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Abstract. This paper studies an susceptible-infected-susceptible reaction-diffusion
model in spatially heterogeneous environment proposed in [Allen et al., Discrete Con-
tin. Dyn. Syst., 21, 2008], where the existence and uniqueness of the endemic equilib-
rium are established and its stability is proposed as an open problem. However, till
now, there is no progress in the stability analysis except for special cases with either
equal diffusion coefficients or constant endemic equilibrium. In this paper, we demon-
strate the first criterion in determining the stability of the non-constant endemic equi-
librium with different diffusion coefficients. Thanks to this criterion, when one of the
diffusion rates is small or large, the impact of spatial heterogeneity on the stability can
be characterized based on the asymptotic behavior of the endemic equilibrium.
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1 Introduction

Partial differential equations are widely used in the modeling and analysis of the spread
of infectious diseases. The impact of spatially heterogeneous environment and individual
movement on the persistence or extinction of a disease has attracted a lot of studies in the
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literature. We may refer to, e.g. [1–6, 10–12, 16] and the references therein. In particular,
the susceptible-infected-susceptible (SIS) model is one of the most basic mathematical
models for infectious disease dynamics.

Allen et al. [1] proposed the following frequency dependent SIS reaction-diffusion
model in spatially heterogeneous environment:
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dS

dt
=dS∆S−β(x)

SI

S+ I
+γ(x)I, x∈Ω, t>0,

dI

dt
=dI ∆I+β(x)

SI

S+ I
−γ(x)I, x∈Ω, t>0,

∂S

∂ν
=

∂I

∂ν
=0, x∈∂Ω, t>0,

S(x,0)=S0(x), I(x,0)= I0(x), x∈∂Ω,

(1.1)

where Ω⊂ Rn,n≥ 1, is a bounded domain with smooth boundary ∂Ω, ν represents the
unit outer normal vector on ∂Ω and I0(x),S0(x)∈C(Ω̄) are nonnegative functions satis-
fying

∫

Ω
I0dx>0. Here S(x,t) and I(x,t) denote the densities of susceptible and infected

individuals at location x and time t respectively, dS and dI are the corresponding diffu-
sion coefficients for the susceptible and infected populations, β(x) and γ(x) are positive
Hölder continuous on Ω̄ and represent the rates of disease transmission and recovery
at x respectively.

Let (Ŝ, Î) denote, if exists, a nonnegative equilibrium solution of the problem (1.1), i.e.
(Ŝ, Î) satisfies
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dS∆S−β(x)
SI

S+ I
+γ(x)I=0, x∈Ω,

dI ∆I+β(x)
SI

S+ I
−γ(x)I=0, x∈Ω,

∂S

∂ν
=

∂I

∂ν
=0, x∈∂Ω.

(1.2)

Obviously, there are only two possibilities:

• Î≡0 in Ω, then (Ŝ,0) is called a disease-free equilibrium of the problem (1.1).

• Î>0 for some x∈Ω, then (Ŝ, Î) is called an endemic equilibrium of (1.1).

The main purpose of this paper is to analyze the stability of the endemic equilibrium
when it exists. The existence and uniqueness of the endemic equilibrium is thoroughly
investigated in [1]. To be more specific, the basic reproduction number can be defined as
follows:

R0= sup
ϕ∈H1(Ω),ϕ 6=0


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It is shown that if R0<1, then the disease-free equilibrium, which always exists, is glob-
ally asymptotically stable and there is no endemic equilibrium, while if R0 > 1, then the
disease-free equilibrium is unstable and there exists an unique endemic equilibrium, de-
noted by (Ŝ, Î). It is further proved that the endemic equilibrium exists if and only if
{x∈Ω, β(x)>γ(x)} is nonempty and one of the following conditions is valid:

•
∫

Ω
β(x)dx≥

∫

Ω
γ(x)dx for all dI >0,

•
∫

Ω
β(x)dx<

∫

Ω
γ(x)dx with dI smaller than some critical value.

The stability of the endemic equilibrium (Ŝ, Î) is proposed as an open problem in [1].
However, till now, this problem remains unknown except for the following two special
cases:

• dS = dI , where the stationary problem (1.2) can be transformed into a single equa-
tion [14],

• β= rγ with the constant r>1, where the equilibria are constant [15].

In this paper, we further the studies in the stability analysis of the endemic equilibrium.
To be specific, we will focus on the local stability of the non-constant endemic equilibrium
when the diffusion coefficients are allowed to be different.

Our first main result provides a sufficient condition to guarantee the stability of the
endemic equilibrium (Ŝ, Î).

Theorem 1.1. Assume that the endemic equilibrium (Ŝ, Î) exists, then it is locally stable when
the following inequality holds:

γ(x)>β(x)
Ŝ2

(Ŝ+ Î)2
, x∈ Ω̄. (1.3)

Notice that the criterion (1.3) involves the endemic equilibrium itself and this makes
it difficult to determine whether this criterion is valid.

On the basis of Theorem 1.1, to obtain stability criteria directly depending on the
diffusion rates and the spatially heterogenous environment, we analyze the asymptotic
behavior of (Ŝ, Î) with either small or large diffusion rates and obtain some restrictions
on β(x),γ(x) such that the corresponding endemic equilibrium satisfies the criterion
(1.3). The corresponding result is stated as follow.

