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Abstract. Stem cell regeneration is crucial for development and maintaining tissue
homeostasis in self-renewing tissues. The dynamics of gene regulatory networks
(GRNSs) play a vital role in regulating stem cell renewal and differentiation. However,
integrating the quantitative dynamics of GRNs at the single-cell level with population-
level stem cell regeneration poses significant challenges. This study presents a compu-
tational framework that links GRN dynamics to stem cell regeneration through an in-
heritance function. This function captures epigenetic state transitions during cell di-
vision in heterogeneous stem cell populations. Our model derives this function using
a hybrid approach that integrates cross-cell-cycle GRN dynamics, effectively connect-
ing cellular-level GRN structures with population-level regeneration processes. By in-
corporating GRN structure directly into stem cell regeneration dynamics, this frame-
work simulates cross-cell-cycle gene regulation using individual-cell-based models.
The scheme is adaptable to various GRNs, providing insights into the relationship be-
tween gene regulatory dynamics and stem cell regeneration. Additionally, we propose
a future perspective that integrates single-cell ribonucleic acid sequencing data, GRN
analysis, and cell regeneration dynamics using Al-driven tools to enhance the preci-
sion of regenerative studies.

AMS subject classifications: 92-10, 92C42
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1 Introduction

Biological processes such as immune responses and cancer evolution are inherently mul-
tiscale dynamics that occur at molecular, cellular, and tissue levels [10,12,38]. Stem cell
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regeneration is crucial in linking molecular and tissue-level development, thereby main-
taining tissue homeostasis [8,40,50]. The intricate interplay between gene expression
regulation and cell population dynamics is essential for sustaining dynamic equilibrium
during stem cell regeneration. However, gene regulation and population evolution dy-
namics operate on different scales and are typically described by separate mathematical
models. It is imperative to bridge the gap between these scales of dynamics.

Cell division is central to stem cell regeneration as it connects molecular and popula-
tion-level dynamics. At the molecular level, gene regulation networks governing cell
cycling dictate cell growth, differentiation, and division decisions. The dynamics occur-
ring within a cell at the molecular level determine the signals that trigger cell division [9].
At the population level, these cell divisions directly influence the evolutionary dynam-
ics of different cell types. Furthermore, variability in the epigenetic state of cells during
deoxyribonucleic acid (DNA) replication and mitosis may lead to transitions between
cell types post-division, which is vital for maintaining tissue homeostasis and promoting
development [43, 44].

The evolution of gene expression in a single cell is often mathematically described
using a set of ordinary differential equations

d—X:P(X)—KX, (1.1)
dt

where X = (X3,Xp,--+,X,) represents the transcription level (messenger ribonucleic acid
(mRNA) concentration) or protein concentration of multiple genes. The nonlinear func-
tion F=(Fy,F,---,F,) describes the rates of transcription or protein production and can
be specified based on the gene regulatory network, K =diag(ky,kz,--- k) represents the
rates of mRNA (or protein) degradation and dilution. Differential equations of the form
(1.1), which can be extended to include delays or stochastic fluctuations, have been effec-
tively used to study the dynamics of gene regulatory networks [25,30,52]. However, cell
division is not accounted for in the differential equation model (1.1), making it unsuitable
for long-term processes related to cell proliferation and differentiation.

Extending the differential equation (1.1) to include cell divisions and population dy-
namics is challenging. However, a top-down approach using the Euler coordinate model
can be employed to describe the dynamics of stem cell regeneration while considering
cell proliferation and differentiation. Recent studies [28,29] established a mathematical
model for stem cell regeneration that integrates cell division, cell heterogeneity, and the
random transition of epigenetic states. This model builds upon the classical GO cell cycle
model proposed by Burns and Tannock [4], introducing a variable x — typically a high-
dimensional vector — to represent the epigenetic state of a cell.

In this framework, the rates of cell proliferation, differentiation, senescence, and apop-
tosis are assumed to depend on the epigenetic state of the cell. Let Q(t,x) denote the
number of cells possessing the epigenetic state x. The evolution of Q(t,x) is governed by
the following differential-integral equation [28,29]:
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aQéirx) =—Q(tx) (‘B(c(t),X) +K(x))

+2 /Qﬁ(C(t—T(y))fy)Q (t=1(y),y)e "W Wp(x,y)dy, (1.2)
()= [ Qt)(x)dx.

Here, B, %, and u represent the rates of cell proliferation, differentiation/senescence, and
apoptosis, respectively. The variable T indicates the duration of cell proliferation, while ¢
signifies the rate of cytokine secretion. The concentration of growth factors secreted by
all cells is denoted by c(t). Additionally, p(x,y) quantifies the probability of epigenetic
state inheritance during cell division, as defined by the conditional probability

p(x,y) = P(state of daughter cell = x| state of mother cell=v). (1.3)

Eq. (1.2) provides a general mathematical model framework for analyzing the dynamics
of heterogeneous stem cell regeneration, incorporating epigenetic transition.

The epigenetic state x discussed in Eq. (1.2) represents intrinsic cellular conditions
that change over time during the cell cycle or cell division. Biologically, the epigenetic
state of a cell refers to molecular changes that occur independently of DNA sequences.
These changes can include DNA methylation, modifications to nucleosome histones, and
variations in gene expression [42,46,47,49,51,53]. As such, the epigenetic state x is not
necessarily identical to the transcription level X in Eq. (1.1). The epigenetic state may
influence the quantification of cellular behaviors, such as proliferation (B(c,x)), differen-
tiation (x(x)), apoptosis (y(x)), and the cell cycle (7(x)). Together, these behaviors are
defined as the kinetotype of a cell [28]. The proliferation rate B(c,x) depends on both cell-
to-cell interactions, mediated by the cytokine concentration c(t), and the epigenetic state
of the cell. This concept of kinetotype highlights the importance of estimating single-cell
kinetic rates based on single-cell ribonucleic acid (RNA) sequencing data [7,13].

In the Eq. (1.2), cell division is represented as a factor 2 for the increase in cell popu-
lation, alongside the inheritance function p(x,y) for the variation in the epigenetic state.
During cell division, numerous biochemical reactions occur, including DNA replication
and the re-establishment of DNA methylations and histone modifications, which are es-
sential for preparing and completing the process. These molecular activities introduce
variability in the daughter cells, leading to differences in their epigenetic states and cel-
lular characteristics.

The inheritance function p(x,y) captures the relationship between the epigenetic sta-
tes of daughter cells and their mother cells while abstracting the complex intermediate
biochemical processes. Deriving the mathematical formulation of the inheritance func-
tion from the cell division process poses significant challenges. Numerical simulations
based on epigenetic state inheritance laws [18,19,45] can provide phenomenological rep-
resentations of this function. For instance, normalized nucleosome modifications have
been demonstrated to follow a beta distribution [18], whereas transcript levels are often
described by a gamma distribution [6]. Thus, if nucleosome modification is considered
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as the epigenetic state, the beta distribution can serve as the inheritance function. Con-
versely, the gamma distribution should be employed if transcription levels are regarded
as the epigenetic state. Biologically, nucleosome modification can influence gene expres-
sion by regulating the transcription process. Nonetheless, it remains unclear how the
topology and dynamics of gene regulation networks may affect the inheritance function.

The mathematical framework presented in (1.2) is a foundational model that inte-
grates essential components of stem cell regeneration, including cell cycling, cellular het-
erogeneity, and plasticity. This framework has been applied to various challenges, such
as cell-type transitions, tumorigenesis, and tumor evolution [15,20,35,60]. However, stem
cell systems can exhibit considerably greater complexity, necessitating the incorporation
of additional biological processes into the framework. In particular, this framework does
not include the gene regulation networks that underlie the dynamics of epigenetic states
within the cell cycle. There exists a gap in how the gene network-based approach (1.1)
and the stem cell regulation-based approach (1.2) can be integrated to provide a cohesive
description of multiscale dynamics in tissue development.

