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Abstract. Human heterogeneity is a critical issue in infectious disease transmission
dynamics modelling, and it has recently received much attention in COVID-19 stud-
ies. In this article, a general human heterogeneous disease model with mutation is
proposed to comprehensively study the effects of human heterogeneity on basic re-
production number, final epidemic size and herd immunity. We show that human
heterogeneity may increase or decrease herd immunity level, strongly depending on
some convexity of the heterogeneity function, which gives new insights and extends
the results in [Britton et al., Science, 369:846–849, 2020]. Moreover, human heterogene-
ity may decrease the basic reproduction number but increase the level of herd immu-
nity, implying the unreliability of the basic reproduction number in characterizing the
spread and control of infectious diseases with human heterogeneity.
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1 Introduction

Human heterogeneity is ubiquitous and shares tremendous popularity in the study of
social science [39] and epidemiology [4–9, 13–17, 19, 23–25, 28, 30, 37]. There are many
heterogeneities in human societies that will influence virus transmission, such as social
activity level, age structure, incubation period, individual susceptibility or exposure to
infection. Recently, the effects of human heterogeneities on infectious disease are back
to spotlight in modeling and precise control of COVID-19 spread. Questions of interest
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to mathematical epidemiologists and public health members are how the herd immunity
level is affected by human heterogeneities such as susceptibility and infectivity [7,19], the
limitations of basic reproduction number and what human heterogeneity can tell [31],
why final epidemic size of COVID-19 is so different from the classic SIR model, and why
ODE models might fail in modelling COVID-19 and how human heterogeneity shapes
the evolution of infectious disease [20]. These questions imply the necessity to incorpo-
rate human heterogeneities in disease models to profoundly understand the transmission
mechanism of infectious diseases.

Many studies have shown that under certain conditions, human heterogeneities will
decrease herd immunity level [6, 7, 19, 25]. It is found in [6, 25] that when susceptibility
is the only variable property, the final size of the epidemic is always smaller for a het-
erogeneous population than for a homogeneous population with the same reproduction
number. A recent study on COVID-19 showed that population heterogeneity can signif-
icantly impact disease-induced immunity [19]. They estimated that if the basic repro-
duction number R0 =2.5 in an age-structured community with mixing rates adapted to
social activity, then the disease-induced herd immunity level can be around 43%, which is
substantially less than the classical herd immunity level of 60% obtained through homo-
geneous immunization of the population. Another study [7] showed that if the coefficient
of heterogeneity variation increases from 0 to 4, the herd immunity threshold decreases
from greater than 60% to less than 10%.

However, some researchers is probably impossible even with vaccination efforts in
full force and the theoretical threshold for vanquishing COVID-19 looks to be out of
reach, due to the reasons such as vaccination-induced human behaviour change and mu-
tation of viruses [2]. The effects of human heterogeneity on the spread of infectious dis-
ease are comprehensive and repay many more studies from theoretical insights. In this
paper, we will consider some SEIR model with mutation and heterogeneous populations,
in order to investigate the effect of human heterogeneities such as activity level, suscep-
tibility, exposure to infection on basic reproduction number, final epidemic size and herd
immunity.

The rest of the paper is organized as follows. In Section 2, we will introduce the
general human heterogeneous SEIR disease model with mutation, define the basic repro-
duction number, and investigate the threshold dynamics. The effect of human hetero-
geneities on disease persistence, herd immunity threshold and final epidemic size will be
explored in Section 3. Applications to COVID-19 can be found in Section 4. Discussion
and conclusion will be in Section 5.

2 A general disease model of human heterogeneities

The population is divided into four classes: susceptible (S), exposed (E, latently infected
without symptoms), infected (I, infected with symptoms) and removed (R, recovered or
disease-induced death). The susceptible individuals are infected by exposed and infec-
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Figure 1: The susceptible individuals are infected by exposed and infected individuals and become exposed, each
exposed individual becomes infected individuals with the rate σ, infected individuals are recovered with a rate γ.
Λ and µ are natural birth and death rates, respectively. α is disease induced death rate of infected individuals.

tious individuals and become exposed; exposed individuals become infected; infected
individuals are recovered or die of disease and become removed, see Fig. 1.

To incorporate human heterogeneities, we assume that the population comprises
a continuum family of phenotypes differentiated by some kind of trait x∈ [a,b]. Human
heterogeneities may happen in

• activity level c(x): the number of contacts per unit time of x-type population N(x).
Activity level is concerned with genders, age structures, or jobs of the population;

• susceptibility to infection ρS(x): the probability that x-type susceptible individuals
can be infected. It is concerned with the health condition of the susceptible popula-
tion;

• exposure to symptomatic ρI(x) and asymptomatic infection ρE(x): the probabil-
ity that x-type infected and exposed individuals can infect susceptible individuals,
respectively;

• transition rate from E to I (σ(x)): 1/σ(x) may satisfy some kind of probability
distribution such as lognormal distribution, gamma distribution, or Weibull distri-
bution;

• transition rate from I to R (γ(x));

• disease-induced rate α(x);

• natural birth Λ(x) and death rate µ(x).