Theorem 1.2. Assume that the endemic equilibrium (Ŝ, Î) of the system (1.1) exists for all dS>0,
dI >0, we have the following statements:

(1) If

sup
x∈Ω

β(x)

γ(x)
<

(

inf
x∈Ω

β(x)

γ(x)

)2

, (1.4)

then there exists a constant K1 > 0 large enough such that for any dI > 0, (Ŝ, Î) is locally
stable whenever dS ≥K1.
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(2) If (1.4) is valid, then there exists a constant K2>0 large enough such that for any dS >0,
(Ŝ, Î) is locally stable whenever dI ≥K2.

(3) If

β(x)>γ(x), x∈ Ω̄, (1.5)

then there exists a constant δ>0 sufficiently small such that for any dS >0, (Ŝ, Î) is locally
stable whenever dI ≤δ.

Theorem 1.2 directly reflects the effect of spatial heterogeneity and movement of indi-
viduals on the stability of endemic equilibrium solutions of (1.1). To prove Theorem 1.2, it
is crucial to analyze the asymptotic profiles of the endemic equilibrium and then we can
determine the conditions on β(x),γ(x) such that the criterion (1.3) is valid. It is worth
pointing out that, among other things, the asymptotic profiles of the endemic equilib-
rium are analyzed in [13], when one diffusion rate is fixed and the other one goes to
infinity. However, either the smallness or the largeness of one diffusion rate imposed in
Theorem 1.2 is always independent of the other diffusion rate. In other words, to prove
Theorem 1.2, we need derive some uniform estimates related to the asymptotic profiles
and naturally more delicate analysis is required.

As introduced in [1], x is called a low-risk site if β(x)<γ(x) , and x is called a high-
risk site if β(x)>γ(x). Also, we say Ω is a low-risk domain if

∫

Ω
β(x)dx<

∫

Ω
γ(x)dx and

a high-risk domain if
∫

Ω
β(x)dx≥

∫

Ω
γ(x)dx.

It is routine to check that the condition (1.4) guarantees the condition (1.5). This in-
dicates that the stability criteria derived in Theorem 1.2 always require the high-risk site
everywhere in Ω, and thus Ω is a high-risk domain. Moreover, as remarked earlier, it is
proved in [1] that when

∫

Ω

β(x)dx>
∫

Ω

γ(x)dx,

the system (1.1) admits a unique endemic equilibrium (Ŝ, Î) for all dS >0,dI >0. Simply
speaking, the stability criteria (1.4) or (1.5) derived in Theorem 1.2 automatically guar-
antees the existence of the endemic equilibrium. More importantly, the conditions (1.4)
and (1.5) reveal that the stability of the endemic equilibrium requires higher risk of being
infected. Therefore, the stability criteria in Theorem 1.2 are relatively natural, although
they might not be optimal.

Although Theorems 1.1 and 1.2 shed some light on the stability criteria of the non-
constant endemic equilibrium with different diffusion coefficients, more natural and in-
depth questions still remain open. For example, the stability criteria derived in The-
orem 1.2 always require the high-risk site everywhere in Ω, while the existence and
uniqueness result is proved in [1] when Ω is a high-risk domain. This indicates that the lo-
cal stability in a high-risk domain with nonempty low-risk site is an interesting question.
Furthermore, even when the conditions simultaneously guarantee the existence, unique-
ness and local stability of the non-constant endemic equilibrium with different diffusion
coefficients, the global stability is still completely unknown. This is closely related to
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the fundamental mathematical problem whether the system (1.1) allows the possibility
of time-periodic solutions. We will return to it in a future paper.

The rest of this paper is organized as follows. Section 2 is devoted to the proof of
Theorem 1.1. Theorem 1.2 is proved in Section 3.

2 Proof of Theorem 1.1

The linearized problem of the model (1.2) at the endemic equilibrium (Ŝ, Î) is as follows:
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

dS∆φ−β(x)
Î2

(Ŝ+ Î)2
φ+

(

γ(x)−β(x)
Ŝ2

(Ŝ+ Î)2

)

ψ=λφ, x∈Ω,

dI ∆ψ−

(

γ(x)−β(x)
Ŝ2

(Ŝ+ Î)2

)

ψ+β(x)
Î2

(Ŝ+ Î)2
φ=λψ, x∈Ω,

∂φ

∂ν
=

∂ψ

∂ν
=0, x∈∂Ω,

(2.1)

where φ and ψ satisfy
∫

Ω

(

φ(x)+ψ(x)
)

dx=0. (2.2)

The extra condition (2.2) is due to the property that the total population in the problem
(1.1) is preserved, i.e. if

∫

Ω

(

S0(x)+ I0(x)
)

dx=N,

then it is routine to check that
∫

Ω

(

S(x,t)+ I(x,t)
)

dx=N, t>0.