This study aims to develop a computational scheme that links gene regulatory net-
work dynamics with stem cell regeneration by formulating the inheritance function. We
focused on a well-researched gene network that governs cell fate decisions and transi-
tions between cell types, devising a numerical scheme to calculate the conditional prob-
ability density p(x,y). This density function, validated through stochastic simulation,
offers insights into how the structure of gene regulatory networks influences inheritance.
Importantly, our numerical scheme paves the way for extending these findings to broader
gene regulatory networks, enhancing our understanding of the connection between gene
regulation dynamics and stem cell regeneration.

2 Model and method

We referred to a hybrid model of stem cell differentiation developed to study the dy-
namics of cell-type transitions influenced by epigenetic modifications [20]. This model
combines individual-cell-based modeling of a multicellular system with gene regulation
network dynamics. It also includes a GO cell cycle model that governs cell regeneration
and incorporates stochastic inheritance of epigenetic states during cell divisions.

2.1 Hetereogeneous GO cell cycle model

In this study, we concentrated exclusively on cells capable of cycling, excluding any that
have lost this ability from our simulation pool. We employed the GO cell cycle model to
illustrate the dynamics of stem cell regeneration [4,36]. According to this model, cells
progress through a resting phase known as G0. During this phase, they grow and pre-
pare to enter the proliferative phase upon receiving signals that trigger cell cycling check-
points (Fig. 1). Each cell in the resting phase can either enter the proliferating phase at
or exit the resting pool at a rate of x due to processes such as terminal differentiation,
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Figure 1: GO cell cycle model of cell regeneration. Schematic representation of the GO model depicting stem
cell regeneration. Cells in the resting phase either enter the proliferative phase at 8 or exit the resting pool at x
due to differentiation, senescence, or death. Proliferating cells undergo apoptosis at a rate y.

senescence, or death. Cells in the proliferating phase may be randomly eliminated at
a rate y due to apoptosis or undergo mitosis after a fixed period, 7, following their en-
try into the proliferative compartment. Mitosis produces two daughter cells from each
mother cell, and these newborn cells then enter the resting phase, starting the next cycle.

Let Q(t) denote the number of resting-phase stem cells, and let s(t,a) represent the
population of proliferating stem cells. The age 2 =0 indicates the time of entry into the
proliferative state. Based on these assumptions, we can derive the following GO cell cycle
model [33]:

Vs(t,a)=—us(t,a), t>0, 0<a<r,

2.1)
%zzs(t,r)—(mx)g, £0.

Here, V =0/0t+0d/da. The boundary condition at =0 is given by
5(1,0)=pQ. (22)

Biologically, the ability of a cell to self-renewal, denoted as B, is closely linked to mi-
croenvironmental conditions such as growth factors, various cytokines, and intracellular
signaling pathways [39,41,55]. Despite the complexity of these pathways, the character-
istic Hill function dependence can be derived from simple assumptions about the inter-
actions between signaling molecules and their receptors [3,28]. This can be expressed

mathematically as
97’1
— By 23
B=Po oo (2.3)
where B represents the maximum proliferation rate, c signifies the influence of cytokine
signals released from all stem cells, 6 indicates the half-effective concentration of cy-
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tokines, and n is the Hill coefficient. The cytokine signal c¢ typically depends on the
collective state of all stem cells within the niche, creating a feedback loop in cell growth.
Specifically, while we assume that the stem cells are homogeneous, the cytokine signals c
can be considered proportional to the cell population Q.

In the Eq. (2.1), the processes of proliferation, differentiation, senescence, and cell
apoptosis (or cell death during the resting phase) play a crucial role in determining the
population dynamics of a multicellular system. Additionally, cells within a multicellular
system are not homogeneous; they exhibit variability in their epigenetic states. Each cell’s
kinetic rates of proliferation, differentiation, and apoptosis can depend on its specific
epigenetic state. To represent this epigenetic heterogeneity, we introduce a variable x
(typically a high-dimensional vector) that denotes the epigenetic state of a cell [28,29,32].
The kinetic rates 3, «, 1, and the duration of the proliferating phase T are all influenced by
the epigenetic state x. Consequently, the quadruple (B(c,x),x(x),u(x),7(x)) defines the
kinetotype of a cell [28].

Through the epigenetic state x € (), where () represents the space encompassing all
potential epigenetic states, let Q(t,x) denote the count of cells in the resting phase at
time t with epigenetic state x. The total cell count can be expressed as

Q(t) = /Q Q(t,x)dx.

Additionally, let {(x) represent the rate of cytokine secretion by a cell with the state x, the
effective cytokine concentration ¢ regulating cell proliferation is given by

c(t) = /Q Q(t,%)f(x)dx.
Thus, the proliferation rate is expressed as

0(x)"

Ble(t)x) =Bo(x) gy (0= [ QUA(x)dx

During cell division, mother cells undergo several critical processes, including DNA
replication, reconstruction of DNA methylations and histone modifications, and the sep-
aration of molecules during mitosis. Even though these processes are highly regulated,
random perturbations can disrupt biochemical reactions, which may result in daughter
cells that do not inherit the same epigenetic state as their mother cells. To quantify this,
let p(x,y) represent the probability density of a daughter cell having state x, given that
the mother cell was in state y. This can be expressed as a conditional probability

p(x,y) = P(state of daughter cell =x | state of mother cell=y). (24)

The inheritance function p(x,y) describes the transition of epigenetic states that occurs
during cell division.
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Considering cell heterogeneities following the kinetotype (B(c,x),x(x),u(x),7(x)), the
GO cell cycle model (2.1) is modified as [28]

(Vs(t,a,x)=—u(x)s(t,a,x), t>0, O0<a<t(x), (2.5a)
ani'x) =2 / s(t7(y),y)p(xy)dy

—(Ble(t),x)+x(x))Q(tx), >0, (2.5b)

o(t) = /Q Q(t,x)7(x)dx. (2.5¢)

The boundary condition is given by

s(£,0,x) =B (c(t),x)Q(tx). (2.6)

Solving the Eq. (2.5a) along with the boundary condition (2.6) by the method of the char-
acteristic line, we have

s(t,T(x),x) =B(c(t—7(x)),x) Q(t—T(x),x)e T, (2.7)

Substituting (2.7) into (2.5), we obtain the evolution equation for the cell population

Q(t,x) [28]

aQE()irx) =—Q(tx) (‘B(c(t),X) +K(x))

—|—2/Q‘B (C (t— T(y)),y) Q (t — T(y),y) e‘l‘(y)"f(y)p(x,y)dy, (2.8)

()= [ Q)(x)dx.

Egs. (2.8) offers a mathematical framework for modeling the dynamics of heteroge-
neous stem cell regeneration with epigenetic transitions.

2.2 Gene regulation network dynamics

2.2.1 Differential equation model

Despite the multiscale interactions involved in the Eq. (2.8), the gene regulatory networks
that play a crucial role in the evolution of epigenetic states within a cell cycle are not ac-
counted for in (2.8). In this context, we propose a general formulation for GRN dynamics
based on the RACIPE modeling scheme [16]. RACIPE is a computational method for
modeling gene regulatory network dynamics without requiring detailed knowledge of
the exact network topology or precise parameter values.
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Consider a GRN with m genes. The products of these genes can either activate or
repress the expression of other genes. To model gene regulation, we adopt a function H
based on the RACIPE scheme

1+A(X/h)"
1+ (X/h)r’

where X represents the concentration of protein that regulates gene expression, A signi-
fies the regulatory strength, with A <1 indicating repression and A >1 indicating activa-
tion, 1 represents the half-effetive protein concentration for the corresponding regulation,
and 7 is the Hill coefficient. The regulation from gene j to gene i is represented by a factor
H (X]-;h]-i,n]-i,/\ﬁ), which influences the protein production rate of gene i. It is important to
note that if Aj; =1, there is no interaction from gene j to gene i.

Using the notations provided, the dynamics of the GRN can be expressed via the
following differential equations:

H(X;h,n,A)=

dt —gZHH shiinji Aj) —kiXi, i=1,2,...,m. (2.9)

Here, X; represents the protein concentration of gene 7, g; denotes the basal protein pro-
duction rate of gene i, and k; is the degradation rate of the protein. We omitted the
transcription process for simplicity and used protein concentration as a proxy for the
transcription level.

