’s
tumor tissue, expanded in vitro, and reintroduced to the patient. These TILs are highly
specific to the tumor, allowing them to recognize and effectively eliminate cancer cells
within the TME. Kogan et al. [152] developed a mathematical model assessing the ther-
apeutic impact of T-cell infusion, providing theoretical insights into outcomes for high-
grade malignant gliomas. Similarly, Yang et al. [321] explored the therapeutic potential
of pulsed IL-2 administration alongside ACT, demonstrating the cytokine’s ability to en-
hance therapeutic efficacy.

CAR-T cell therapy, a transformative form of ACT, involves genetically modifying
T cells to express chimeric antigen receptors that specifically target antigens on tumor
cells. This approach has shown remarkable success in treating hematological cancers,
with ongoing research expanding its potential applications to solid tumors [134]. Math-
ematical modeling has become instrumental in optimizing CAR-T therapy, providing
insights into T cell proliferation dynamics, tumor-cell interactions, cytokine release, and
patient-specific treatment protocols. Both deterministic and ABMs allow researchers to
simulate CAR-T cell expansion and immune response and predict optimal dosing sched-
ules, which also consider side effects like cytokine release syndrome [2, 226, 325].

To address the specific challenges CAR-T cells face in solid tumors, spatial and multi-
scale models have been employed to explore barriers to CAR-T cell infiltration and inter-
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actions within immunosuppressive TME. The models offer insights into immune evasion
mechanisms and T cell exhaustion, both crucial for enhancing CAR-T efficacy in solid tu-
mors [100, 136, 237, 254]. In addition, advanced machine learning and neural network
methods have recently been applied to analyze CAR-T cell therapy, examining correla-
tions between CAR-T cell subtype dynamics in vivo and therapeutic outcomes [149].

Mathematical modeling of ACT therapies has allowed researchers to simulate com-
plex tumor-immune interactions and optimize various therapeutic parameters. These
models play a critical role in identifying variables affecting treatment efficacy such as cell
dosage, cytokine support, and immune-tumor interactions. Consequently, mathemati-
cal frameworks provide a foundational basis for refining ACT strategies, enhancing their
effectiveness, and broadening their applicability to diverse cancer types.

4.5 Tumor vaccine

Cancer vaccines, a form of active immunotherapy, aim to activate or amplify the body’s
immune defenses to slow tumor progression or eradicate cancer cells. Common types
include OV, Bacillus Calmette-Guérin (BCG) vaccines, and DC vaccines.

OV are genetically modified to effectively infect and destroy cancer cells. Jacobsen
et al. [129] developed a mathematical model to explore how extracellular matrix protein
CCN1 impacts OV efficacy in glioma treatment. Additionally, Kim et al. [148] proposed
a framework evaluating NK cell activity in OV and Bortezomib therapy for glioblastoma,
while Ramaj and Zhou [241] studied hypoxia’s effect on OV outcomes, showing environ-
mental factors can influence treatment success.

The BCG vaccine, derived from attenuated Mycobacterium bovis, is widely used to
prevent tuberculosis and has applications in treating non-muscle-invasive bladder can-
cer. Bunimovich-Mendrazitsky et al. [38, 39] modeled BCG therapy, both alone and com-
bined with IL-2, concluding that IL-2 does not enhance BCG’s anti-tumor effects in blad-
der cancer, highlighting the need for precise treatment combinations.

As a promising approach in immunotherapy, DC vaccines present new avenues for
cancer treatment with a potential for personalized medicine. Sardar et al. [260] exam-
ined the effects of pulsed DC vaccine therapy on immune response and tumor control,
while Dickman et al. [72] used a compartmental model to analyze tumor elimination, con-
trol, and escape during DC therapy for melanoma. Importantly, DC vaccines reinforce
personalized treatment by targeting specific tumor antigens, increasing therapeutic ac-
curacy. The value of combination therapies has also been explored; Coletti et al. [56] and
Xue et al. [317] investigated dual therapy with DC vaccines and immune checkpoint in-
hibitors, providing a theoretical basis for future preclinical trials in dual immunotherapy.