We call these heterogeneity attributes of population and denote

Θ(x) :=

{
c(x),ρS(x),ρE(x),ρI(x),

1

σ(x)
,

1

γ(x)
,α(x),Λ(x),µ(x)

}

as the attribute values of x-type population. Different phenotypes have different attribute
values, i.e.

Θ(x) 6=Θ(y) if x 6=y.
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The trait x can be defined as some kind of attribute (heterogeneity) of the population,
for example, c(x) = x means that the population is differentiated by the activity level,
σ(x)= 1/x means that the population is differentiated by the transition rate from E to I
of x type population. In real applications, one does not need to consider all kinds of
heterogeneity, so some attributes can be independent of the trait x.

We assume that the population has overlapping generations such that the mutation
is modeled by a diffusion process with constant rate ǫ≥0 acting on the phenotypic trait
variable. Then the SEIR model cooperated with heterogeneity read as follows:





∂S

∂t
=Λ(x)−Foi(x)S−µ(x)S+ǫSxx, x∈ (a,b), t>0,

∂E

∂t
=Foi(x)S−σ(x)E−µ(x)E+ǫExx , x∈ (a,b), t>0,

∂I

∂t
=σ(x)E−γ(x)I−µ(x)I−α(x)I+ǫIxx, x∈ (a,b), t>0,

∂R

∂t
=γ(x)I+α(x)I−µ(x)R+ǫRxx, x∈ (a,b), t>0,

Sx =Ex = Ix =Rx=0, x= a,b, t>0.

(2.1)

Here

Foi(x)=
c(x)ρS(x)

∫ b

a
c(y)[ρI (y)I(y,t)+ρE(y)E(y,t)]dy

∫ b

a
c(y)N(y,t)dy

is the force of infection upon x-type susceptible individuals in the total population, where

N(x,t)=S(x,t)+E(x,t)+ I(x,t)+R(x,t)

denotes the x-type population. Recall that c(x) is the number of contacts per unit time;
ρS(x) is the probability that x-type susceptible individuals can be infected; ρI(x) and
ρE(x) are the probability of symptomatic (I) and asymptomatic infections (E), respec-

tively; c(y)I(y,t)/
∫ b

a c(y)N(y,t)dy and c(y)E(y,t)/
∫ b

a c(y)N(y,t)dy are the probabilities
that each person meets the population infected and exposed population, respectively.

Throughout this paper, we denote

p(x,t)=
N(x,t)

∫ b

a
N(x,t)dx

the frequency of x-type population at time t, and we write p(x,0) as p(x) for the sake of
notational simplicity. Define

< f >:=
∫ b

a
f (x)p(x)dx, x̄ :=< x>=

∫ b

a
xp(x)dx,
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and the variance of heterogeneity

Var :=
∫ b

a
(x− x̄)2p(x)dx=< x2

>−< x>2 . (2.2)

2.1 Equilibrium problem

This paper also concerns non-negative equilibrium solutions of (2.1) which satisfy





Λ(x)−Foi(x)S̃−µ(x)S̃+ǫS̃xx =0, x∈ (a,b),

Foi(x)S̃−σ(x)Ẽ−µ(x)Ẽ+ǫẼxx =0, x∈ (a,b),

σ(x)Ẽ−γ(x) Ĩ−µ(x) Ĩ−α(x) Ĩ+ǫ Ĩxx =0, x∈ (a,b),

γ(x) Ĩ+α(x) Ĩ−µ(x)R̃+ǫR̃xx =0, x∈ (a,b),

S̃x= Ẽx = Ĩx = R̃x =0, x= a,b,

Foi(x)=
c(x)ρS(x)

∫ b

a
c(y)

[
ρI(y) Ĩ(y)+ρE(y)Ẽ(y)

]
dy

∫ b

a
c(y)Ñ(y)dy

,

(2.3)

where S̃, Ẽ, Ĩ, R̃ denote the density of susceptible, exposed, infected and removed individ-
uals at equilibrium, respectively. A disease-free equilibrium (DFE) is a solution of (2.3)
satisfying Ĩ(x)= 0 for every x∈ [a,b]. An endemic equilibrium (EE) is a solution of (2.3)
for which Ĩ(x)>0 for some x∈ [a,b]. It is easy to verify that the disease free equilibrium is
unique, given by E0=(N0(x),0,0,0), where N0(x) is the unique solution of the following
system:

Λ(x)−µ(x)S̃+ǫS̃xx =0, x∈ (a,b), Sx(a)=Sx(b)=0.

By the strong maximum principle [18], for any endemic equilibrium, S̃(x), Ẽ(x), Ĩ(x),R̃(x)
are positive for any x∈ [a,b].