When multiple regulators target a gene, the functional form of the rate equations
depends on the nature of the multivalent regulation. We adopted the RACIPE approach
in this study and assumed that these regulatory interactions are independent. Thus, the
overall production rate is written as the product of the innate production rate of the target
gene and the shifted Hill functions for all the regulatory links. Alternative formulations
can be considered similarly.

Notably, the production rates g;, effective concentrations £;;, and degradation rates k;
may experience random fluctuations due to extrinsic noise in the cellular environment.
To account for the effects of these random perturbations, we introduced stochastic varia-
tions to each parameter a (where a=g;,hj;, or k;) as follows:

a=ae’s /2, (2.10)

Here, ¢ indicates the intensity of the noise perturbation, and ¢ follows a colored noise
pattern defined by the Ornstein-Uhlenbeck process

dg¢=—(&/0)dt++v2/9dW. (2.11)

In this equation, W represents the Wiener process, and ¢ is the relaxation coefficient.
Unlike the conventional Langevin stochastic differential equation approach, the ran-
dom perturbation # in (2.10) is expressed exponentially. This approach has been uti-
lized in previous research studies to simulate extrinsic noise perturbations in gene ex-
pression [19,20,31]. The exponential form in (2.10) helps to avoid potential issues with
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negative parameter values that may arise in the Langevin framework, where the pertur-
bation is typically expressed as a —a+0¢.

In biochemical reactions, a chemical rate a is often related to a chemical potential y
through the equation a=ce P, Therefore, a perturbation in the chemical potential u nat-
urally results in an exponential perturbation of the chemical reaction rate. Furthermore,
gene expression rates have been observed to follow a log-normal distribution rather than
a normal distribution [2]. Thus, it is appropriate to formulate the random perturbation
by multiplying a random number drawn from a log-normal distribution. In this context,
the random perturbation is defined using an Ornstein-Uhlenbeck process. For a more
detailed discussion, please refer to Lei [27] and Huang et al. [20].

The Egs. (2.10)-(2.11) present a general formulation for noise perturbation applied
to a parameter. It is important to note that the perturbations, denoted as ¢, to various
parameters g;, hjj, and k; in Eq. (2.9) are independent of each other. Furthermore, the pa-
rameters ¢ and &, which define the noise perturbations, vary for different perturbations.
Consequently, the differential equation model represented by (2.9) can be expanded into
the following stochastic differential equation (SDE) model:

dX;
dt
gi=giet1=/2,

m
:gi 'I_IlH(Xj;hji/nji//\ji) —kl'Xl‘, 1= 1,2,. .,m
]:

hij :;‘l..eazé‘zﬂfﬁ/Z

k; = k;e6—3/2, (2.12)
déi=—(&1/%)dt++/2/%dWy,

déa=—(E2/02)dt+/2/0,dW,,

d&3=—(&3/03)dt++/2/0:dWs.

2.2.2 Cross-cell-cycle dynamics

The SDE model (2.12) describes the dynamics of gene regulation within a single cell cy-
cle. To extend these dynamics across multiple cycles and connect them with the het-
erogeneous GO cell cycle model (2.8), we need to incorporate the cell cycle process into
Eq. (2.12).

During the proliferative phase, a cell undergoes DNA replication, which alters its
genetic content. As a consequence, gene expression rates fluctuate throughout this phase.
For simplicity, let T represent the duration of one cycle. The cycling age, denoted as /, is
defined as follows: 0 </ < T for the GO/G1 phase, T1 </ < T; + 1> for the S phase (which
encompasses DNA replication), and T +T, </<T for the G2 and M phase that occur after
DNA replication (see Fig. 2). Let £(t) represents the cycling age, defined by the equation

() =t—(k—=1)T, (k—1)T<t<kT, k=12,... (2.13)



Y. Li, X. Liang and J. Lei / CSIAM Trans. Life. Sci., 1 (2025), pp. 320-353 329

v (t)

T

DNA content

G0/a1 G2

w

0 T

Time

Figure 2: lllustration of a cell cycle and the cycling age. Here, T denotes the duration of one cycle, T} represents
the duration of the GO/G1 phase, and T, indicates the duration of the S phase.

We defined the changes in DNA content with the cell’s cycling age as follows:

1, 0<i(t) <Ti,
(-T
v()=q 1+, TI<U)<Ti+T, (2.14)
2
2, T+ To <0(t) <T.

This function simplifies our analysis.
By incorporate the DNA content v(t), we replaced g; with g;v(t), leading us to rewrite
Eq. (2.9) as
dX; = .
— :gl‘l/(t) HH(X]‘;hji,i’lji,A]’i) —kl‘Xl', 1= 1,2,. .., m (215)

dt 1

for the interval (k—1)T <t <kT.

The cell undergoes mitosis at time t =kT. During this process, molecules such as
proteins and mRNAs redistribute between the two daughter cells with stochastic fluctu-
ations. As a result, the protein concentrations in the newly formed cells need to be reset
following mitosis while the molecules are allocated to the two daughters. Therefore, we
reset the initial conditions at t =kT as follows:

Xz(kT):Xl lim Xi(t), (216)
t—kT—

where yx; is a random number.

The coefficient x; measures the ratio of protein concentrations in the daughter cells
to that in the mother cell. Biologically, the proteins in the mother cell are distributed
between the two daughter cells, hence 0 < x; < 1. The binomial distribution is often used
to describe the random assignment of proteins to the daughter cells. In contrast, the beta
distribution is the conjugate prior probability distribution of the binomial distribution.
Thus, we assume that the random number yx; follows a beta distribution with a density
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function that can exhibit various shapes based on the shape parameters a and b (see Fig. 9
in the Appendix C). These shapes include strictly decreasing (when a <1 and b <1),
strictly increasing (when a >1 and b <1), U-shaped (when a <1 and b < 1), or unimodal
(when a >1 and b >1). We can select appropriate parameters to model symmetric or
asymmetric division scenarios.

We denote the random variable following a beta distribution as x; ~ Beta(a,b), then
the expectation and variance of x; are given by the shape parameters a and b as

a ab
B = v )= ippaae—n-

Additionally, we introduce two parameters: 0<¢ <1 and 1 >0, which are associated with
the mean and variance of ;. These parameters are defined as follows:

(2.17)

B(x) =9, var() = 7 0(1-¢). 218)

From these definitions and (2.17), the shape parameters a and b can be expressed in terms
of ¢ and 5
a=n¢, b=n(l-¢).

The parameters ¢ and # are biologically more straightforward than the shape parame-
ters a and b. While we set ¢ =1/2, the value of # influences the distribution’s shape: 7 >2
results in an unimodal distribution, reflecting symmetry division. In contrast, 7 <2 cre-
ates a U-shape distribution, indicating asymmetry division (see Fig. 9 in the Appendix C).

Thus, we integrated Egs. (2.12) through (2.16) to develop a hybrid model for cross-
cell-cycle dynamics as follows:

Xm' m )
WzgiV(t) ,1_[1H<Xj}hji;nji,/\ji)—kixi, i=1,...,m,
j=

Qi Zg_z‘e‘“gl*‘flz/z,
hij=hije8=3/2,
k; :7{160353—0;-/2,
dép=—(¢1/01)dt++/2/0;dWy, (2.19)
dér=—(&2/02)dt++/2/0,dW,,
dés=—(&/03)dt++/2/03dWs,
(k—1)T<t<kT, k=12,..,
Xi(kT) = x;lim; 57 Xi(t),
Xi~Beta(a,b).

In the Egs. (2.19), the term Aj; in the function H (xj;hji,nji,}\ji) indicates the type of
regulation between genes j and i. Specifically, A;; >1 denotes positive regulation, A;; <1
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indicates negative regulation, and A;; =1 signifies no regulation. Consequently, the co-
efficients A;; represent the topology of the GRN. Eq. (2.19) outlines the dynamics of this
network across multiple cell cycles, with protein levels reset following cell division.