To prove Theorem 1.1, it suffices to show that all the eigenvalues of the linearized
problem (2.1)-(2.2) have negative real parts under the assumption (1.3). For this purpose,
we consider a more general eigenvalue problem
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







dS∆φ+a(x)φ+p(x)ψ=λφ, x∈Ω,

dI ∆ψ+α(x)ψ+q(x)φ=λψ, x∈Ω,

∂φ

∂ν
=

∂ψ

∂ν
=0, x∈∂Ω,

(2.3)

and establish the following result, which is crucial in the proof of Theorem 1.1.

Proposition 2.1. Assume a(x),α(x), p(x),q(x)∈C(Ω̄) and p(x),q(x)>0 in Ω̄. Then

(i) The eigenvalue problem (2.3) admits a simple eigenvalue, denoted by λp, with a correspond-
ing eigenfunction (φp,ψp) satisfying φp,ψp∈C(Ω̄) and φp,ψp>0 on Ω̄
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(ii) If there exists an eigenpair (λ,(φ,ψ)) with φ,ψ>0 in Ω̄, then λ=λp and (φ,ψ) is a con-
stant multiple of (φp,ψp).

(iii) For any other eigenvalue λ of the problem (2.3), we have λp>Re λ.

It is known that Propositions 2.1(i) and 2.1(ii) follow directly from Krein-Rutman the-
orem [7], while extra effort is needed to handle Proposition 2.1(iii), see [8] for example,
where the proof relies on analytic semigroup theory and the introduction of Poincaré
map. In this paper, we provide an original and elementary method to demonstrate Propo-
sition 2.1(iii). This method has its independent value, since it is constructive and only
requires strong maximum principle.

Suppose that Proposition 2.1 is valid, we complete the proof of Theorem 1.1 first.

Proof of Theorem 1.1. Obviously, due to the condition (1.3), the eigenvalue problem (2.1)
satisfies the assumptions in Proposition 2.1. Moreover, since the endemic equilibrium
(Ŝ, Î) satisfies (1.2), it is routine to verify that for the eigenvalue problem (2.1), λp = 0

and (Ŝ, Î) is the corresponding eigenfunction. Hence, it follows from Proposition 2.1 that
except for λp =0, the real parts of all the eigenvalues to the eigenvalue problem (2.1) are
negative. However, the restriction (2.2) indicates that λp = 0 is not an eigenvalue of the
problem (2.1)-(2.2). Therefore, Theorem 1.1 is proved.

The rest of this section is devoted to the proof of Proposition 2.1.

Proof of Proposition 2.1. (i) and (ii) follows directly from Krein-Rutman theorem. The de-
tails are omitted since they are standard. We prove (iii) by an original elementary method.

For convenience, let λ=λ1+iλ2 denote an eigenvalue of the problem (2.3) and (φ,ψ)=
(φ1+iφ2,ψ1+iψ2) denote the corresponding eigenfunction, i.e.
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∆φ1+aφ1+pψ1 =λ1φ1−λ2φ2, x∈Ω,

∆φ2+aφ2+pψ2 =λ1φ2+λ2φ1, x∈Ω,

∆ψ1+αψ1+qφ1=λ1ψ1−λ2ψ2, x∈Ω,

∆ψ2+αψ2+qφ2=λ1ψ2+λ2ψ1, x∈Ω,

∂φ1

∂ν
=

∂φ2

∂ν
=

∂ψ1

∂ν
=

∂ψ2

∂ν
=0, x∈∂Ω.

(2.4)

Also for the convenience of readers, we recall that



















∆φp+aφp+pψp =λpφp, x∈Ω,

∆ψp+αψp+qφp=λpψp, x∈Ω,

∂φp

∂ν
=

∂ψp

∂ν
=0, x∈∂Ω.

(2.5)
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Without loss of generality, we assume that |φ|≤φp, |ψ|≤ψp in Ω̄ and there exists x0 ∈ Ω̄

such that |φ(x0)|=φp(x0). We may also assume that

φp(x0)= |φ(x0)|=φ1(x0), φ2(x0)=0. (2.6)

This can be achieved by replacing φ(x),ψ(x) with φ(x0)/|φ(x0)|φ(x),φ(x0)/|φ(x0)|ψ(x),
respectively.

We claim that λp≥Reλ=λ1 and

ψp(x0)= |ψ(x0)|=ψ1(x0), ψ2(x0)=0. (2.7)

Suppose that this is not true, i.e. either λp < λ1 or (2.7) is invalid. Two cases will be
discussed separately.

Case 1. Assume that x0∈Ω. It follows from (2.4) and (2.5) that

∆(φp−φ1)=−a(φp−φ1)−p(ψp−ψ1)+λpφp−λ1φ1+λ2φ2

=−p(ψp−ψ1)+(λ1−a)(φp−φ1)+(λp−λ1)φp+λ2φ2. (2.8)

According to the choice of x0, one sees ∆(φp−φ1)(x0)≥0. However, if λp <λ1 or
(2.7) is invalid, then at x= x0,

−p(ψp−ψ1)+(λ1−a)(φp−φ1)+(λp−λ1)φp+λ2φ2<0,

where the condition that p>0 in Ω̄ is required. This contradicts to (2.8).

