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Abstract. In this paper, we establish the existence and nonlinear stability of a hyper-
bolic system of conservation laws derived from a repulsive singular chemotaxis model.
By the phase plane analysis alongside Poincaré-Bendixson theorem, we first prove that
this hyperbolic system admits three different types of traveling wave profiles, which
are explicitly illustrated with numerical simulations. Then using a unified weighted
energy estimates and technique of taking anti-derivatives, we prove that all types of
traveling wave profiles, including non-monotone pulsating wave profiles, are nonlin-
early and asymptotically stable if the initial data are small perturbations with zero
mass from the spatially shifted traveling wave profiles.
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1 Introduction

Chemotaxis, the movement of an organism or entity in response to a chemical stimulus,
is a widespread phenomenon in nature. One of the pioneering chemotaxis models was
proposed by Keller and Segel [17] as follows to describe the wave propagation of bacterial
chemotaxis:

{

ut=duxx−χ[u(lnw)x]x,

wt= εwxx−µuwm,
(1.1)

where u and w denote the cell density and chemical concentration, respectively. d > 0
and ε ≥ 0 are cell and chemical diffusion coefficients, respectively, and m ≥ 0 denotes

∗Corresponding author. Email addresses: lijy645@nenu.edu.cn (J. Li), mawza@polyu.edu.hk (Z.-A. Wang)

http://www.global-sci.org/csiam-ls 153 ©2025 Global-Science Press



154 J. Li and Z.-A. Wang / CSIAM Trans. Life. Sci., 1 (2025), pp. 153-178

the consumption rate. Generally chemotaxis is said to be attractive if the chemotactic
coefficient χ > 0 and repulsive if χ < 0 with |χ| measuring the strength of chemotaxis.
The chemotaxis model (1.1) was used in [17] to describe the process that bacteria u move
up (i.e. χ>0) the concentration gradient of a nutrient (denoted by w) which is absorbed
by the bacteria (i.e. µ>0). A prominent structural feature of (1.1) is that the chemotactic
sensitivity function lnw is singular at w=0. This imposes tremendous challenges for both
analysis and numerical computations. Though the existence/nonexistence of traveling
wave solutions for any m ≥ 0 have been well understood (cf. [29, 32]), the stability of
traveling wave solutions was obtained only for the case m= 1 and still widely remains
open for the case m 6=1. In the case m=1, if χµ>0, the following Cole-Hopf transformation
(cf. [23, 34]):

v=

√
χµ

µ

wx

w
(1.2)

can remove the singularity and convert the system (1.1) into a non-singular system of
conservation laws as follows:

{

ut+(uv)x =duxx,

vt+(u+σv2)x = εvxx

(1.3)

with

σ=− ε

χ
,

where we have used the rescalings t̃=χµt and x̃=
√

χµx to rescale the model but sup-
pressed the tildes for simplicity. The transformed system (1.3) has no singularity and is
more tractable analytically. As χ>0 and hence σ<0, a large amount of interesting results
have been developed to the transformed system (1.3) for both ε > 0 and ε = 0, such as
traveling wave solutions [1–3, 19–21, 23, 24], global well-posedness of large/small solu-
tions in the whole space [6, 14, 30, 38] or in bounded domains (or intervals) with suitable
boundary conditions [22, 31, 40] and boundary layer problem [15]. When m 6=1, stability
results are restricted only to the spectral stability [25] and absolute instability [5] for the
case m = ε = 0 or instability [28] for ε > 0,m = 0. We also refer to a result in [8] for the
existence of traveling wave solutions on a generalize Keller-Segel model. Results on the
Keller-Segel model (1.1) with fractional diffusion are referred to [12, 13].

The afore-mentioned results are developed for the attractive case χ>0. For the repul-
sive case χ< 0, the Keller-Segel model (1.1) with m= 1 and µ< 0 was re-derived in [34]
based on a random walk framework to describe the biased movement of cells that deposit
signals modifying the local environment for subsequent movements, such as myxobacte-
ria or ants that deposit non-diffusive or slowly-moving chemical substances on the way
for succeeding passage. In this case, one can still use the Cole-Hopf transformation (1.2)
to get (1.3) with σ=−ε/χ>0 for which there are also many mathematical results available
for the global dynamics in bounded or unbounded domain (cf. [16, 37, 41, 42]). If σ ≥ 0
is allowed to be an arbitrary constant, the system (1.3) may have more applications. For
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example, when d= ε=0 and σ=1, the system is the so-called Leroux’s system describing
fluid dynamics (see details in [10, 33]). When d = ε= 0 and σ = 1/2, the system (1.3) is
called shallow water wave equation (cf. [9]).