It is important to note that our model does not account for the effects of changes
in cell volume. Cell growth and volume alterations are significant biological processes
that play crucial roles in cell fate decisions [11,14]. Additionally, the biological mecha-
nisms governing cell growth and division are complex and not completely understood
for mammalian cells [5,24,58]. To simplify our analysis, we have assumed that cell vol-
ume remains constant during cell cycling, meaning that cell growth does not affect pro-
tein concentration.

Both Egs. (2.8) and (2.19) describe the long-term biological process of stem cell re-
generation. However, the differential-integral equation (2.8) focuses on population dy-
namics while accounting for cellular heterogeneity and plasticity during cell division.
In contrast, the stochastic differential equation (2.19) captures molecular-level variations
within a cell across multiple cell cycles. The population dynamics and molecular-level
variations occur on distinct spatial and temporal scales. Changes in the population dy-
namics primarily involve processes such as cell regeneration, death, and differentiation.
These are associated with cellular behaviors in tissues and occur on a slower time scale,
ranging from minutes to hours. In contrast, molecular-level dynamics occur within indi-
vidual cells and exhibit rapid variations on a time scale of milliseconds to seconds. These
two equations represent dynamics at different scales: The differential-integral equation
(2.8) emphasizes population-level behavior but does not incorporate gene regulatory net-
works, whereas the stochastic differential equation (2.19) is driven by the gene regulatory
networks but does not address population-level dynamics. This raises a critical question:
how can these two scales of dynamics be integrated?

2.3 Connection between two models for a simple gene regulatory network

While a uniform method to integrate Eqs. (2.8) and (2.19) is not well established, we
study a simple gene network and explore a method to connect the dynamics of cross-
cell-cycling gene expression with the stem cell regeneration process.

For simplicity, we consider a basic gene network consisting of two master transcrip-
tion factors (TFs), specifically gene A and gene B. These TFs exhibit self-activation and
mutual repression, as illustrated in Fig. 3. Let X; and X, represent the expression levels
(protein concentration) of genes A and B, respectively. Based on the mathematical formu-
lation provided earlier, Eq. (2.19) with m =2 describes the dynamical equation governing
protein concentrations during cell cycling.

It is important to note that the gene network illustrated in Fig. 3 can be modeled using
different approaches: additive or multiplicative regulations [23,54]. If multiple genes reg-
ulate the transcription of the target gene independently, the production rates from pos-
itive and negative feedbacks are summed, and therefore, additive regulation should be
applied. However, multiplicative regulation should be applied if the gene regulations are
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Figure 3: Schematic diagram illustrating the gene regulatory network. Green arrows represent self-activating
interactions among genes, while red bars denote repressive interactions between genes.

interconnected. Moreover, more intricate mathematical formulations should be derived
based on biological interactions in gene networks with more complex topological struc-
tures. In this study, we adopted the multiplicative developed by Jolly et al. [23] for sim-
plicity. They applied the multiplicative regulations to model the modules of epithelial-to-
mesenchymal transition (EMT). However, the computational scheme presented remains
applicable even with additive feedback regulations.

To link the gene regulation dynamics with the heterogeneous stem cell regeneration
described in Eq. (2.8), we need to identify the epigenetic state x and derive the inheritance
function p(x,y) based on the dynamical equation (2.19).

In biology, the epigenetic state refers to a quantitative form independent of the DNA
sequence, including gene expression levels, histone modifications, or DNA methylation.
Among these, histone modifications and DNA methylation levels in chromosomal gene
regions can influence gene expression levels. This study primarily focuses on epigenetic
states associated with gene expression levels. Accordingly, we assumed a quantitative
dependency between the epigenetic state x and the gene expression level X. The choice
of this dependency will directly impact the mathematical definition of the inheritance
function p(x,y).

The epigenetic state x in Eq. (2.8) represents a constant reflecting the state of a cell
during its resting phase. At the same time, it changes dynamically over time in (2.19),
which captures gene expression dynamics throughout a cell cycle. Thus, we must iden-
tify the epigenetic state x per the gene expression dynamics X () over one cell cycle. For
clarity, we define the epigenetic state x = (x1,x2) of a cell through log normalization of
gene expression X (f) = (X1 (t),X2(t)) as follows:

xi=log (Xi(t)+1)]p_pr i=12 (2.20)

Here, the time t corresponds to a specific cell cycling age ¢*. In this study, we selected
¢* =T, representing the time point just before DNA replication. For brevity, we can
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express this as
x=log (X (t)+1) [, .- (2.21)

It is important to note that the correspondence between the gene expression level X and
the epigenetic state x remains an open question in biology. This study defined the epige-
netic state x as a quantity directly related to the gene expression level within a single cell
cycle. The definition in (2.20) aligns with the log normalization commonly used in ana-
lyzing single-cell RNA sequencing data. However, alternative definitions may be equally
valid depending on specific requirements.

To derive the inheritance function p(x,y) from the dynamics of gene regulation, we
numerically solved the cross-cell-cycle stochastic differential equation (2.19) and tracked
the gene expression X (t) of individual cells during their cell divisions. Since (2.19) mod-
els the gene expression dynamics of a single cell across multiple cycles, we recorded the
two daughter cells formed when a cell divided. We repeated this numerical scheme to
create an ensemble of multiple cells, with each simulation starting from a randomly se-
lected initial condition.

For each simulated cell, we recorded the state X = X(¢)|/—r, such that x=log(X+1)
represents the epigenetic state of the cell. This process generated a dataset D={(x,y,)},
where y, denotes the state of the k-th mother cell, and x; denotes the state of one of its
daughter cells. From this dataset D, the inheritance function p(x,y) can be derived using
the conditional probability density (1.3).

For the probability density function p(x,y), we assumed that the inheritances of
gene A and gene B are independent of each other. Here, the inheritance of a gene refers
to how the gene expression in the daughter cell depends on the state of the mother cell.
This assumption implies that the mother cell’s state independently influences the inheri-
tance of each gene. However, gene inheritance may still depend on the expression levels
of both genes in the mother cell due to their gene regulatory interactions. Under this
assumption, the probability density function can be expressed as

2
p(x,y) =Ijlpi(xi,y),

where p;(x;,y) represents the conditional density function of x; (the expression level of
gene i in the daughter cell) given the state of the mother cell y= (y1,12).

Experimental observations showed that the steady-state probability of protein pro-
duction from a single gene expression follows a gamma distribution [6]. In our study, we
assumed a mixed conditional gamma distribution for the epigenetic states, represented

as follows: ;

pi (xl-,y) = Zoci,]-Gamma(xi;ail]-,bilj), i= 1,2, (222)

j=1
where k denotes the number of independent distributions, «; ; represent the combination
coefficients, and Gamma(x;a,b) is the probability density function of the gamma distri-
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bution with shape parameters a and b. It is expressed as
xaflef(x/b)
) b'T'(a) (2.23)
I'(z) :/ e *x* ldx, z>0.
0

Gamma(x;a,b) =

The combination coefficients «; ; depend on the vector y and satisfy the following condi-
tions:

k
Z‘Xi,j = 1, lXZ"]' 2 0.
j=1

Additionally, the shape parameters 4;; and b; ; are influenced by the state y of the mother
cell.

We start with the probability density function given in Eq. (2.23) to determine the
shape parameters. The conditional mean and variance can be expressed as follows:

E(x|y)=a(y)b(y), var(x|ly)=a(y)b(y)>.

We assume the conditional mean and variance as

E(xly)=v(y), var(x|ly)= l{;((yy))z (2.24)
From this, we can derive the following relationships:
¥(y)
= , by)=12LL. 2.25
a(y)=7(y) (v) () ( )

Here, we replace the shape parameters a2 and b with ¢ and -y, which are more biologically
intuitive. The function ¢(y) directly measures the conditional expectation, while 7 (y) is
associated with the condition variance relative to the expectation.

To obtain the inheritance function p(x,y), we need to compute the functions ¥; ;(y)
and 7;,j(y) for each component x; using the conditional mean and variance derived from
the simulation data. A detailed procedure for obtaining the inheritance function can be
found in Section 3.2.