2.2 The basic reproduction number and threshold dynamics

For infectious disease models, the basic reproduction number, defined as the expected
number of secondary cases produced in a completely susceptible population by an in-
fective individual, is one of the most significant concepts in studying the transmission of
infectious disease [1, 11]. More importantly, it often determines the threshold behavior
for many epidemic models. It is often the case that a disease dies out if the basic repro-
duction number is less than unity and the disease is established in the population if it
is greater than unity. More importantly, the basic reproduction number is also used to
characterize the final epidemic size and herd immunity threshold (1−1/R0). We refer
to [12] for the approach of next generation operators for the basic reproduction number
and to [27, 36, 38, 42] for related studies.
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To define the basic reproduction number of system (2.1), we appeal to the next gener-
ation operators theory developed in [12]. Note that exposed (E) and infected (I) classes
are the infected compartments of the system. Set X1=C([a,b];R2) and X+

1 =C([a,b];R2
+).

Let T(t) be the solution semigroup on X1 of the following system:





∂uE

∂t
=−σ(x)uE−µ(x)uE+ǫ(uE)xx, x∈ (a,b), t>0,

∂uI

∂t
=σ(x)uE−γ(x)uI−µ(x)uI−α(x)uI+ǫ(uI)xx, x∈ (a,b), t>0,

(uI)x =(uE)x =0, x= a,b, t>0.

(2.4)

To define the basic reproduction number for model (2.1), we assume that the state vari-
ables are near the disease-free steady state E0. Then we introduce the distribution of
initial infection described by ψ(x) = (ψE(x),ψI(x))⊤. Under the synthetic influences of
mutation, mortality, and transfer of individuals in infected compartments, the distribu-
tion of those infected members as time evolves is T(t)ψ(x). Thus, the distribution of new
infection at time t is F(x)T(t)ψ(x), where for any u=(uE,uI)

⊤∈X1,

F(x)u :=
p(x)c(x)ρS(x)

< c>



∫ b

a
c(y)ρI(y)uE(y)dy

∫ b

a
c(y)ρE(y)uI(y)dy

0 0


. (2.5)

Consequently, the distribution of total new infections is
∫

∞

0 F(x)T(t)ψ(x)dt. Define

L(ψ)(x) :=
∫

∞

0
F(x)T(t)ψ(x)dt=F(x)

∫
∞

0
T(t)ψ(x)dt.

Then L is a continuous and positive operator which maps the initial infection distribu-
tion ψ to the distribution of the total infected members. Following the idea of next gen-
eration operators ( [12]), we define the spectral radius of L as the basic reproduction
number

R0=ρ(L)

for system (2.1).

Let Q be the generator of the continuous semigroup T(t), i.e. for any u=(uE,uI)
⊤∈X1,

Qu=

(
−σ(x)uE−µ(x)uE+ǫ(uE)xx 0

σ(x)uE −γ(x)uI−µ(x)uI−α(x)uI+ǫ(uI)xx

)
.

Note that T(t) is a positive semigroup and Q is resolvent positive, then by [36, Theo-
rem 3.12], we have

Q−1ψ=
∫

∞

0
T(t)ψ(x)dt.
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Let φ=Q−1ψ, it can be seen that φ is positive and satisfies

F(x)φ=R0Qφ,

i.e. 



−ǫ(φE)xx+σ(x)φE+µ(x)φE

=
1

R0

(
p(x)c(x)ρS(x)

< c>

∫ b

a
c(y)[ρI(y)φI+ρE(y)φE]dy

)
, x∈ (a,b),

−ǫ(φI)xx+γ(x)φI+µ(x)φI+α(x)φI−σ(x)φE =0, x∈ (a,b),

(φE)x =(φI)x =0, x= a,b.

(2.6)

By the Krein-Rutman theorem [26], the eigenvalue problem Qϕ= λF(x)ϕ has a unique
principal eigenvalue λ1, that is, a real and simple eigenvalue with positive eigenfunc-
tions, and it is strictly less than the real parts of all other eigenvalues. Since φ is positive,
it follows that λ1 = 1/R0 is the unique principal eigenvalue of the eigenvalue problem
Qϕ=λF(x)ϕ.

Lemma 2.1. System (2.6) admits a unique principal eigenvalue, denoted by λ1, with positive
eigenfunctions, and the basic reproduction number of system (2.1) satisfies

R0=
1

λ1
.

Moreover, if ǫ=0, i.e. mutation of human heterogeneities is not considered, then

R0=
∫ b

a

p(x)c(x)

< c>
R0(x)dx=

∫ b

a

p(x)c(x)

< c>

(
RE

0 (x)+RI
0(x)

)
dx, (2.7)

where

RE
0 (x) :=

c(x)ρS(x)ρE(x)

σ(x)+µ(x)
, RI

0(x) :=
c(x)ρS(x)ρI(x)σ(x)(

σ(x)+µ(x)
)(

γ(x)+µ(x)+α(x)
) (2.8)

are the basic reproduction numbers of x-type exposed and infected individuals, respectively, and
R0(x) :=RE

0 (x)+RI
0(x).