As recalled above, when σ=−ε/χ<0 and χ>0, the system (1.3) has been extensively
studied in the literature. In particular it was shown that the system (1.3) admits traveling
wave solutions that are nonlinearly asymptotically stable if ε>0 is small or ε=0 (cf. [19]
and references therein), where the wave profile for u is monotonically decreasing while
the wave profile for v is monotonically increasing. However, the existence of traveling
wave solutions of (1.3) with σ> 0 has not been studied as far as we know. The purpose
of this paper is to fill this gap by studying the existence and stability of traveling wave
solutions of (1.3) with σ>0 in R subject to the following initial data:

(u,v)(x,0)=(u0,v0)(x) −→ (u±,v±) as x → ±∞. (1.4)

It turns out the existence and stability of traveling wave solutions of (1.3) with σ>0 have
some substantial differences from the case σ < 0. Firstly we find that the system (1.3)
with σ > 0 has three different types of traveling wave profiles (see Theorem 2.1) while
(1.3) with σ< 0 admits only one type of traveling wave profiles (see [19]). Secondly the
stability of traveling wave solutions of (1.3) with σ<0 requires that ε>0 is small (see [19]),
while in this paper we can establish the nonlinear stability of traveling wave solutions
of (1.3) with σ>0 for any ε>0 (see Theorem 3.1).

The rest of this paper is organized as follows. In Section 2, we shall state the existence
theorem of traveling wave solutions of (1.3) with σ>0 (see Theorem 2.1) and give details
proofs based on phase plane analysis along with Poincaré-Bendixon theorem. Moreover,
we use numerical simulations illustrate the traveling wave profiles. In Section 3, we
shall state the stability theorem of traveling wave solutions (see Theorem 3.1) and prove
it by a unified approach based on the weighted energy estimates and the technique of
taking anti-derivative. Finally, we summarize our results and discuss the conversion of
the results from the transformed system (1.3) to the original chemotaxis model (1.1).

2 Existence of traveling waves

In this section, we are devoted to studying the existence of traveling wave solutions.

2.1 Wave equations and critical points

A traveling wave solution of (1.3) in (x,t)∈ R×[0,∞) is a non-constant solution in the
form

(u,v)(x,t)=(U,V)(z), z= x−st (2.1)

with U,V∈C∞(R) satisfying the boundary conditions

U(±∞)=u±, V(±∞)=v±, Uz(±∞)=Vz(±∞)=0, (2.2)
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where s is the wave speed assumed to be non-negative without loss of generality and z
is called the wave variable. The constants u± and v± are called the asymptotic states
of u and v, respectively, describing the asymptotic behavior of traveling wave profiles as
z→±∞.

Substituting the wave ansatz (2.1) into PDE system (1.3) yields the traveling wave
equations

{

−sUz+(UV)z=dUzz,

−sVz+(U+σV2)z= εVzz.
(2.3)

Integrating (2.3) with respect to z and using (2.2), we get
{

dUz=U(V−s)+c1,

εVz=σV2−sV+U+c2,
(2.4)

where

c1=−u−(v−−s)=−u+(v+−s),

c2=−σv2
−+sv−−u−=−σv2

++sv+−u+

are constants. In what follows, we shall assume c1 = c2 = 0 for simplicity. When c1 or c2

is non-zero, similar analysis and results can be carried out with more technicalities with
the help of hyperbolic theory (cf. [23]). With c1= c2=0, ODE system (2.4) reduces to

{

dUz=U(V−s), (2.5a)

εVz=σV2−sV+U. (2.5b)

The nullclines of (2.5) satisfy

0=U(V−s), U=−σV2+sV. (2.6)

Solving (2.6), we obtain three critical points for the system (2.5) in the U-V plane as fol-
lows:

O=(0,0), A=
(

0,
s

σ

)

, B=
(

(1−σ)s2,s
)

, (2.7)

where the critical point A will coincide with B when σ=1.
Next we examine the local dynamics of (2.5) near each critical point. To this end, we

write the Jacobian matrix of (2.5) at a critical point (u∗,v∗) as

J(u∗,v∗)=







− s

d
+

v∗
d

u∗
d

1

ε
− s

ε
+

2σ

ε
v∗






.