24 Numerical implementation

Implementing the model equation (2.19) numerically involves solving the SDE model
within a cell cycle and managing the process of cell division. Cell division may result
in the splitting of cells and resetting the initial conditions for newly formed cells. This
numerical scheme can be realized using the object-oriented programming language C++.
The dynamics of gene regulatory networks during a cell cycle are modeled with the SDE,
which is numerically solved using the Runge-Kutta method. Additionally, we developed
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an individual-cell-based numerical scheme to track the dynamics of each cell within the
system. Detailed algorithm information is provided in the appendix.

In our numerical implementations, we focused on symmetric gene regulations, as-
suming that k; =ky, A2 = Ap1, A1 = Aop, 111 = n1p = np1 =np. We normalized the protein
concentrations so that /111 = h1p = hy1 = hpy. The parameter values were estimated based
on previous studies involving similar gene networks [17,20,23], with further adjustments
made to ensure that cells could exhibit various phenotypes with different levels of gene
expression.

3 Results

3.1 Identification of cell types through epigenetic states

To quantitatively define cell phenotypes, we first omitted the cell cycling and conducted
a bifurcation analysis based on the ODE model (2.9), i.e. the following second-order
differential equation:

dX; <1+/\21(X2/h21)n21><1+A11(X1/h11)nn> L x
—A1Aal,

di ST\ 1+ (Xa/hay )" 1+ (X1 /hay) ™ (3.1)
dX, 14+A1p(Xq/hyp)™2 1+ Ao (Xo/hop )2 e .
de 1+ (Xy/hyp)™h2 1+ (X2 /hop )2 282

We varied the production rates g; and g, while keeping other parameters fixed and ex-
amined the dependence of steady states on these parameter values. Fig. 10(a) in the Ap-
pendix illustrates the number of steady states with randomly varying parameters (g1,92).
When g; and g, are large, three steady states emergy (depicted by red dots in Fig. 10(a) in
the Appendix C). Additionally, at (g1,42) = (0.4,0.4), solving the ODE (3.1) with varying
initial conditions results in the convergence of solutions (x1(t),x2(t)) to one of the two
stable steady states, as indicated by the black dots in Fig. 10(b) in the Appendix C. These
stable steady states exhibit expression patterns of (+,—) or (—,+) for the maker genes
A and B, defining two distinct cell phenotypes.

The bifurcation analysis reveals bistable steady states in gene network dynamics,
corresponding to different cell types defined by different patterns of marker gene ex-
pressions. To further explore how external noise perturbation and cell divisions may
shape the heterogeneous within a cell clone, we examined the dynamics of the hybrid
model (2.19) under various noise strength ¢ (assuming 07 =0, =03 =0) and cell division
scenarios. In our simulations, we took T =50, and T1 =25, T, =8 in modeling cell cycling.

First, we excluded cell cycling and focused solely on gene expression dynamics with
external noise perturbation. To achieve this, we solved the SDE model (2.12) with ran-
domly selected initial conditions 0< X;(0) < 2. Fig. 4(a) illustrates the distributions of the
epigenetic state of cells at one cycle (T = 50) with varying noise strength ¢. Results in-
dicate distinct cell phenotypes when the external noise is small (c=0.2 or 0.4), however,
the two cell types merge as the noise strength ¢ increases.
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Figure 4: Distribution of the epigenetic state of cells under different model assumptions. (a). Epigenetic states
of cells at t=>50 (one cell cycle) without cell division. The cell states were obtained by solving the SDE model
(2.12) with initial conditions randomly distributed over 0< X;(0) <2. (b). Epigenetic state of cells derived from
a single cell after 15 divisions. The cell states were obtained by solving the hybrid model (2.19), with initially
a single cell having random gene expression states 0< X;(0) <2. (c). Same as (b) with symmetric division (17>2)
and different distributions for the parameter ;. (d). Same as (b) with asymmetric division ( <2) and different
distributions for the parameter x;. Here, the epigenetic states are represented by x =1log(X(f)+1)[/)—r,-
In (a), no cell division was considered, and different external perturbation strengths o were applied. In (b)-(d),
cell division was considered, with ¢ =0.5 and different parameters 5 for the distribution of x; (refer to (2.18)).
The values of ¢ and 7 are shown in the figure; the parameters ¢ =¥ =193 =0.3; the conditional perspective ¢
in (2.18) was set as ¢ =0.5; the cell cycling parameters were T =50,T; =25,T, =8; other parameters were the
same as in Fig. 10 in the Appendix C.

Next, we investigated the effect of cell division using the hybrid model given by
Eq. (2.19). The impact of cell division is represented by the redistribution of molecules
described in Eq. (2.16), utilizing parameters ¢ and 7 that define the distribution of the
coefficient ;. We fixed the values at (¢,17)=(0.5,60) (see Fig. 9(b) in the Appendix C) and
varied the noise strength ¢ to solve Eq. (2.19).
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We start the simulation with a single cell and ran the model dynamics for 15 cycles,
resulting in 215 cells from the original cell by the 15-th cycle. Fig. 4(b) illustrates the epige-
netic states of all cells, displaying a pattern similar to that shown in Fig. 4(a), which was
generated from multiple cells with different initial conditions. This outcome suggests
that a single cell can produce a heterogeneous cell clone through cell division.

To investigate the effects of different assumptions in cell division, we varied the pa-
rameter 7, which defines the distribution of the coefficient x;. By fixing o= 0.4, we ad-
justed # to reflect symmetry division, setting it between 10 and 1000, which resulted in
a decreased variance of x;. As shown in Fig. 4(c), the distribution of epigenetic states
appears to be independent of the parameter 7. Similarly, when we varied 7 to reflect
asymmetric division (ranging from 1 to 0.01), we observed consistent distributions of
epigenetic states at the 15-th cycle, as depicted in Fig. 4(d). These results suggest that the
distribution of epigenetic states in a cell clone remains insensitive to the variance of yx;
during cell division.

For the following discussions, we focused on obtaining the inheritance function using
simulation data, with fixed values of ¢ =0.5,7 =60, and =0.4.

3.2 Data-driven inheritance function

In Fig. 4, we have demonstrated the variability of epigenetic states in individual cells
originating from a single precursor cell. This variability reflects the stochastic changes
in cell states during cell division. To derive the inheritance function p(x,y) based on the
gene regulation dynamics outlined in Eq. (2.19), we tracked the process of cell division
using numerical simulations. We recorded the states of the mother cells (y) and their
corresponding daughter cells (x) after each cell division event.

We initiated 10° cells in our simulations and simulated the model over three cell cy-
cles. In this framework, all cells at the second cycle were considered mother cells, with
their epigenetic states denoted as y. For each mother cell in the state y, we paired it with
the epigenetic state x of the corresponding daughter cell from the third cycle, forming
a pair [x,y] = [(x1,%2),(y1,2)]. In this notation, x; and y; represent the state associated
with gene A, while x, and y, represent the state related to gene B.

Figs. 5(a) and 5(b) present scatter plots illustrating the epigenetic states of genes
A and B in mother and daughter cells. These plots demonstrate distinct cell types: Mother
cells with lower expression in gene A (or gene B) typically produce daughter cells with
similarly lower expression levels in the same gene. Conversely, mother cells with higher
expression tend to generate daughter cells with elevated expression in the same gene.
However, we also observe cases of cell type switching during cell divisions, where some
daughter cells exhibit gene expression patterns that differ from those of their mother
cells.