Case 2. Assume φp touches |φ| only somewhere on ∂Ω, i.e. φp > |φ| in Ω and x0 ∈ ∂Ω.
Thanks to (2.6) and (2.8), we have ∆(φp−φ1)< (λ1−a)(φp−φ1) in a small neigh-
borhood of x0, if either λp <λ1 or (2.7) is invalid. A contradiction arises at x= x0

because of the Hopf boundary lemma.

The claim is proved, i.e. λp≥Reλ=λ1 and (2.6), (2.7) hold simultaneously.
Now we consider the case that λp = Reλ. To prove (iii), it suffices to show that if

λp=Reλ, then λp=λ.
When |φ| 6=0, direct computation yields that

∆|φ|=
φ1∆φ1+φ2∆φ2

|φ|
+
|φ2∇φ1−φ1∇φ2|2

|φ|3

=
1

|φ|
[φ1(−aφ1−pψ1+λpφ1−λ2φ2)+φ2(−aφ2−pψ2+λpφ2+λ2φ1)]

+
|φ2∇φ1−φ1∇φ2|2

|φ|3

=(−a+λp)|φ|−p
φ1ψ1+φ2ψ2

|φ|
+
|φ2∇φ1−φ1∇φ2|2

|φ|3
,
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and hence in view of Cauchy-Schwarz inequality,

∆|φ|+(a−λp)|φ|+p|ψ|

= p

[

|ψ|−
φ1ψ1+φ2ψ2

|φ|

]

+
|φ2∇φ1−φ1∇φ2|2

|φ|3
≥0. (2.9)

Similarly, if |ψ| 6=0, we can derive

∆|ψ|+(α−λp)|ψ|+q|φ|

=q

[

|φ|−
φ1ψ1+φ2ψ2

|ψ|

]

+
|ψ2∇ψ1−ψ1∇ψ2|2

|ψ|3
≥0. (2.10)

Define
Ω+={x∈ Ω̄ | |φ|>0, |ψ|>0}.

Ω+ is not empty due to the existence of x0. Let Ω1 denote the connected component
of Ω+ containing x0. It follows from (2.5)-(2.7), (2.9) and (2.10) that















∆(φp−|φ|)+(a−λp)(φp−|φ|)+p(ψp−|ψ|)≤0, x∈Ω1,

∆(ψp−|ψ|)+(α−λp)(ψp−|ψ|)+q(φp−|φ|)≤0, x∈Ω1,

|φ|≤φp,|ψ|≤ψp, x∈Ω1.

(2.11)

Thanks to the choice of x0,

|φ|(x0)−φp(x0)= |ψ|(x0)−ψp(x0)=0.

Suppose that |φ| 6≡ φp in Ω1. The strong maximum principle guarantees that |φ|(x)−
φp(x)> 0 in the interior of Ω1. This indicates that x0 ∈ ∂Ω1. No matter whether x0 ∈Ω

or x0 ∈ ∂Ω, a contradiction can be derived based on the Hopf boundary lemma. Hence,
|φ|≡φp in Ω̄1, and |ψ|≡ψp in Ω̄1 can be derived similarly. This implies that |φ|>0, |ψ|>0
in Ω̄1. According to the continuity of φp,ψp, |φ| and |ψ|, it is routine to demonstrate
Ω1= Ω̄. Therefore,

|φ|=φp, |ψ|=ψp, x∈ Ω̄. (2.12)

This conclusion, together with (2.9) and (2.10), implies that

φ1ψ1+φ2ψ2= |φ||ψ|, |φ2∇φ1−φ1∇φ2|= |ψ2∇ψ1−ψ1∇ψ2|=0, x∈ Ω̄. (2.13)

Let Ωφ denote a connected component of the set {x∈ Ω̄ |φ1>0} containing x0, where
we recall that in (2.6)

|φ(x0)|=φ1(x0)=φp(x0)>0, φ2(x0)=0.

According to (2.13), we see that

∇

(

φ2

φ1

)

=0, x∈Ωφ.
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This implies that
φ2

φ1
(x)=

φ2

φ1
(x0)=0, x∈Ωφ,

and it follows from (2.12) that

φ2(x)=0, φ1(x)=φp(x), x∈Ωφ.

Due to the continuity of φ1(x) and φp(x), it is standard to show that Ωφ = Ω̄. Similarly,
we obtain

ψ2(x)=0, ψ1(x)=ψp(x), x∈ Ω̄.

Therefore, λ1=λp and λ2=0, i.e. λp=λ. The proof is complete.

3 The stability of the endemic equilibrium with large or small

diffusion rates

This section is devoted to studying the local stability of the endemic equilibrium when
one of the diffusion rates of the susceptible and infected individuals is either small or
large. From Theorem 1.1, we know that the condition (1.3) as follows:

γ(x)>β(x)
Ŝ2

(Ŝ+ Î)2
, x∈ Ω̄,

where (Ŝ, Î) denotes the unique endemic equilibrium of the problem (1.1) whenever it
exists, is sufficient for the local stability of the endemic equilibrium. However, this con-
dition depends on the solution itself. Therefore, in view of the continuous dependence
on parameters, the key point is to verify whether the asymptotic profiles of the endemic
equilibrium (Ŝ, Î) satisfy the condition (1.3).