By the trace-determinant formula, we obtain the eigenvalue λ± of J(u∗,v∗) as follows:

λ±|(u∗,v∗)=
1

2







(

1

d
+

2σ

ε

)

v∗−s

(

1

d
+

1

ε

)

±
√

(

s

d
− v∗

d
− s

ε
+

2σ

ε
v∗

)2

+
4

dε
u∗







,
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where λ−<λ+. Then we have

(λ−+λ+)|(u∗,v∗)=

(

1

d
+

2σ

ε

)

v∗−s

(

1

d
+

1

ε

)

,

(λ−λ+)|(u∗,v∗)=

(

v∗
d
− s

d

)(

2σ

ε
v∗−

s

ε

)

− u∗
dε

.

(2.8)

When s=0, (2.5) has only one trivial critical point (0,0) and the eigenvalues of the Jaco-
bian matrix at (0,0) are λ±=0. Therefore, (0,0) is a center and there will be no traveling
waves in this case. In what follows, we proceed with the case s > 0 and find the local
dynamics of each critical point as follows:

• At the critical point O=(0,0), we have

(λ−+λ+)|(0,0)=−s

(

1

d
+

1

ε

)

<0, (λ−λ+)|(0,0)=
s2

dε
>0.

Therefore, λ−<λ+<0 and O is a stable node.

• At the critical point A=(0,s/σ), we can calculate that

λ−+λ+=
s

d

(

1

σ
−1

)

+
s

ε
, λ−λ+=

s2

dε

(

1

σ
−1

)

.

Therefore, we have the following cases. When 0<σ<1, then λ−λ+>0 and λ−+λ+>0
and hence A is an unstable node; when σ=1, then λ−=0 and λ+= s/ε>0 and the
critical point A is unstable with one unstable manifold and one central manifold;
when σ>1, it has that λ−λ+<0 and hence A is a saddle.

• At the critical point B=((1−σ)s2,s), one has

λ−+λ+=
s

ε
(2σ−1), λ−λ+=

σ−1

dε
s2.

We also have three cases to discuss. If 0 < σ < 1, then λ−λ+ < 0 and hence B is
a saddle; if σ>1, then λ−+λ+>0 and λ−λ+>0, and hence B is an unstable node; if
σ=1, then λ−=0 and λ+= s/ε>0. In this case, the critical point B is unstable with
one unstable manifold and one central manifold.

We recap the aforementioned results in the following lemma.

Lemma 2.1. Considering the critical points of (2.5), we have the following conclusions:

(i) The critical point O=(0,0) is a stable node for any d, ε,σ>0.

(ii) The critical points A=(0,s/σ) and B=((1−σ)s2,s) have the properties as follows:

– If 0<σ<1, then A=(0,s/σ) is an unstable node and B=((1−σ)s2,s) is a saddle.

– If σ = 1, then A = B = (0,s/σ) and they are linearly unstable with one unstable
manifold and one central manifold.

– If σ>1, then A=(0,s/σ) is a saddle and B=((1−σ)s2,s) is an unstable node.
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2.2 Existence and proofs

Based on the results provided in Lemma 2.1, below we show the existence of traveling
wave solutions of (1.3) by phase plane analysis. Specifically, we prove the following
theorem.

Theorem 2.1. Let d, ε and σ be positive constants and consider the problem (1.3)-(1.4) in R with
u±≥0 and v±≥0. Then the following results hold:

(i) If σ≥1, the system (1.3)-(1.4) does not have non-negative traveling wave solutions.

(ii) If 0<σ<1, we have the following conclusions for given constant v−>0:

(a) If v+ = 0 and u− > 0, then there is a unique wave speed s = v− such that the sys-
tem (1.3)-(1.4) has a traveling wave solution (U,V) satisfying (2.5) and (2.2) with
u−=(1−σ)v2

−, u+=0 and Uz<0,Vz<0, which is unique up to a translation.

(b) If v+>0, then there is a unique wave speed s=σv− such that the system (1.3)-(1.4) has
a traveling wave solution (U,V) satisfying (2.5) and (2.2) with u−=0,u+=(1−σ)s2

and v+=σv− and Uz>0,Vz <0, which is unique up to a translation.

(c) If v+=0 and u−=0, then there is a unique wave speed s=σv− such that the system
(1.3)-(1.4) has a traveling wave solution (U,V) satisfying (2.5) and (2.2) with u+=0
and Vz<0, where the profile U is non-monotone and there is a point z0∈R such that
Uz>0 for z∈ (−∞,z0) and Uz<0 for z∈ (z0,∞).