Proof. We only need to consider the case ǫ=0. Note that when ǫ=0, the operator F(x)Q−1

is still compact. Then by [10, Proposition 2.1], we have

lim
ǫ→0

λ1(ǫ)=λ1(0),

and

σ(x)φ+µ(x)φ=λ1(0)

(
p(x)c(x)ρS(x)

< c>

∫ b

a
c(y)

(
ρI(y)σ(y)

γ(y)+µ(y)+α(y)
+ρE(y)

)
φ(y)dy

)
,
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which yields that

R0=
1

λ0
=
∫ b

a

p(x)c(x)

< c>

(
c(x)ρS(x)ρI(x)σ(x)(

σ(x)+µ(x)
)(

γ(x)+µ(x)+α(x)
)+ c(x)ρS(x)ρE(x)

σ(x)+µ(x)

)
dx.

Let

RE
0 (x)=

c(x)ρS(x)ρE(x)

σ(x)+µ(x)
,

RI
0(x)=

c(x)ρS(x)ρI(x)σ(x)(
σ(x)+µ(x)

)(
γ(x)+µ(x)+α(x)

) ,

R0(x)=RE
0 (x)+RI

0(x),

then

R0=
∫ b

a

p(x)c(x)

< c>

(
RE

0 (x)+RI
0(x)

)
dx.

This completes the proof.

Now we establish the threshold dynamics of system (2.1). For further purposes to
prove the global stability of DFE, we consider the following eigenvalue problem:





−ǫ(φE)xx+σ(x)φE+µ(x)φE

−

(
p(x)c(x)ρS(x)

< c>

∫ b

a
c(y)

(
ρI(y)φI+ρE(y)φE

)
dy

)
=λ0φE,

−ǫ(φI)xx+γ(x)φI+µ(x)φI+α(x)φI−σ(x)φE =λ0φI ,

(φE)x =(φI)x =0, x= a,b,

(2.9)

and the corresponding adjoint eigenvalue problem




−ǫ(φ∗
E)xx+σ(x)φ∗

E+µ(x)φ∗
E

−c(x)ρE(x)
∫ b

a

p(y)c(y)ρS(y)

< c>
φ∗

Edy−σ(x)φ∗
I =λ0φ∗

E,

−ǫ(φ∗
I )xx+γ(x)φ∗

I +µ(x)φ∗
I +α(x)φ∗

I

−c(x)ρI(x)
∫ b

a

p(y)c(y)ρS(y)

< c>
φ∗

Edy=λ0φ∗
I ,

(φ∗
E)x =(φ∗

I )x =0, x= a,b.

(2.10)

By the Krein-Rutman heorem [26], the eigenvalue problems (2.9) and (2.10) each admit
a unique principal eigenvalue λ0, that is, a real and simple eigenvalue with positive
eigenfunctions, and it is strictly less than the real parts of all other eigenvalues. The
following lemma is a direct result of [36, Theorem 3.5].
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Lemma 2.2. sign{λ0}=sign{1−R0}.

Our first main result is stated as follows.

Theorem 2.1. (i) If R0≤1, then DFE is globally asymptotically stable.

(ii) If R0 > 1, there exists some positive constant ǫ0 such that any positive solution of system
(2.1) satisfies

liminf
t→∞

∥∥(S(·,t),E(·,t), I(·,t),R(·,t)
)
−
(

N0(x),0,0,0
)∥∥≥ǫ0.

In particular, system (2.1) admits at least one endemic equilibrium.

Proof. We prove (i) by constructing a Lyapunov functional and applying LaSalle’s in-
variance principle [21, Theorem 1] for infinite dimensional dynamical systems. Let X=
C([a,b];R4) with the supremum norm ‖ · ‖∞, then X is an ordered Banach space with the
cone P consisting of all nonnegative functions in X, and X has a nonempty interior, de-
noted by int(P). It is easy to verify that (2.1) defines a dynamic system on X. Denote
the unique solution of system (2.1) with initial value (s0,e0,i0,r0)∈ P by Φt(s0,e0,i0,r0)=
(S(·,t),E(·,t), I(·,t),R(·,t)) for any t>0. It can be verified that Φt is compact and for each
u0∈U, the orbit of u0 under the dynamical system generated by (2.1) has compact closure
in U.

Define the functional

L(u)=
∫ b

a
(ueφ

∗
E+uiφ

∗
I )dx

for u∈U, where (φ∗
E,φ∗

I ) is the eigenfunction corresponding to the principal eigenvalue λ1

associated with the eigenvalue problem (2.10). Now we prove L(u) is a Lyapunov func-
tional for system (2.1). For an arbitrary solution u=(S,E, I,R) of system (2.1), we have

d

dt
L(u(·,t))=

∫ b

a

(
Etφ

∗
E+ Itφ

∗
I

)
dx

=
∫ b

a

((
Foi(x)S−σ(x)E−µ(x)E+ǫExx

)
φ∗

E

+
(
σ(x)E−γ(x)I−µ(x)I−α(x)I+ǫIxx

)
φ∗

I

)
dx

=−
∫ b

a
Foi(x)(E+ I+R)φ∗

Edx−λ0

∫ b

a
(Eφ∗

E+ Iφ∗
I )dx. (2.11)

By Lemma 2.2, R0 ≤ 1 yields that λ1 ≥ 0. Furthermore, S, E, I, R are non-negative and
Foi(x) are nonnegative. Hence, d(L(u(·,t)))/dt≤ 0, which implies L(u) is a Lyapunov
functional of system (2.1).