Proof of Theorem 1.2. Case 1. Thanks to Theorem 1.1, we only need to show that there
exists K1 such that the condition (1.3) is valid for all dS>K1. Suppose that this is not true,

i.e. there exist d
(k)
S >0 and d

(k)
I >0 with limk→∞ d

(k)
S =∞ such that

γ(x)≤β(x)
Sk

2

(Sk+ Ik)2
somewhere in Ω̄, (3.1)

where (Sk, Ik) denotes the unique endemic equilibrium of the problem














































d
(k)
S ∆S−β(x)

SI

S+ I
+γ(x)I=0, x∈Ω,

d
(k)
I ∆I+β(x)

SI

S+ I
−γ(x)I=0, x∈Ω,

∂S

∂ν
=

∂I

∂ν
=0, x∈∂Ω,

∫

Ω

(I+S)dx=N.
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Up to a subsequence, we may assume in addition that d
(k)
I → d ∈ [0,∞]. Next, we will

obtain contradictions according to the different situations of d.
Case 1.1. d∈ (0,∞). Direct computation shows that for large k we have

1

d
(k)
I

∥

∥

∥

∥

βSk

Sk+ Ik
−γ

∥

∥

∥

∥

L∞(Ω)

≤
2

d
(‖β‖L∞(Ω)+‖γ‖L∞(Ω)), (3.2)

by the fact that d
(k)
I > d/2 for large k. By means of Harnack inequality (see, e.g. [9]), we

can make sure that there exists a constant C1>0 independent of k such that

sup
Ω

Ik≤C1 inf
Ω

Ik. (3.3)

This, together with
∫

Ω
Ikdx≤N, indicates that there exists a positive constant C2 indepen-

dent of k such that
‖Ik‖L∞(Ω)≤C2.

By standard elliptic regularity theory, we can further derive a positive constant C3 inde-
pendent of k such that

‖Ik‖W2,n+1(Ω)≤C3. (3.4)

Based on the fact d
(k)
S → ∞, we invoke (3.4) and thereby find a positive constant C4

independent of k such that

1

d
(k)
S

∥

∥

∥

∥

−
βSk Ik

Sk+ Ik
+γIk

∥

∥

∥

∥

L∞(Ω)

≤C4.

Similarly, the fact
∫

Ω
Skdx ≤ N and standard elliptic regularity theory imply that there

exists C5>0 independent of k such that

‖Sk‖W2,n+1(Ω)≤C5.

Therefore, we can find a subsequence of (Sk, Ik), still denoted by itself, and (S∗, I∗) ∈
W2,n+1(Ω)×W2,n+1(Ω) such that (Sk, Ik) → (S∗, I∗) weakly in W2,n+1(Ω)×W2,n+1(Ω),
strongly in C1(Ω̄)×C1(Ω̄) and S∗ ≥ 0, I∗ ≥ 0. The estimate (3.3) implies that I∗ > 0 for
all x∈ Ω̄ unless I∗≡0.

Next, we claim that I∗ > 0 for all x ∈ Ω̄. Suppose that I∗ ≡ 0, i.e. Ik → 0 weakly in
W2,n+1(Ω) and strongly in C1(Ω̄). It is routine to show that S∗

>0 in Ω̄ by strong maximal
principle. Define

Ik=
Ik

‖Ik‖L∞(Ω)
,

then it satisfies














d
(k)
I ∆Ik+

(

βSk

Sk+ Ik
−γ

)

Ik=0, x∈Ω,

∂Ik

∂ν
=0, x∈∂Ω.

(3.5)
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Similar to the previous discussion, one sees that Ik→ I weakly in W2,n+1(Ω) and strongly
in C1(Ω̄), where I>0 is the solution of











d∆I+(β−γ)I=0, x∈Ω,

∂I

∂ν
=0, x∈∂Ω.

Therefore, we have
∫

Ω

(β−γ)dx=−d
∫

Ω

∣

∣

∣

∣

∇I

I

∣

∣

∣

∣

2

dx≤0,

which implies that

inf
x∈Ω

β(x)

γ(x)
≤1,

and thus
(

inf
x∈Ω

β(x)

γ(x)

)2

≤sup
x∈Ω

β(x)

γ(x)
.

This leads to a contradiction to the assumption (1.4). The claim is proved.
Now, due the above claim, it is routine to check that (S∗, I∗) is a positive solution of







































∆S∗=0, x∈Ω,

d∆I∗+β(x)
S∗ I∗

S∗+ I∗
−γ(x)I∗=0, x∈Ω,

∂S∗

∂ν
=

∂I∗

∂ν
=0, x∈∂Ω,

∫

Ω

(I∗+S∗)dx=N.

(3.6)

Obviously, S∗ is a constant. Therefore, the problem (3.6) can be reduced to































d∆I∗+

(

β(x)
S∗

S∗+ I∗
−γ(x)

)

I∗=0, x∈Ω,

S∗=
1

|Ω|

(

N−
∫

Ω

I∗dx

)

,

∂I∗

∂ν
=0, x∈∂Ω.