Remark 2.1. It was known (cf. [19]) that the system (1.3) with σ<0 admits only one type of
traveling wave profile (U,V) with Uz<0 and Vz>0. However, the results of Theorem 2.1
assert that the system (1.3) with σ>0 may admit three different types of traveling wave
profiles and none of them is similar to the case σ < 0. In particular the non-monotone
pulsating wave profile for U is possible (see Fig. 5 for illustration), which is substantially
different from the case σ<0. This also indicates that attractive and repulsive chemotaxis
may result in very different population spreading dynamics. From mathematical point
of view, the sign of σ is of importance to determine the dynamics of the conservational
system (1.3).

2.3 Case of σ≥1

In the case σ=1, A=B=(0,s) and the system (2.5) admits only two critical points O(0,0)
and A(0,s), where O(0,0) is a stable node (see Lemma 2.1). The Jacobian matrix J at
A(0,s) is

J|A =

[

0 0

1/ε s/ε

]

.

The eigenvalues of J|A are λ− = 0,λ+= s/ε> 0 and the eigenvector associated with λ+

is (0,α) with α∈R\{0}. Since the V-axis (i.e. U=0) is an invariant set of (2.5), the unstable
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manifold emanating from A will escape along the V-axis towards O(0,0). Hence, there
are no non-trivial orbits connecting A and O to generate a traveling wave solution.

We proceed to consider the case σ>1. In this case, the critical point B=((1−σ)s2,σ)
has a negative component. Since the negative solution loses its biological relevance, we
ignore the critical point B in this case and turn to consider the possible heteroclinic orbit
connecting A to O. Similar to the above analysis, we can find the eigenvalues of the
Jacobian matrix J at A are λ+= s/ε> 0,λ−=(s/d)(1/σ−1)< 0, which entails that A is
a saddle. Since O is a stable node, we need to examine the eigenvector associated with the
eigenvalue λ+, which is (0,α) for any constant α>0. We know that the set {(U,V) :U=0}
is invariant. Thus, the unstable manifold emanating from the critical point A will proceed
along the V-axis and hence there are no non-trivial orbits connecting A and O, similar to
the case σ = 1. Consequently there are no traveling wave solutions in this case. This
proves Theorem 2.1(i).

2.4 Case of 0<σ<1

In this case, we know from Lemma 2.1 that O(0,0) is a stable node, A=(0,s/σ) is an un-
stable node and B=((1−σ)s2,s) is a saddle. Hence, in principle there exist three possible
heteroclinic orbits connecting B=((1−σ)s2,s) to O=(0,0), A=(0,s/σ) to B=((1−σ)s2,s)
and A= (0,s/σ) to O= (0,0). Each of them will generate a traveling wave solution to
(1.3). We use the “pplane” program in Matlab to plot the phase portrait of (2.5) with s=1
in Fig. 1, where these three possible heteroclinic orbits are all observed. Next we shall use
phase plane analysis to prove the existence of these heteroclinic orbits which yield three
different traveling wave profiles of (1.3) recorded in Theorem 2.1(ii).

Figure 1: A phase portrait of (2.5) with σ = 0.5 and s= 1, where the region enclosed by the dashed curves
(unshaded region) is the region relevant to generate traveling wave solutions.
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2.4.1 Heteroclinic orbit connecting B=((1−σ)s2,s) to O=(0,0)

From Lemma 2.1, we know that O=(0,0) is a stable node and B=((1−σ)s2,s) is a saddle.
Hence, there might be a heteroclinic orbit connecting the critical point B= ((1−σ)s2,s)
to O = (0,0). Next we shall verify this possibility. To this end, we construct a simply
connected open set R1 as follows:

R1={(U,V) : 0<U≤−σV2+sV, 0<V< s},

and show that all the orbits within R1 can not leave the region R1. Clearly, the region R1

is bounded by the following curves (see a schematic diagram in Fig. 2(a)):

Γ1={(U,V) |U=−σV2+sV, 0<V< s},

Γ2={(U,V) |0≤U≤ (1−σ)s2, V= s},

Γ3={(U,V) |U=0, 0<V< s}.

Along Γ1, we have

Vz=
1

ε
(σV2−sV+U)=0, Uz=

U

d
(V−s)<0.