Next, define

L̇(u0) :=
d

dt
L
(
u(·,t)

)
|t=0, M={u0∈P| L̇(u0)=0},
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where u=(S,E,I,R) is the unique solution of (2.1) with initial condition u0=(s0,e0,i0,r0)∈P.
By (2.11), we have M={u0=(s0,e0,i0,r0)∈U|e0=i0=0} if λ1≥0. It follows from (2.1) that
for λ1≥0, the maximal invariant set in M is given by

M̂ :={u0=(s0,e0,i0,r0)∈U|e0= i0=0}.

Therefore, by the LaSalle invariant principle [21, Theorem 1], we obtain
(
E(x,t), I(x,t)

)
→ (0,0) in [L∞(Ω)]2 as t → ∞,

which together with (2.1) imply R(x,t)→0 uniformly in Ω as t→∞. Therefore, we obtain
S(x,t)→N0 in L∞(Ω) as t→∞.

The proof of (ii) is similar to that of [33, Theorem 1.1(ii)], so we omit the proof here.
The proof of theorem is complete.

3 The effect of human heterogeneities on disease persistence,

herd immunity threshold and final epidemic size

In this section, we investigate the effect of human heterogeneities on disease persistence
and herd immunity threshold. In Theorem 2.1, we show that disease persistence is de-
termined by the basic reproduction number R0. Therefore, we will compare the basic
reproduction number between homogeneous and heterogeneous populations. Through-
out this section, we assume that ǫ=0 since in this part, our focus is not on mutation.

Before proceeding, we calculate the basic reproduction number of homogeneous pop-
ulation. Consider the following well-mixed homogeneous SEIR model:





dS

dt
=Λ(x̄)−c(x̄)ρS(x̄)

(
ρI(x̄)I+ρE(x̄)E

)
S/N−µ(x̄)S,

dE

dt
= c(x̄)ρS(x̄)

(
ρI(x̄)I+ρE(x̄)E

)
S/N−σ(x̄)E−µ(x̄)E,

dI

dt
=σ(x̄)E−γ(x̄)I−µ(x̄)I−α(x̄)I,

dR

dt
=γ(x̄)I−µ(x̄)R.

(3.1)

The basic reproduction number R0 of the homogeneous SEIR model is calculated as

R0=
c(x̄)ρS(x̄)ρI(x̄)σ(x̄)(

σ(x̄)+µ(x̄)
)(

γ(x̄)+µ(x̄)+α(x̄)
)+ c(x̄)ρS(x̄)ρE(x̄)

σ(x̄)+µ(x̄)
,

where x̄=
∫ b

a
xp(x)dx. Define

RE
0 (x̄)=

c(x̄)ρS(x̄)ρE(x̄)

σ(x̄)+µ(x̄)
, RI

0(x̄)=
c(x̄)ρS(x̄)ρI(x̄)σ(x̄)(

σ(x̄)+µ(x̄)
)(

γ(x̄)+µ(x̄)+α(x̄)
) ,
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then

R0=RE
0 (x̄)+RI

0(x̄). (3.2)

Note that RE
0 (x̄),RI

0(x̄) are the basic reproduction numbers of exposed and infected in-
dividuals, respectively.

3.1 The basic reproduction number: Homogeneous vs heterogeneous

Recall that p(x) is the frequency of x-type population and the variance

Var=
∫ b

a
(x− x̄)2p(x)dx=< x2

>−< x>2

is an important indicator characterizing the human heterogeneity variation. Now we
will use Var to describe the difference between the basic reproduction number of homo-
geneous and heterogeneous populations.

Theorem 3.1. Assume that c(x) is independent of x, i.e. activity level heterogeneity is not
considered. If R0(x) is twice continuously differentiable and there are finite bounds m and M
such that

m≤
(
R0(x)

)′′
≤M,

then

R0=R0+
ξ

2
Var, (3.3)

where ξ is some constant in [m,M]. In particular, if R0(x) is convex (concave) on x∈ [a,b], then
R0≥ (≤)R0.

Proof. Assume that c(x) is independent of x, then

R0=
∫ b

a
p(x)R0(x)dx.

By Jessen’s inequality, if R0(x) is convex(concave) on x∈ [a,b], then R0 ≥ (≤)R0. More-
over, if R0(x) is twice continuously differentiable, then it follows Holder’s defect for-
mula [35, Problem 6.5, p.94] that

R0=R0+
ξ

2
Var,

where ξ is some constant in [m,M].

Here we mention that Theorem 3.1 still holds for small ǫ by implicit function theorem
and perturbation theory. Since it is not focus here, we omit the proof.

Direct calculation yields the following result.
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Corollary 3.1. Assume that the trait x is defined as activity level, i.e. c(x) = x, and other at-
tributes (heterogeneities) have no relations to activity level, then

R0=
< x2

>

< x>2
R0=

(
1+

Var

x̄2

)
R0.