4.6 Cytokine inhibitor

Cytokine inhibitors serve a vital function in cancer therapy by regulating cytokine ac-
tivity to affect tumor cell growth, metastasis, and invasion. Mathematical models en-
able the simulation of therapeutic effects for various doses, administration times, and
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delivery methods, providing a scientific foundation for refining clinical treatment ap-
proaches. Wilson et al. [313] investigated the synergy between anti-TGF-β therapy and
vaccine treatment, shedding light on combination therapies’ impact on immune modu-
lation. Yang et al. [321] further explored the efficacy of pulsed dosing of adoptive cell
therapy with IL-2 in cancer treatment, while Ratajczyk et al. [242] developed a model
combining TNF-α inhibitors with virotherapy, demonstrating the potential benefits of in-
tegrated approaches. Although monotherapy with cytokine inhibitors can have limited
efficacy, combining them with other immunotherapies has shown synergistic effects. This
integration highlights the importance of mathematical modeling in elucidating underly-
ing biological mechanisms and optimizing treatment strategies.

5 Discussions

Mathematical models describing tumor-immune interactions are increasingly recognized
as vital tools in understanding the complex dynamics between tumor evolution and im-
mune response [15, 81, 198]. These models provide a quantitative framework for investi-
gating tumor-immune interactions, predicting treatment outcomes, and optimizing ther-
apeutic strategies, paving the way for individualized precision medicine. Despite notable
progress, significant challenges remain.

Uncertainty in model parameters. Mathematical models of tumor-immune interac-
tion require numerous biological variables and parameters to accurately represent com-
plex system dynamics. This complexity, however, creates challenges in parameter esti-
mation. Experimental limitations and the scarcity of precise biological data often hin-
der the direct measurement of these parameters. Moreover, many of these parameters
are not static; they shift dynamically with changes in the tumor and immune environ-
ment, further complicating estimation. Addressing this issue will require a stronger
emphasis on experimental data collection and analysis alongside the development of
more sophisticated methods for parameter analysis and estimation [186, 200, 214]. Re-
cently, specialized and efficient parameter estimation methods and tools have been pro-
posed in computational systems biology. For example, Bayesian parameter estimation
methods [184, 187], Monte Carlo methods [156], optimization methods [264], neural net-
works [98], SensSB [252], BioModels [101], and pyPESTO [263].

Discrepancies between simplified models and tumor-immune system complexity.

To reduce complexity and enhance mathematical tractability, existing models often sim-
plify the biological landscape of tumor-immune interactions. However, excessive simpli-
fication can overlook critical complexities inherent to real-world biology. Many models,
for example, focus only on tumor-T cell interactions, often neglecting the roles of other
immune cells and non-cellular components (e.g., oxygen, cytokines, or chemokines) that
significantly influence tumor progression. Additionally, essential biological mechanisms,
such as genetic mutations, tumor heterogeneity, and plasticity, are often excluded. Ad-
vancing model accuracy will require the integration of these crucial factors to better re-
flect tumor-immune dynamics [201,208,323]. Recently, mathematical models of the inter-
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action between tumors, immunity, and microorganisms have been proposed to explore
the role of microorganisms in tumor evolution dynamics [52]. Meanwhile, multi-scale
models integrating molecules, cells, microenvironments, and tissues have also been de-
veloped [180].

Computational challenges in multiscale modeling. Modeling tumor-immune in-
teractions requires capturing processes across multiple scales, from molecular to tissue
levels, necessitating complex interscale connections and imposing high computational
demands. This data exchange between scales consumes substantial resources, with spe-
cific regions often requiring high-precision models or algorithms to improve accuracy.
However, higher precision amplifies computational complexity and strains power re-
sources. Additionally, solving extensive multiscale models often entails prolonged simu-
lation times, especially for interactive or long-term scenarios, which can increase costs
and reduce modeling efficiency. Addressing these challenges will require innovative
modeling approaches, optimized algorithms, and advancements in data processing and
storage capabilities [84,116,299]. FitMultiCell has recently been developed for modeling,
simulating, and parameterizing multi-scale multicellular processes [4]. PhysiBoSS of-
fers simulations for complex events across various spatial and temporal scales [172, 235].
These methods aid in modeling multi-scale tumor immune systems and enhance compu-
tational performance.