We consider the set of the minimum points of I∗(x). If I∗(x)>minx∈Ω̄
I∗(x) for all x∈Ω,

then a contradiction arises by Hopf boundary lemma. Hence, there exists x1∈Ω such that
I∗(x1)=minx∈Ω̄

I∗(x) and obviously

(

βS∗

S∗+ I∗
−γ

)

(x1)≤0.
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It follows that

I∗(x)≥min
Ω̄

I∗(x)= I∗(x1)≥

(

β(x1)

γ(x1)
−1

)

S∗≥

(

inf
x∈Ω

β(x)

γ(x)
−1

)

S∗, x∈Ω.

This yields that
(

I∗+S∗

S∗

)2

≥

(

inf
x∈Ω

β(x)

γ(x)

)2

>sup
x∈Ω

β(x)

γ(x)
, x∈Ω,

where the assumption (1.4) is needed. Since (Sk, Ik)→ (S∗, I∗) strongly in C1(Ω̄)×C1(Ω̄),
we obtain for large k that

(

Ik+Sk

Sk

)2

>sup
x∈Ω

β(x)

γ(x)
≥

β(x)

γ(x)
, x∈Ω.

This contradicts to (3.1).

Case 1.2. d=+∞. The proof is similar to Case 1.1. We only point out the difference.
It is easy to show that (Sk, Ik)→(S∗, I∗) weakly in W2,n+1(Ω)×W2,n+1(Ω) and strongly in
C1(Ω̄)×C1(Ω̄). Moreover, it is routine to check that both S∗ and I∗ are positive constants.
Then obviously

∫

Ω

(

β(x)
Sk

Sk+ Ik
−γ(x)

)

Ikdx=0

guarantees that
∫

Ω

(

β(x)
S∗

S∗+ I∗
−γ(x)

)

I∗dx=0.

Therefore, we derive

(

I∗+S∗

S∗

)2

=







∫

Ω

βdx
∫

Ω

γdx







2

≥

(

∫

Ω

(

inf
x∈Ω

β

γ

)

·γ(x)dx

)2(∫

Ω

γ(x)dx

)−2

=

(

inf
x∈Ω

β(x)

γ(x)

)2

>sup
x∈Ω

β(x)

γ(x)
.

Therefore, for large k we can obtain

(

Ik+Sk

Sk

)2

>sup
x∈Ω

β(x)

γ(x)
≥

β(x)

γ(x)
, x∈Ω,

which is a contradiction to (3.1).
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Case 1.3. d=0. It is routine to check that d
(k)
S S+d

(k)
I I satisfies











∆
(

d
(k)
S Sk+d

(k)
I Ik

)

=0, x∈Ω,

∂
(

d
(k)
S Sk+d

(k)
I Ik

)

∂ν
=0, x∈∂Ω.

Thus, there exists a constant Mk >0 such that d
(k)
S Sk+d

(k)
I Ik =Mk. By integrating over Ω,

we get

Mk|Ω|=
∫

Ω

(

d
(k)
S Sk+d

(k)
I Ik

)

dx≤d
(k)
S

∫

Ω

(Sk+ Ik)dx=d
(k)
S N.

Thus, we derive an uniform upper bound of Sk as follows:

Sk≤
Mk

d
(k)
S

≤
N

|Ω|
.

Combining with

−d
(k)
I ∆Ik+γIk≤‖β‖L∞(Ω)Sk, (3.7)

we can derive C6>0 independent of k such that

‖Ik‖L∞(Ω)≤C6.

Based on the uniform bound of Sk and Ik, similar to Case 1.1, we can find a subsequence,
still denoted by itself, and a constant S∗≥ 0 such that Sk → S∗ weakly in W2,n+1(Ω) and
strongly in C1(Ω̄). Indeed, the constant S∗ should be positive, since S∗= 0 will lead to
Ik→0 in C(Ω̄) by using (3.7) and the boundary condition, and this contradicts to the fact
that

∫

Ω
(Sk+ Ik)dx=N.

Fix ε∈ (0,1) small such that

(

1−ε

1+ε

)2

·

(

inf
x∈Ω

β(x)

γ(x)

)2

>sup
x∈Ω

β(x)

γ(x)
, (3.8)

and then choose K1 large such that

(1+ε)S∗≥Sk ≥ (1−ε)S∗, k>K1.

Then, for k>K1, we have

d
(k)
I ∆Ik+

(

β(1−ε)S∗

(1−ε)S∗+ Ik
−γ

)

Ik≤0.

We construct a subsolution as follows:

I :=(1−ε)

(

inf
x∈Ω

β(x)

γ(x)
−1

)

S∗.
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It is routine to check that

d
(k)
I ∆I+

(

β(1−ε)S∗

(1−ε)S∗+ I
−γ

)

I≥0.

By comparison principle, we get

Ik≥ I=(1−ε)

(

inf
Ω

β(x)

γ(x)
−1

)

S∗, k≥K1.

Then it follows from the choice of ε in (3.8) that
(

Ik+Sk

Sk

)2

≥ [(1+ε)S∗]−2
[

(1−ε)

(

inf
Ω

β(x)

γ(x)
−1

)

S∗+(1−ε)S∗

]2

≥

(

1−ε

1+ε

)2(

inf
Ω

β(x)

γ(x)

)2

>sup
x∈Ω

β(x)

γ(x)
≥

β(x)

γ(x)
, x∈Ω.