To develop the mathematical formulation of the inheritance function, we used gene A
as a case study to demonstrate the computational method. We identified all mother cells
exhibiting a specific expression level (as indicated by the two strips in Fig. 5(a)) and ana-
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Figure 5: Data-driven inheritance function. (a). Scatter plot of daughter cell (gene A) versus mother cell
(gene B) (x1 versus y1). Each point represents a cell, with lighter colors indicating higher density. Two vertical
strips represent the sampling of data points with 0.3 <y; <0.31 and 0.8 <y; <0.81, respectively. (b). Scatter
plot of daughter cell (gene B) versus mother cell (gene B) (x; versus y,). (c). Probability density of daughter
cells (gene A) given the state of the mother cell (gene A). Dots were obtained from data analysis, and solid
lines represent the functions of a combined gamma distribution. The densities were obtained from data in the
two strips in (a). (d). The function ¢ 1(y1) to define the shape parameters in Gamma(x1;a11,b11). (e). The
function 11(y1) to define the shape parameters in Gamma(x1;a1,1,b11). (f). The function ¢ 2(y1) to define
the shape parameters in Gamma(xy;a12,b12). (g). The function 91 (y1) to define the shape parameters in
Gamma(x1;a12,b12). (h). The coefficient a1 (y1,y2) in p1(x1;y). (i). The coefficient az(y1,12) in p2(x2,y). In
(d)-(i), dots were obtained from data analysis, while curves or surfaces were derived from Egs. (3.3), (3.5), and
(3.9), respectively.

lyzed the probability density of the expression levels in all daughter cells. Fig. 5(c) illus-
trates the resulting conditional probability densities corresponding to the epigenetic state
of the mother cells at y; =0.3 and y; =0.8. These density functions display characteristics
similar to a mixture of two unimodal distributions (solid lines in Fig. 5(c)).

Drawing insights from Fig. 5(c), we modeled the probability density pi(x1,y) as
a combination of two gamma distributions
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|41 (xl,y) =n1 X Gamma(xl;alll,bl,l) + (1 — 061) X Gamma(xl;allz,bl,z) . (32)

In this equation, the shape coefficients a;; and b;; depend on the state of the mother
cell, y, through the functions ¢ ;(y) and {1 j(y). These functions are linked to the condi-
tional mean and variance, E(x1|y) and var(x;|y), as described in Eq. (2.24). Additionally,
the combination coefficient #; may vary according to the state of the mother cell y.

To determine the coefficients a1, 41 ; and by j, we initially assumed that their depen-
dence was solely on the component y;. From Fig. 5(a), we partitioned the data into mul-
tiple bins based on the values of y;. Next, we divided the x; values within each bin into
two subgroups and calculated the mean and variance for each subgroup. This process
allowed us to derive the conditional means E(x1 |y; ) and variances var(xq|y; ) for the two
gamma distributions Gamma (x; ,'aLj,bL]-), j=1,2. As a result, we obtained the functions
¥1,j(y1) and 71,j(y1) as Hill-type functions, as described in Eq. (2.24) (Fig. 5(d)-(g))

( 2
A
=0.64+0.22x ———,
¥1,1(y1) +022x 53 Y
vi
=10.38420.46 x ———,
711 (Y1) + 051t
¥ (3.3)
=0.20+0.18 x —=1—,
Pr12(y1) MR yvoy:
=295+0.15X ——/—.
\ 712(11) +0.15 % QT
The shape parameters were then formulated as follows:
P1,i(y1)
api(y1)=v1,(y1), brj(y1)=—"7—. (3.4)
i) =91,y W)=

We assume that the combination coefficient a1 depends on y; and y,. Therefore, we
divide the (y1,y2) phase plane into multiple bins and collect the daughter cell epigenetic
states x; within each bin. We then employ the expectation-maximization (EM) algorithm,
as described in (3.2), to estimate the coefficients ) for each bin. The results, shown in
Fig. 5(h), closely resemble a Hill-type function

Y8 1

=0.16 X .
“ () =016 G e T " T8

(3.5)

Thus, the function a;(y) and the shape parameters a1 (y1) and by j(y1) together define
the inheritance function p1(x1;y) as outlined in (3.2).
Similarly, we can derive the inheritance function p,(x2;y) for gene B as follows:

p2(x2;y) = a2 (y) x Gamma (x2;a2,1,b2,1) + (1 —a2(y) ) x Gamma (xp;a2,,b22). (3.6)
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Interestingly, because of the symmetry between gene A and gene B, simulation data show
that the forms of ¢, ;(y2) and 7, ;(y2) are the same as those of 11 j(y1) and 71, (y1), respec-
tively. Therefore, we have

2
Y2
=0.644+022x —==—,
¥1,1(y2) 02212

4
Y2
=10.384-20.46 x ,
Y11(y2) 038417/

v
0.648+18"

(3.7)
P12(y2) =0.20+0.18 x

Y1,2(y2) =2.9540.15 x

\

1
0424 +y3
Additionally, we define the parameters a, ;(y) and b, ;(y) as follows:

_2,(y2)
72,i(y2)”

Similarly, the function ay(y) takes on the same form as a1 (y)

a2i(y2) =v2,i(y2), baj(y2) (3.8)

1 v3
o =0.16+4+ X . 3.9
2(y) 1.076+15 " 0.466+15 35)
The function ay(y) is illustrated in Fig. 5(i).
Finally, the inheritance function is expressed as follows:

p(xy) =p1(x1;y) X p2(x2;y). (3.10)

This procedure delineates how the inheritance function in Eq. (2.8) is derived from sim-
ulation data based on the gene regulation network model presented in Eq. (2.19). Valida-
tion of the inheritance function in Eq. (3.10) is discussed in Section 3.3.

The gamma distribution density functions, denoted as Gamma(x;;a;,(y;),b;,(y:)), de-
fined by Egs. (3.2), (3.6), and (3.10), describe how daughter cells inherit characteristics
from mother cells for the same gene. The combination coefficients a1 (y) and a(y) il-
lustrate the properties of cell type transitions regulated by the gene regulation network.
Notably, a1 (y) increases with y; and decreases with v, indicating that gene A activates
itself while inhibiting gene B'’s effect on gene A. A similar trend is observed with as(y).
Therefore, the structure of the gene regulation network significantly influences the inher-
itance function through its qualitative dependence on the state of the mother cells.

3.3 Validation of the inheritance function

To verify the data-driven inheritance function, we compared simulation results obtained
from the heterogeneous GO cell cycle model (2.8) with that from the gene regulation net-
work model (2.19).
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To begin, we utilized the cell cycle model (2.8) to replicate generating cell clones from
a single cell. We then compared our findings with those in Fig. 4. To accomplish this, we
defined the kinetotype in (2.8) as follows:

B=1/Ty, x=u=0, T=T—T,. (3.11)

Since directly solving the high-dimensional integral in (2.8) is computationally expen-
sive, we adopted an individual-cell-based simulation approach, following the scheme
outlined in Eq. (2.8).

To replicate the process shown in Fig. 5, we initialized the system with 10° cells, em-
ulating the setup depicted in Fig. 5. We then performed individual-cell-based simula-
tions to model the cell division process. During division, each mother cell generated two
daughter cells, with the epigenetic state of each daughter cell determined by the inheri-
tance function p(x,y), as defined in (3.10) (see the Appendix B for the detailed numerical
scheme). Similar to the methodology used in Fig. 5, we conducted simulations over three
cycles and collected data from the second and third cycles for analysis.

Fig. 6 presents data points illustrating the epigenetic states of daughter cells with
those of mother cells, obtained from both the gene regulation network model (2.19) and
the GO cell cycle model (2.8) with the inheritance function (3.10). A comparison of Fig. 6(a)
with Fig. 6(b) shows that the data-driven inheritance function p(x,y) effectively repro-
duces the distribution of epigenetic states across different cell cycles. Both figures reveal
epigenetic states distributed at high gene A or gene B expression, consistent with the
stable steady states identified through bifurcation analysis (Fig. 4). Furthermore, both
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Figure 6: Comparison between the gene regulation network model and the GO cell cycle model. (a). Scatter
plot of daughter cell epigenetic state (gene A) versus mother cell epigenetic state (gene A and B) following the
gene regulation network model (2.19). (b). Scatter plot of daughter cell epigenetic state (gene A) versus mother
cell epigenetic state (gene A and B) following the GO cell cycle model (2.8) with the inheritance function (3.10).

Parameters were identical to those in Fig. 5, and cell cycling parameters for the GO cell cycle model are given
by (3.11).
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simulations display scatter plots with high densities at states corresponding to either low
gene A expressions in mother and daughter cells or high gene A expressions in mother
and daughter cells. The epigenetic state distributions derived from both simulation ap-
proaches are closely aligned.