Mathematical oncology integrates tumor immunology, clinical medicine, applied ma-
thematics, and computational science, forming a powerful approach to tackling complex
challenges in tumor research [7, 9, 42, 94, 250]. As mathematical models advance, they
promise greater precision, personalization, and integration with intelligent technologies.
Future progression in this field will depend on multidisciplinary collaborations, allow-
ing for the continuous evolution of mathematical approaches. Modeling tumor-immune
interactions, a crucial core of this field, elucidates the immune system’s role in tumor pro-
gression, dormancy, and immune evasion, informing broader models of cancer growth
and treatment response. Building on recent developments, we highlight key research
directions to guide future studies in the mathematical modeling of tumor-immune inter-
actions.

Systematic modeling and quantitative analysis of the TME. Systematic modeling
and quantitative analysis are essential for investigating the dynamic changes within the
TME [7, 43, 139, 250, 323]. By developing detailed tumor-immune regulatory network
models, researchers can quantitatively represent interactions between tumors and the
immune system, which aids in identifying potential immune biomarkers predictive of
tumor behavior. Quantitative metrics derived from these models provide theoretical
foundations for understanding cancer immunoediting and classifying cancer immune
phenotypes. Such metrics not only shed light on tumor-immune system evolution but
also facilitate cancer subtyping. Furthermore, mathematical oncology models help re-
veal mechanisms behind TME-mediated drug resistance and recurrence. Ultimately, sys-
tematic modeling and quantitative analysis offer novel perspectives for cancer therapy,
significantly supporting individualized treatment plans for patients.
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Development of multiscale and multiphysics mathematical models. Multiscale
modeling enables the integration of biological processes occurring across molecular, cel-
lular, and tissue scales, allowing mathematical models to more accurately capture the
complex dynamics of tumor progression [36, 43, 201, 250, 311]. This capability supports
the exploration of drug diffusion and distribution by simulating anticancer drug mecha-
nisms across different biological levels, thereby improving the prediction of therapeutic
outcomes. Multiphysics models further enhance this by combining different physical
fields to simulate tumor behavior in various environments. For example, mechanical
fields can represent pressure gradients in the TME and model cell migration, while chem-
ical fields can depict drug distribution and metabolic processes. The integration of multi-
scale and multiphysics modeling in oncology provides a powerful tool for understanding
and predicting tumor growth, metastasis, and response to treatments.

Development of mathematical models integrating multisource data. Integrating
multisource data into mathematical models offers an enriched understanding of tumor
biology, immune responses, disease progression, and optimized treatment approaches
[30, 41, 191, 250, 301, 328]. With the establishment of extensive public cancer databases
such as SEER, TCGA, and NCDB, researchers have access to detailed clinical, biomarker,
genomic, transcriptomic, and proteomic data. Translating this diverse data into formats
compatible with mathematical models bridges a critical gap, enhancing model valida-
tion and addressing biases in predictive accuracy. Additionally, data-model integration
enables the development of early warning systems for cancer progression. As data and
models become more interoperable, this integration stands to be a major focus in advanc-
ing tumor research and predictive oncology.

Exploring the application of machine learning in mathematical oncology. Machine
learning (ML) introduces new capabilities to model optimization, parameter estimation,
and cancer classification [5, 155, 207, 232, 250]. Techniques like neural networks, support
vector machines, and Gaussian mixture models enhance the predictive power of mathe-
matical models and facilitate the creation of virtual cancer cohorts. Machine learning op-
timization techniques also facilitate model parameter adjustments, reducing prediction
errors and boosting overall model performance. Recent research has also highlighted the
promise of neural networks in solving differential equations, especially physics-informed
neural networks (PINNs) and neural ODE approaches, which improve both solution ac-
curacy and model generalization. Thus, machine learning integration into mathematical
oncology not only enhances model precision and efficiency but also opens up new av-
enues for individualized cancer research and treatment planning.

In summary, mathematical models of tumor-immune interactions offer a robust fra-
mework for exploring tumor dynamics and informing clinical treatment strategies. While
challenges remain, advancements in technology and interdisciplinary collaboration pro-
mise to elevate the role of mathematical models in tumor immunology research, pro-
moting closer cooperation between mathematicians and immunologists to drive cross-
disciplinary breakthroughs.
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[92] L. Galluzzi, J. Humeau, A. Buqué, L. Zitvogel, and G. Kroemer, Immunostimulation with
chemotherapy in the era of immune checkpoint inhibitors, Nat. Rev. Clin. Oncol., 17(12):725–741,
2020.