Corollary 3.1 shows that if only activity level is considered, then heterogeneous activ-
ity level will increase the basic reproduction number and enhance the disease persistence.

3.2 Herd immunity threshold

Assume that R0(x)> 1 for any x ∈ [a,b] and the purpose of herd immunity is to ensure
that the basic reproduction number of any type of population should be smaller than
one. Thus, for x-type population, the minimum population number with immunity is
(1−1/R0(x))N(x), the herd immunity threshold in heterogeneous populations is

Hhe =

∫ b

a

(
1−1/R0(x)

)
N(x)dx

∫ b

a
N(x)dx

=1−
∫ b

a

p(x)

R0(x)
dx, (3.4)

and the herd immunity threshold in a homogeneous population is

Hho =1−
1

R0(x̄)
. (3.5)

Theorem 3.2. If 1/R0(x) is twice continuously differentiable and there are finite bounds m and
M such that

m≤

(
1

R0(x)

)′′

≤M, x∈ [a,b],

then

Hhe =Hho−
ξ

2
Var, (3.6)

where ξ is some constant in [m,M]. In particular, if 1/R0(x) is convex (concave) on x∈ [a,b],
then Hhe ≤ (≥)Hho.

Proof. The results can be directly derived from Jensen’s inequality and Holder’s defect
formula [35, Problem 6.5, p.94].

Here we mention that Theorem 3.2 still holds for small ǫ by implicit function theorem
and perturbation theory. Since it is not focus here, we omit the details.

Corollary 3.2. Assume that R0(x)= kx. Then

Hhe =Hho−
ξ

2k
Var, (3.7)

where ξ is some constant in [1/b2,1/a2].
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If the trait x is defined as activity level, i.e. c(x) = x, and other attributes (hetero-
geneities) has no relations to activity level, then basic reproduction number of x-type
population satisfies R0(x) = kx. Corollary 3.2 shows that heterogeneous activity level
will decrease the herd immunity level.

3.3 Final epidemic size

In this part, we assume that Λ(x)=µ(x)=0 and investigate the effect of human hetero-
geneities on the final epidemic size. Note that





∂lnS

∂t
=−Foi(x), x∈ (a,b), t>0,

∂(I+R)

∂t
=σ(x)E, x∈ (a,b), t>0,

∂R

∂t
=γ(x)I+α(x)I, x∈ (a,b), t>0.

(3.8)

Here

Foi(x)=
c(x)ρS(x)

∫ b

a
c(y)

(
ρI(y)I(y,t)+ρE(y)E(y,t)

)
dy

∫ b

a
c(y)N(y,t)dy

.

(3.8) implies that

I=
Rt

γ(x)+α(x)
, E=

(I+R)t

σ(x)
,

and then

−(lnS)t=
c(x)ρS(x)

∫ b

a
c(y)

(
ρI(y)Rt/

(
γ(y)+α(y)

)
+ρE(y)(I+R)t/σ(y)

)
dy

∫ b

a
c(y)N(y,t)dy

,

i.e.

−(lnS)t=
c(x)ρS(x)

< c>N

∫ b

a

RI
0(y)Rt+RE

0 (y)(I+R)t

ρS(y)
dy (3.9)

with N denotes the total population.

Lemma 3.1. Let Λ(x) = µ(x) = ǫ= 0 in system (2.1). Let s0(x) denote the initial susceptible
proportion. In the limit s0(x)→ 1, the final outbreak size of x-type population in system (2.1)
approaches the solution r∞(x) to the following final outbreak size relation:

−ln
(
1−r∞(x)

)
=

ρS(x)c(x)

< c>

∫ b

a

p(y)R0(y)r∞(y)

ρS(y)
dy. (3.10)

Moreover, the final epidemic size of the total population is < r∞ >.
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Proof. Denote

s(x,t)=
S(x,t)

N(x)
, e(x,t)=

E(x,t)

N(x)
,

i(x,t)=
I(x,t)

N(x)
, r(x,t)=

R(x,t)

N(x)
.

It follows from (2.1) that

(
s(x)+e(x)

)
t
=−σ(x)e(x,t), (s+e+i)t =−

(
γ(x)+α(x)

)
i(x,t),

which by s(x,t)+e(x,t)+i(x,t)+r(x,t)= i implies

e(x,t), i(x,t) → 0.

Thus, integrating (3.9) by parts, we have

−ln
(
1−r∞(x)

)
=

ρS(x)c(x)

< c>

∫ b

a

p(y)R0(y)r∞(y)

ρS(y)
dy,

where limt→∞r(x,t)= r∞(x).

Denote
Rho

0 =R0, Rhe
0 =R0.

For homogeneous population, the final epidemic size rho satisfies

−ln(1−rho)= rhoRho
0 . (3.11)

Now we compare the final epidemic size of the heterogeneous population

rhe :=< r∞ >

and homogeneous population rho. The following result is a direct consequence of Lem-
ma 3.1 and Theorem 3.1.