This is a contradiction to (3.1). The proof of Theorem 1.2(1) is complete.
Case 2. Similar to the proof of Theorem 1.2(1), we assume by contradiction that there

exist d
(k)
S >0 and d

(k)
I >0 with limk→∞ d

(k)
S =d∈ [0,∞], limk→∞ d

(k)
I =∞ such that

γ(x)≤β(x)
Sk

2

(Sk+ Ik)2
for some xk ∈ Ω̄, (3.9)

where (Sk, Ik) denotes the unique endemic equilibrium of the problem






































d
(k)
S ∆S−β(x)

SI

S+ I
+γ(x)I=0, x∈Ω,

d
(k)
I ∆I+β(x)

SI

S+ I
−γ(x)I=0, x∈Ω,

∂S

∂ν
=

∂I

∂ν
=0, x∈∂Ω,

∫

Ω

(I+S)dx=N.

Now we try to derive contradictions according to the different situations of d.
Case 2.1. d ∈ (0,∞). Similar to Case 1.1, we can find a subsequence of (Sk, Ik), still

denoted by itself, and (S∗, I∗)∈W2,n+1(Ω)×W2,n+1(Ω) such that (Sk, Ik)→(S∗, I∗) weakly
in W2,n+1(Ω)×W2,n+1(Ω), strongly in C1(Ω̄)×C1(Ω̄),S∗≥0, I∗≥0 and (S∗, I∗) satisfy the
following equation:











































d∆S∗−

(

β(x)
S∗

S∗+ I∗
−γ(x)

)

I∗=0, x∈Ω,

I∗=
1

|Ω|

(

N−
∫

Ω

S∗dx

)

,

∂S∗

∂ν
=0, x∈∂Ω,

∫

Ω

(I∗+S∗)dx=N.

(3.10)

Obviously, I∗ is a constant.
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We first verify that S∗(x)>0 in Ω̄ and I∗>0. Suppose that I∗=0, then by the problem
(3.10), it is easy to see that

S∗=
1

|Ω|

∫

Ω

S∗dx=
N

|Ω|
.

According to the equation satisfied by Ik, one has

d
(k)
I

∫

Ω

|∇Ik|
2

I2
k

dx+
∫

Ω

(

β(x)
Sk

Sk+ Ik
−γ(x)

)

dx=0.

By letting k→∞, we have
∫

Ω

(

β(x)−γ(x)
)

dx≤0.

This contradicts to the condition (1.4). Hence, the constant I∗ is positive. Next, suppose
that S∗(x) touches zero somewhere in Ω̄. Then based on the problem (3.10), a contra-
diction can be derived by the maximum principle and the Hopf boundary lemma. Thus,
S∗(x)>0 in Ω̄.

Now we consider the set of the maximum points of S∗(x). If S∗(x)<maxx∈Ω̄S∗(x) for
all x∈Ω, one sees a contradiction by the Hopf boundary lemma. Then assume that there
exists x2∈Ω such that

S∗(x2)=max
x∈Ω̄

S∗(x),

(

βS∗

S∗+ I∗
−γ

)

(x2)≤0.

It follows that

I∗+S∗(x)

S∗(x)
≥

I∗+S∗(x2)

S∗(x2)
≥

β(x2)

γ(x2)
≥ inf

x∈Ω

β(x)

γ(x)
, x∈Ω,

where the fact that I∗ is a constant has been used. This, together with the assumption
(1.4), yields that

(

I∗+S∗

S∗

)2

≥

(

inf
x∈Ω

β(x)

γ(x)

)2

>sup
x∈Ω

β(x)

γ(x)
, x∈Ω.

A contradiction to (3.9) follows immediately since (Sk, Ik)→ (S∗, I∗) strongly in C1(Ω̄)×
C1(Ω̄) as k→∞.

Case 2.2. d=+∞. This case is the same as Case 1.2 and the proof is omitted.

Case 2.3. d=0. Similar to the arguments in the proof of Case 1.3, we obtain that there
exists a constant I∗> 0 such that Ik → I∗ weakly in W2,n+1(Ω) and strongly in C1(Ω̄) as
k→∞. Then notice that the condition (1.4) guarantees that there exists ε>0 small enough
such that

[

(1+ε)−2

(

inf
x∈Ω

β(x)

γ(x)
−1

)

+1

]2

>sup
x∈Ω

β(x)

γ(x)
,

and we can choose K2 large enough such that

(1+ε)−1 I∗< Ik < (1+ε)I∗, k>K2. (3.11)



X. Bai et al. / CSIAM Trans. Life. Sci., 1 (2025), pp. 280-298 295

Recall that










d
(k)
S ∆Sk−β(x)

Sk Ik

Sk+ Ik
+γ(x)Ik=0, x∈Ω,

∂Sk

∂ν
=0, x∈∂Ω.