[93] J. Galon and D. Bruni, Tumor immunology and tumor evolution: Intertwined histories, Immu-
nity, 52(1):55–81, 2020.

[94] R. A. Gatenby and P. K. Maini, Mathematical oncology: Cancer summed up, Nature, 421(6921):
321, 2003.

[95] P. Gerlee, The model muddle: In search of tumor growth laws, Cancer Res., 73(8):2407–2411,
2013.

[96] A. Ghaffarizadeh, S. H. Friedman, and P. Macklin, BioFVM: An efficient, parallelized diffusive
transport solver for 3-D biological simulations, Bioinformatics, 32(8):1256–1258, 2016.

[97] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, and P. Macklin, Physi-
Cell: An open source physics-based cell simulator for 3-D multicellular systems, PLoS Comput.
Biol., 14(2):e1005991, 2018.

[98] S. Giampiccolo, F. Reali, A. Fochesato, G. Iacca, and L. Marchetti, Robust parameter estima-
tion and identifiability analysis with hybrid neural ordinary differential equations in computational



246 C. Li and J. Lei / CSIAM Trans. Life. Sci., 1 (2025), pp. 200-257

biology, npj Syst. Biol. Appl., 10(1):139, 2024.
[99] M. A. Giese, L. E. Hind, and A. Huttenlocher, Neutrophil plasticity in the tumor microenviron-

ment, Blood, 133(20):2159–2167, 2019.
[100] T. Giorgadze, H. Fischel, A. Tessier, and K.-A. Norton, Investigating two modes of cancer-

associated antigen heterogeneity in an agent-based model of chimeric antigen receptor T-cell therapy,
Cells, 11(19):3165, 2022.

[101] M. Glont, C. Arankalle, K. Tiwari, T. V. N. Nguyen, H. Hermjakob, and R. S. Malik-Sheriff,
Biomodels parameters: A treasure trove of parameter values from published systems biology models,
Bioinformatics, 36(17):4649–4654, 2020.

[102] C. Gong, O. Milberg, B. Wang, P. Vicini, R. Narwal, L. Roskos, and A. S. Popel, A compu-
tational multiscale agent-based model for simulating spatio-temporal tumour immune response to
PD1 and PDL1 inhibition, J. R. Soc. Interface, 14(134), 2017.

[103] C. Gong, A. Ruiz-Martinez, H. Kimko, and A. S. Popel, A spatial quantitative systems pharma-
cology platform spQSP-IO for simulations of tumor-immune interactions and effects of checkpoint
inhibitor immunotherapy, Cancers (Basel), 13(15):3751, 2021.

[104] S. I. Grivennikov, F. R. Greten, and M. Karin, Immunity, inflammation, and cancer, Cell,
140(6):883–899, 2010.

[105] C. Groth, X. Hu, R. Weber, V. Fleming, P. Altevogt, J. Utikal, and V. Umansky, Immunosup-
pression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression, Br.
J. Cancer, 120(1):16–25, 2019.

[106] M. M. Gubin and M. D. Vesely, Cancer immunoediting in the era of immuno-oncology, Clin.
Cancer. Res., 28(18):3917–3928, 2022.

[107] Y. Guo, Q. Nie, A. L. MacLean, Y. Li, J. Lei, and S. Li, Multiscale modeling of inflammation-
induced tumorigenesis reveals competing oncogenic and oncoprotective roles for inflammation,
Cancer Res., 77(22):6429–6441, 2017.

[108] P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic
signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy,
Cancer Res., 59(19):4770–4775, 1999.

[109] P. Han, W. Xu, L. Wang, H. Zhang, and Z. Ren, Most probable trajectories in a two-dimensional
tumor-immune system under stochastic perturbation, Appl. Math. Model., 105:800–814, 2022.

[110] D. Hanahan, Hallmarks of cancer: New dimensions, Cancer Discov., 12(1):31–46, 2022.
[111] D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, 100(1):57–70, 2000.
[112] D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144(5):646–

674, 2011.
[113] M. Hao, W. Jia, L. Wang, and F. Li, Most probable trajectory of a tumor model with immune
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