Theorem 3.3. Assume that c(x) and ρS(x) are independent of x, i.e. activity level and suscepti-
bility heterogeneities are not considered. Then

−ln(1−rhe)= rheRhe
0 .

Moreover, if R0(x) is convex (concave) on x∈ [a,b], then rhe
0 ≥ (≤)rho.

Theorem 3.4. Assume that the trait x is defined as susceptibility, i.e. ρS(x) = x, and other
attributes (heterogeneities) has no relations to susceptibility, then

Rhe
0 =Rho

0 , rhe
< rho.
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Proof. Rewrite (3.10) as
−ln

(
1−r∞(x)

)
=R0(x)rhe,

which yields that

1−rhe =
∫ b

a
p(x)e−R0(x)rhe

.

By Jensen’s inequality, we have

1−rhe = e−Rho
0 rhe

+C, C>0,

which together with 1−rho = e−Rho
0 rho

imply that rhe
< rho.

It follows from Theorem 2.1 that heterogeneous susceptibility does not affect the dis-
ease persistence, but lower the final epidemic size, which agrees with the results in [6,25].

Proposition 3.1. Assume that the trait x is defined as activity level, i.e. c(x) = x, and other
attributes (heterogeneities) have no relations to activity level, then

1−rhe = eR
ho
0 (rhe+C1)+C2

for some positive constants C1,C2.

Proof. If c(x)= x, then R0(x)=(x/x̄)Rho
0 , which implies that Rhe

0 =(1+Var/x̄2)Rho
0 and

−ln
(
1−r∞(x)

)
=

xRho
0

x̄2

∫ b

a
yr∞(y)p(y)=

xRho
0

x̄2
< r∞(x)x> .

Thus,

1−r∞(x)= e−Ax, A=
Rho

0

x̄2
< r∞(x)x>,

and

1−rhe =
∫ b

a
p(x)e−Axdx,

which yields by Jenson’s inequality that

1−rhe = e−Ax̄+C2.

By Chebyshev inequality and monotonicity of r∞(x), we have

< r∞(x)x>=(rhe+C1)x̄.

Thus, 1−rhe = eR
ho
0 (rhe+C1)+C2.

In this section, theoretical results depend on convexity of R0(x). This kind of convex-
ity can be found in epidemiology. For example, if we consider the effect of heterogeneous
activity level on disease spreading, the basic reproduction number can be assumed to be
linear function of activity level when activity level is very small, or saturated function of
activity level (e.g. ax/(x+b)) when activity level is large.
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4 Applications on the COVID-19

In this section, we will apply the results developed in Section 3 to explore the effect of het-
erogeneous transition rate from E to I (σ(x)), activity levels (c(x)), susceptibility (ρS(x)),
exposure to symptomatic (ρI(x)) and asymptomatic infection (ρE(x)) on the basic repro-
duction number R0 and herd immunity threshold Hhe. In this section, mutation, natural
birth and death are not included, and disease-induced death is omitted, thus we have

ǫ=0, Λ(x)=µ(x)=α(x)=0.

Then model (2.1) becomes 



∂S

∂t
=−Foi(x)S,

∂E

∂t
=Foi(x)S−σ(x)E,

∂I

∂t
=σ(x)E−γ(x)I,

∂R

∂t
=γ(x)I,

(4.1)

and

Foi(x)=
c(x)ρS(x)

∫ b

a
c(y)

(
ρI(y)I(y,t)+ρE(y)E(y,t)

)
dy

∫ b

a
c(y)N(y,t)dy

.

Moreover, the basic reproduction number

R0=
∫ b

a

p(x)c(x)

< c>
R0(x)dx=

∫ b

a

p(x)c(x)

< c>

(
RE

0 (x)+RI
0(x)

)
dx,

where

RE
0 (x) :=

c(x)ρS(x)ρE(x)

σ(x)
, RI

0(x) :=
c(x)ρS(x)ρI(x)

γ(x)
,

and the herd immunity threshold

Hhe=1−
∫ b

a

p(x)

R0(x)
dx.

Here p(x) is the initial frequency of x-type population.

4.1 The effect of heterogeneous σ(x)

Now we use the transition rate from E to I of x type population as the trait x, i.e. σ(x)=
1/x. Other attribute values in Θ(x) are independent of the transition rate from E to I.
Thus,

R0= cρSρE

∫ b

a
p(x)xdx+

1

γ
cρSρI , R0= cρSρE x̄+

1

γ
cρSρI .
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Now we compare the basic reproduction number of COVID-19 with homogeneous
population (R0) and population with heterogeneous σ(x) (R0). Here we fixed R0 = 3
[22] and similar to [40], we assume that ρE=ρI . Note that for COVID-19, individuals who
do not have symptom are still infective. Thus, we assume that exposed individuals are
infective and the number of exposed individuals can be used to characterize the number
of individuals who do not have symptom but are still infective. The transition rate from
I to R (γ) of COVID-19 is fixed as 0.1 [34]. cρSρE can be directly derived by the values
of R0, x̄ and 1/γ. For p(x), we consider three commonly used distributions (Weibull,
Gamma and Lognormal) [3, 29]. The parameters, means and standard variances in three
distributions are listed in Table 1 [3].