Similar to the discussion in Case 2.1, we consider the set of the maximum sets of Sk(x)
and conclude that there exists x̂k ∈Ω such that Sk(x̂k)=max

x∈Ω̄

Sk(x) and that

Sk(x)+ Ik(x̂k)

Sk(x)
≥

Sk(x̂k)+ Ik(x̂k)

Sk(x̂k)
≥

β(x̂k)

γ(x̂k)
≥ inf

x∈Ω

β(x)

γ(x)
, x∈Ω.

This, combined with (3.11), indicates that

(1+ε)2 Ik(x)

Sk(x)
≥

(1+ε)I∗

Sk(x)
≥

Ik(x̂k)

Sk(x)
≥ inf

x∈Ω

β(x)

γ(x)
−1.

Then by direct computation, we get a contradiction to (3.9) as follows:

(

Ik(x)+Sk(x)

Sk(x)

)2

≥

[

(1+ε)−2

(

inf
x∈Ω

β(x)

γ(x)
−1

)

+1

]2

>sup
x∈Ω

β(x)

γ(x)
.

Case 3. Since β(x)>γ(x), x∈ Ω̄, we choose α∗(x)∈C2(Ω̄) such that

1<

√

β(x)

γ(x)
<α∗<

β(x)

γ(x)
, x∈ Ω̄,

∂α∗

∂ν
=0, x∈∂Ω.

Notice that










−dS∆Ŝ−dI∆ Î=0, x∈Ω,

∂Ŝ

∂ν
=

∂ Î

∂ν
=0, x∈∂Ω,

(3.12)

thus there exists C>0 such that dSŜ+dI Î=C>0. Without loss of generality, we assume
that C=1, otherwise, we simply replace I and S by Î/C and Ŝ/C, respectively.

Now, due to the relation that dSŜ+dI Î=1, the inequality

(

Ŝ(x)

Ŝ(x)+ Î(x)

)2

<
γ(x)

β(x)
, x∈ Ω̄

is equivalent to
(

1−dI Î(x)

1+(dS−dI) Î(x)

)2

<
γ(x)

β(x)
, x∈ Ω̄. (3.13)
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Also it is routine to check that Î satisfies














dI ∆ Î+

(

β(x)
1−dI Î

1+(dS−dI) Î
−γ(x)

)

Î=0, x∈Ω,

∂ Î

∂ν
=0, x∈∂Ω.

(3.14)

Define

I∗ :=
α∗(x)−1

dI(α∗(x)−1)+dS
.

We claim that there exists δ>0 sufficiently small such that I∗ satisfies











dI ∆I∗+

(

β(x)
1−dI I∗

1+(dS−dI)I∗
−γ(x)

)

I∗≥0, x∈Ω,

∂I∗
∂ν

=0, x∈∂Ω.

provided that dS >0, dI ≤δ.
Assume that the claim is valid. Observe that

β(x)
1−dI I

1+(dS−dI)I
−γ(x)

is decreasing in 0< I < 1/dI . Then by the comparison principle, it is standard to verify
that I∗≤ Î in Ω̄ and thus

(

1−dI Î(x)

1+(dS−dI) Î(x)

)2

≤

(

1−dI I∗(x)

1+(dS−dI)I∗(x)

)2

, x∈Ω.

Moreover, according to the choices of α∗ and I∗, we have

(

1−dI I∗(x)

1+(dS−dI)I∗(x)

)2

=α−2
∗ <

γ(x)

β(x)
, x∈ Ω̄.

Therefore, (3.13) is valid when dS >0,dI ≤δ and the desired conclusion follows.
It remains to verify the claim. Direct computation yields that

dI |∆I∗|=dI

∣

∣

∣

∣

∆

(

α∗(x)−1

dI(α∗(x)−1)+dS

)∣

∣

∣

∣

=

∣

∣

∣

∣

∆

(

1−
dS

dI(α∗−1)+dS

)∣

∣

∣

∣

=

∣

∣

∣

∣

dSdI ∆α∗

[dI(α∗−1)+dS]2
−

2dSd2
I |∇α∗|2

[dI(α∗−1)+dS]3

∣

∣

∣

∣

=

∣

∣

∣

∣

dSdI(α∗−1)

[dI(α∗−1)+dS]2
·

(

∆α∗

α∗−1
−

dI(α∗−1)

dI(α∗−1)+dS
·

2|∇α∗|2

(α∗−1)2

)∣

∣

∣

∣
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≤dI I∗

(

‖α∗‖C2(Ω̄)

α∗−1
+

2‖α∗‖2
C2(Ω̄)

(α∗−1)2

)

, (3.15)

and
(

β(x)
1−dI I∗

1+(dS−dI)I∗
−γ(x)

)

I∗

=β(x)

(

1−dI I∗
1+(dS−dI)I∗

−
γ(x)

β(x)

)

I∗=β

(

1

α∗(x)
−

γ(x)

β(x)

)

I∗. (3.16)

Therefore, we can choose δ>0 small such that for dI ≤δ,

dI

(

‖α∗‖C2(Ω̄)

α∗−1
+

2‖α∗‖2
C2(Ω̄)

(α∗−1)2

)

<β(x)

(

1

α∗(x)
−

γ(x)

β(x)

)

, x∈ Ω̄.

This, together with (3.15) and (3.16), completes the proof of the claim.
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