Next, we applied the GO cell cycle model to investigate the biological process un-
derlying heterogeneous cell growth, incorporating additional regulatory mechanisms for
proliferation and differentiation. To achieve this, we defined the parameters as follows:

x=0.009, u=0.0007, T=T-Ty,
and 0
Blex)=Pog—s o= /QQ(t,x)dx
with Bp=0.2 and 6§ =10°. Here, the regulation of proliferation depends on the total stem
cell number, which is a challenging interaction to model with the stochastic dynamical
equation (2.19). We simulated the cell growth process using the GO cell cycle model (2.8)
with the inheritance function (3.10). We initialized 10* cells in our simulations, randomly
assigning epigenetic states to each cell. We used an individual-cell-based simulation to
model cell growth up to t=2500 (approximately 50 cycles).

In this scenario, we introduced nonzero rates of differentiation and apoptosis and as-
sumed that the proliferation rate would decrease as the total cell number increased. As
a result, the total cell number reached an equilibrium state after an extended period of
growth (Fig. 7(a)). The system automatically reaches homeostasis with a stable cell num-
ber due to the negative feedback on cell proliferation. Fig. 7(b) shows the distribution of
the epigenetic state of the cells at t =2000 (indicated by the dashed line in Fig. 7(a)). No-
tably, two distinct cell subtypes emerge, with their epigenetic state distributions closely
resembling those obtained from the gene regulation network model shown in Fig. 4. This
result suggests that independent of population dynamics, the gene regulatory network
determines distinct cell types.

We also examined the dynamics of transitions between cell types. Figs. 7(c) and 7(d)
illustrates genes A and B’s evolutionary dynamics while tracking a single cell throughout
the growth process. The simulations demonstrate that cells can transition between the
two subtypes as the growth continues. Both stochastic perturbation and cell plasticity
during cell division may contribute to the dynamics of cell type transitions. Moreover,
the cell states approach a homeostasis distribution despite these transitions, as shown in
Fig. 7(b). These results highlight the GO cell cycle model’s ability to simulate the long-
term dynamics of cell growth with heterogeneity.

4 Discussion and perspectives

Population dynamics and molecular-level variations occur on distinct spatial and tempo-
ral scales during stem cell regeneration and tissue development. Integrating the dynam-
ics of gene regulation within individual cells with the population dynamics of stem cell
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Figure 7: Heterogeneous cell growth. (a). Dynamics of cell number evolution. (b). Scatter plot of the epigenetic
state of cells at t =2000 (dashed line in (a)). Red circles show the initial states of 10 cells. (c). Evolution of
the epigenetic state of gene A in two cells during the cell growth process. (d). Evolution of the epigenetic state
of gene B in two cells during the cell growth process.

regeneration remains a significant challenge. In this study, we developed a method to for-
mulate the inheritance function for modeling stem cell regeneration dynamics based on
data from cross-cell-cycle gene regulation dynamics. The regeneration dynamics of stem
cells are represented using a differential-integral equation, where the inheritance function
is introduced to describe cell plasticity during cell division. We demonstrated that the in-
heritance function can be expressed as a combined gamma distribution in Eq. (3.10), with
gene circuit topology incorporated into the coefficients. Our simulations using the GO
cell cycle model revealed intriguing insights into cell growth dynamics with heterogene-
ity. The model successfully reproduced the emergence of distinct cell subtypes and their
transitions over time, indicating that the heterogeneity in cell type can be attributed to
underlying regulatory mechanisms within the cell cycle.

The gene circuit analyzed in this study consists of two master transcription factors
(TFs). These TFs display self-activation and mutual repression, as illustrated in Fig. 3.
Consequently, the inheritance function can be represented by a combined gamma distri-
bution

x,y) :Hpi<xi}y)r (4.1)
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where
pi(xi;y) =a;(y)Gamma(x;;a;1,b;1)+ (1 —a;(y))Gamma(x;;a;2,b;2). 4.2)

The gene circuit topology influences the coefficients &;(y), such that the sign of dw;(y) /dy;
(positive or negative) indicates whether gene j activates or represses gene i. Furthermore,
the coefficients 4;; and b; ; in (4.2) can be expressed using Hill-type functions so that the
conditional expectation E(x;|y) = ¢;(y) increases as the component y; rises. This obser-
vation provides insights for developing the mathematical formulation in Egs. (4.1) and
(4.2) for more complex gene regulatory networks.

The dynamics of gene expression can be modeled using ordinary differential equa-

tions as follows:
dx

dt

where K = diag(ky,k, -+ ,k,). The topology of the gene circuit is expressed through the
nonlinear function F. Following the scheme in this study, the gene expression dynamics
can be extended to incorporate random perturbations to model parameters and the dy-
namics across different cell cycles. Additionally, our study suggests an epigenetic state
defined as x = log(X(t)+1)|s(;)—¢-, which is associated with the gene expression level
during a particular cell cycle. The population dynamics of stem cell regeneration are
described with the differential-integral equation

aQ&x) — —Q(£,x) (B(c(t),x) +x(x))

+2 /Q Ble(t=7(y)),y)Q(t—T(y),y)e ¥ Wp(x,y)dy, (4.4)

()= [ Qt)(x)dx.

F(X)—KX, (4.3)

The inheritance function p(x,y) quantifies the variance between daughter cells and their
mother cell following cell division. In our study, we propose a mathematical formulation
for p(x,y) as shown in (4.1)-(4.2). The coefficients «;(y) in this formulation account for
the gene circuit topology, satisfying the rule

ow; ) JoF; (X
sign (%) =sign (%) . (4.5)

]

The rule (4.5) links gene regulation dynamics with stem cell regeneration dynamics.

Further advancements in the framework proposed in this study could facilitate the
seamless integration of data-driven and model-driven approaches, effectively connecting
single-cell data with population-level dynamics (Fig. 8).

Firstly, reconstructing gene regulatory networks from gene expression data remains
a significant challenge in systems biology and bioinformatics. The emergence of single-
cell RNA sequencing (scRNA-seq) data has spurred the development of various methods
for reconstructing GRN from gene expression profiles [21,26,59,61].
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Figure 8: An integrative modeling framework connecting scRNA-seq data to heterogeneous stem cell regenera-
tion dynamics.

Secondly, the concept of the kinetotype, represented by the quadruple

(B(c,x),x(x),p(x),7(x))

in Eq. (4.4), is a crucial link between cell regeneration kinetics and scRNA-seq data. Sev-
eral methodologies have been developed to extract cellular properties from scRNA-seq
data. These include quantifying the pluripotency landscape of cell differentiation [48],
identifying stemness [22,37], measuring the order of cellular transcriptome profiles using
single-cell entropy [34,57], and evaluating gene signature scores associated with signal-
ing pathways [1,56]. Improvements to these methods may allow for precise quantifica-
tion of kinetotypes from scRNA-seq data.

Fig. 8 illustrates a vision for integrative modeling that connects scRNA-seq-data to
population dynamics. Single-cell sequencing data can serve as a foundation for infer-
ring kinetotypes and reconstructing gene regulatory networks. The structure of these
networks is essential for understanding gene expression dynamics and defining the in-
heritance function. Together, kinetotype and inheritance function concepts allow for the
modeling of evolutionary dynamics in heterogeneous stem cell regeneration. This ap-
proach integrates molecular-level processes with population-level dynamics over long-
term development timescales, providing insights that connect data analysis with biolog-
ical interpretation.

Al-driven tools are expected to be transformative in future studies by leveraging their
capabilities for data-driven predictions and function discovery. For instance, Al-based
methods can be applied to reconstruct kinetotypes and GRNs, while neural networks
could represent the inheritance function. Additionally, AI methods might improve nu-
merical techniques for solving the differential equations that govern GRNs and stem cell
regeneration dynamics, further advancing the field.
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Appendix A. Numerical scheme for the hybrid kinetic modeling

We applied the numerical scheme to solve the hybrid model (2.19) by combining the nu-
merical methods for stochastic differential equations with the random process involved
in cell division. During the numerical simulation, the number of cells changes over time
due to cell division. Each cell corresponds to a stochastic differential equation defined by
the gene regulatory network. Therefore, tracking the gene expression dynamics of each
cell is necessary. The numerical scheme is provided below in Algorithm 1.