Table 1: Distributions associated with the transition rate from E to I.

Distribution Mean (day) SD (day) Parameters

Weibull(λ;k) 6.4 2.3 λ=7.16, k=3.05

Gamma(λ;k) 6.5 2.6 λ=6.25, k=1.04

Lognormal(λ;k) 6.8 2.4 λ=1.85, k=0.34

By direct calculation, we have R0=R0=3, and

Hho =67%, Hhe =37%(Weibull),

Hhe=43%(Gamma), Hhe =28%(Lognormal).

4.2 The effect of heterogeneous activity levels

Now we use the activity level as the trait x, i.e. c(x)=x, and assume that other attributes
are not concerned with the activity level. Then

R0=
< x2

>

< x>2
R0=

(
1+

Var

x̄2

)
R0,

and by Corollary 3.1,

Hhe =Hho−
ξ

2k
Var,

where ξ is some positive constant. An interesting finding here is that heterogeneous activ-
ity levels will enhance the disease persistence, but decrease the herd immunity threshold.

For COVID-19, we fixed R0=3 [22]. Now we use the data of contact numbers in [41]
to quantitatively compare the basic reproduction number between homogeneous popu-
lation (R0) and population with heterogenous activity levels (R0) of COVID-19 in Shang-
hai and Wuhan. The used data is from [41, Table S6], where heterogeneous activity levels
are induced by gender, age structure, type of profession (preschool student, employed,
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unemployed, retired). By direct calculation, we obtain

(Shanghai) x̄=18.7, R0=1.08R0=3.24, Hhe =63.7% (Hho =66.7%),

(Wuhan) x̄=18.7, R0=1.07R0=3.21, Hhe =64.1% (Hho =66.7%).

Finally, we consider a special case that the activity level satisfies a power law distri-
bution, i.e. p(x)∝ x−λ with x> xmin,λ>3. Here, the technical condition λ>3 is assumed
to ensure the existence of mean x̄ and Var. By direct calculations,

R0=

(
1+xλ−1

min

(λ−2)2

λ−3

)
R0,

and

Hhe =1−
λ−1

kxminλ
, Hho =1−

λ−2

kxmin(λ−1)
.

5 Conclusions and discussions

Based on the results in Sections 3 and 4, we give some answers to the following problems
in Section 1 from the perspective of human heterogeneity:

1. Will human heterogeneity increase or decrease the basic reproduction number?

If multiple types of heterogeneity are considered, human heterogeneity may increase
or decrease the basic reproduction number, and it strongly depends on the convexity of
the heterogeneity function (see Theorem 3.1). If only the activity level (contact number
variation) is considered, then heterogeneous activity level will increase the basic repro-
duction number and enhance the disease persistence (see Corollary 3.1).

2. Is the statement that human heterogeneity decreases the herd immunity level always
right [7, 19]?

Human heterogeneity may increase or decrease herd immunity level if multiple types
of heterogeneity are considered, and it strongly depends on the convexity of the hetero-
geneity function (see Theorem 3.2). If only activity level (contact number variation) is
considered, then heterogeneous activity level will decrease the herd immunity level (see
Corollary 3.2).

3. How does human heterogeneity shape the final epidemic size?

The effect of human heterogeneity on the final size of the epidemic remains a compli-
cated issue even in the case where only the heterogeneous activity level is considered (see
Theorem 3.1), and the results are obtained only under certain conditions. If activity level
and susceptibility heterogeneity are not considered, then the convexity of heterogeneity
function will determine the effects (see Theorem 3.3). If only susceptibility heterogeneity
is considered, then heterogeneity will decrease the final epidemic size (see Theorem 3.4).
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4. The challenges of human heterogeneity on modelling infectious disease.

The basic reproduction number is still an indicator of disease persistence especially
for longtime diseases, but it has limitations in indicating epidemic severity and being
used as an indicator for disease control. Results from Corollaries 3.1 and 3.2 show that
human heterogeneity may increase the basic reproduction number but decrease herd im-
munity level. The existence of human heterogeneity makes many simple ODE models
fail and gives a lot of difficulties and limitations in modelling emerging infectious dis-
eases. Trade-off between the first principle simple epidemic models and complicated
models considering human heterogeneity becomes a critical issue in modelling emerging
infectious diseases.

Our results reveal comprehensive relationships between human heterogeneities and
transmission dynamics and also raise some interesting problems. For example, the effect
of human heterogeneities on time to extinction and epidemic peak of infectious disease,
the study of which will give insights into vaccination priority and ICU beds surveillance.
How to incorporate variants data in GISAID [32] to the generalized mutation SEIR model,
and study the evolution of influenza virus or SARS-COV2? It is a meaningful project
which will be investigated in the future. Note that we consider mutation rate ǫ in the
general mutation selection model (2.1), however we did not give much attention on it,
coevolution of disease and human heterogeneities at this time is theoretically a difficult
issue and will be our focus in sequential works.
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