Algorithm 1. Hybrid kinetic model simulation.

¢ Input: The gene regulatory network’s topology file contains gene nodes, regulatory
relationships, and related parameters.

¢ Initialization: Read the topology file and model parameters. Initialize the number
of simulation cycles cycle =0, set the cycle length T =50, and set the initial time
t=0. Set the initial cell number N. For each cell in the multicellular system X =
{Ci(X;):j=1,...,N}, set the initial condition for the gene expression level X;(0).
Here, X represents the system of all cells, and C; represents each cell, with the gene
expression level of the cell given by X;.

¢ Simulation process:

for cycle=0 tomax_cycle do
Copy the system X/ =3.
for all cells C;€X do
Gene regulation dynamics. Solve the stochastic differential equation (2.19) with
the stochastic Runge-Kutta method for 0 <t <T.
Cell division. Generate two new cells C; (Y1) and C;»(Y2), Y1=(Y,1,-*,Yi,m)
(I=1,2) store the initial gene expression state of the cell .
for/=1to2and i=1tom do
Generate a parameter x;~ Beta(a,b).
Reset the expression state Y;;(0) = x;X;,i(T).
end for
Replace the cell C; in X’ with the new cells C;; and C;p».
end for
cycle=cycle+1.
Copy the system X =%,
end for

The two daughter cells are generated following the same rule through x; ~ Beta(a,b)
in the above numerical scheme. This is a simplification of the actual situation. In a real
biological system, the two daughter cells can be correlated, especially in the case of asym-
metric division. This simplification does not affect the results if we track a single cell over
a long duration. However, it may affect the results when considering the dynamics of
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a cell population. In our study, we set the parameter 7 =60 to represent symmetric di-
vision and reduce the correlation between two daughter cells. This simulation does not
alter the primary approach of our study, which connects gene regulation dynamics with
stem cell regeneration dynamics. For a more realistic scenario where the two daughter
cells are correlated during cell division, further systematic discussions should be con-
ducted in future research, which is beyond the scope of the current study.

Appendix B. Numerical scheme of the individual-cell-based
simulation method

The differential-integral equation (2.8) can be solved numerically using the Euler method
and numerical integration. However, calculating numerical integration is computation-
ally expensive due to the high dimensionality of the epigenetic states. Therefore, we
typically do not directly solve the Eq. (2.8). Instead, we employ an individual-cell-based
simulation method to model the cell cycling process.

In model simulations, a system of multiple cells is represented as a collection of epige-
netic states. The individual-cell-based simulation tracks the behaviors of each cell based
on its specific epigenetic state. Below is a sketch of the numerical scheme used in this
approach (Algorithm 2).

To assess the epigenetic state of daughter cells based on the inheritance probability
p(x,y), defined by the combination gamma distributions in Eq. (3.10), we implemented
the numerical scheme (see Algorithm 3).

In simulations, the number of cells can increase significantly due to cell division,
which may present challenges during the simulation process. To address this issue, we
employed a technique called downsampling. This process is commonly used in signal
analysis to reduce data rates or the overall data size. Similarly, we utilized downsam-
pling to decrease the number of cells being simulated.

In the current simulation, we define a maximum number of cells to be simulated and
stored, denoted as Npax = 10° cells. Let N, = N5+ Ni,q (Where N < Niax) represent the
number of cells under simulation at step k. Here, Ny ; indicates the number of cells in the
resting phase, and Nj , indicates the number of cells in the proliferative phase.

Initially, we allocate temporary storage space for Ni,+2Nj , cells, which accounts
for the maximum possible number of cells if all cells in the proliferative phase undergo
mitosis. After performing cell fate decisions for each cell, we obtain a potentially new
number of cells, denoted as Niemp = Ny ot Nli,p (where Niemp < Nig+2Nj ).

If Ntemp > Nmax, we will select all N,;p cells in the proliferative phase and at most
(Nmax—Nj. q) cells in the resting phase. The selection from the resting phase is made by
choosing each cell with a probability p =max{1,(Nmax —N,; q) / N,i, q} to yield Npext cells
for the next step simulation. Otherwise, if Niemp < Nmax, we select all Niemy, cells, setting
Nhext = Ntemp'
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Algorithm 2. Individual-cell based simulation.

¢ Input: The parameters, kinetotype functions B,x,u, and 7, inheritance function
p(x,y), and the time step At.

e Initialization: Set the time t = 0, the initial cell number Ny, and all cells X =
{[Ci(x)]lgzl}. At the initial state, all cells are at the resting phase (S =0), and the cor-
responding age at the proliferating phase is 2 =0. Set the cell number at the resting
phase as N, = Ny and the cell number at the proliferative phase as N, =0.

¢ Simulation process:
for t from 0 to Tenq With step At do
for each cell in X do

Kinetotype: Calculate the proliferation rate j, the apoptosis rate y, and the
terminate differentiation rate x.

Cell fate decision: Determine the cell fate during the time interval (t,t+At):

- When the cell is resting, undergo terminal differentiation with a probability
kAt, or enter the proliferation phase with a probability pAt, or, if otherwise,
remain unchanged.

- When a cell is at the proliferative phase, if the age a < 7, the cell is either
removed (through apoptosis) with a probability uAt or remains unchanged;
if the age a > 7, the cell undergoes mitosis and divides into two cells.

end for
System update:
for each cell in ¥ do
- If the cell fate is differentiation or apoptosis, remove the cell and reduce the

total cell number by 1, N= N —1. Accordingly, reduce the number of resting
or proliferative cells: N;=N;—1or N,=N,—1.

- If the cell fate is entering the proliferative state, set the cell state at prolifera-
tive (§=1) and the proliferating age =0, and let N;=N;—1, N, =N, +1, the
total cell number N is unchanged.

- If the cell is at the proliferative phase and remains unchanged, update the
proliferative age a =a+At, the cell numbers Nj, Np, and N are unchanged.

- If the cell is under mitosis, it produces two daughter cells, and the epigenetic
state of each daughter cell is determined according to the inheritance proba-
bility p(x,y). The proliferating age of each daughter cell is set as 4 =0, and
update the cell number: N;=N;+2,N,=N,—1,and N=N+1.

end for
end for
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Algorithm 3. Epigenetic state inheritance.

Calculates the values of a;,9;;,7;; according to the state of the mother cell, and the
coefficients a; ; and b; ;.
fori=1to2do

- Generates a random number g=rand().

- If g < a;, produce the epigenetic state of gene i for the daughter cell accord-
ing to the first gamma distribution function Gamma(x;;a;1,b;1), otherwise, pro-
duce the epigenetic state according to the second gamma distribution function
Gamma(x;;a;0,b;5).

end for
Update the epigenetic state of the daughter cells.

Finally, we stored the state of all selected Npex: cells, calculate the proliferation rate
as fprok = Ntemp/ Nk, and set N1 = Nnext for the number of cells to be simulated at step
k+1.

In the downsampling simulation approach, at step k, there are Ny < Npax cells being
simulated, and the states of these cells are recorded. The actual number of cells at this
step is given by the formula

k-1
Nreal number at step k — No prro,i-

i=0

This equation indicates calculating the number of cells at step k.

Appendix C. Supplementary figures
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Figure 9: Probability density function of the beta distribution. (a). ¢ =04, =2.2. (b). $=0.6,7=2.2.
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Figure 10: Bifurcation analysis of gene expression kinetics. (a). Dependence of the number of steady states of
the ODE model (3.1) with randomly selected parameters (g1,92). Blue dots represent one steady state, while
red dots represent three steady states. (b). Trajectories for the ODE model (3.1) with randomly selected initial
conditions. Solid dots marked the two stable steady states, and the hollow dot represents the unstable steady
state. Parameters are Ay; =A12=0.1,A11 =An=5.0,ky =ko=1.0,h;;=1,n;;=2, and (g1,82) = (0.4,0.4) in (b).
The parameters for time units have been normalized in our study.
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