Hence, the vector filed of (2.5) will cross the curve Γ1 and point leftward to the inside
of R1. Along Γ2, we have

Vz=
1

ε
(U+σV2−sV)<0, Uz=0,

(a) (b) (c)

Figure 2: Schematic invariant regions constructed for the system (2.5) (see (a) and (c)) and (2.10) (see (b)),
where we choose s=1 and σ=0.5.
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and thus the vector field of (2.5) will pass through Γ2 and point downward. Finally,
along Γ3,

Vz=
1

ε
(σV2−sV)=

V

ε
(σV−s)<0

since 0< σ< 1 and V < s, and Uz =U(V−s)/d= 0, which imply that the orbits of (2.5)
can only move along Γ3 towards O. Hence, we show that all orbits inside R1 can not
pass through the boundary and leave R1. We proceed to show that the unstable manifold
emanating from the saddle point B must enter the region R1. It is easy to calculate that

dV

dU

∣

∣

∣

∣

Γ1

B

=
1

s(1−2σ)
,

dV

dU

∣

∣

∣

∣

Γ2

B

=0,

where (dV/dU)|Γi
B denotes the slope of the tangent line of Γi at B. Now we examine

the direction of the unstable manifold of the critical point B, which is tangential to the
eigenvector of the positive eigenvalue of the Jacobian matrix at B

J|B =









0
s2

d
(1−σ)

1

ε

s

ε
(2σ−1)









.

Clearly, the eigenvalues of J|B are

λ±=
s

2ε

[

2σ−1±
√

(2σ−1)2+
4ε

d
(1−σ)

]

with λ−< 0 and λ+ > 0. The eigenvector associated with the positive eigenvalue λ+ is
~e=(ελ++s(1−2σ),1)⊤ . Hence, the slope of the unstable manifold of (2.5) at the critical
point B is

dV

dU

∣

∣

∣

∣

B

=
1

ελ++s(1−2σ)
.

If σ≤1/2, then it follows that

dV

dU

∣

∣

∣

∣

Γ1

B

>
dV

dU

∣

∣

∣

∣

B

>
dV

dU

∣

∣

∣

∣

Γ2

B

=0

since λ+>0 (see an illustration in Fig. 2(a) for σ=1/2). If σ>1/2, then (dV/dU)|Γ1
B <0

and
dV

dU

∣

∣

∣

∣

Γ2

B

=0<
dV

dU

∣

∣

∣

∣

B

≤∞, if σ>
1

2
and ελ++s(1−2σ)≥0

or
dV

dU

∣

∣

∣

∣

B

<
dV

dU

∣

∣

∣

∣

Γ1

B

<
dV

dU

∣

∣

∣

∣

Γ2

B

=0, if σ>
1

2
and ελ++s(1−2σ)<0.
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The above inequalities indicate that angle between the eigenvector ~e and the hori-
zontal line Γ2 is less then the angle between the tangent line of Γ1 at B and the horizontal
line Γ2. Hence, the unstable manifold of (2.5) emanating from the saddle point B must en-
ter the region R1. We next show this unstable manifold (orbit) will converge to the critical
point O by the Poincaré-Bendixson theorem. To this end, we need to prove there are no
closed (or periodic) orbits lying within R1, which can be verified by the Bendixson-Dulac
theorem. Indeed, we define a Dulac function h(U,V)=U−γ with γ>0 and rewrite (2.5) as

Uz= f (U,V), Vz= g(U,V), (2.9)

where

f (U,V)=
1

d
U(V−s), g(U,V)=

1

ε
(σV2−sV+U).

Then one can directly compute that

Λ(U,V) :=
∂

∂U
(h f )+

∂

∂V
(hg)=h

(

∂ f

∂U
+

∂g

∂V

)

+ f
∂h

∂U

=U−γ

[(

1−γ

d
+

2σ

ε

)

(V−s)+
(2σ−1)s

ε

]

.

We shall show that Λ(U,V) 6= 0 within the region R1 by choosing appropriate γ> 0.
First note V−s<0 in R1. If 0<σ≤1/2, it is clear that Λ(U,V)<0 if we choose 0<γ<1.
While if σ>1/2, we may choose γ>1 suitably large so that (1−γ)/d+2σ/ε<0 and hence
Λ(U,V)>0. Hence, we are able to choose suitable γ>0 so that

∂

∂U
(h f )+

∂

∂V
(hg) 6=0

within the region R1. Since the region R1 is simply connected and h(U,V) is C1, by the
Bendixson-Dulac theorem (cf. [18, 39]), the dynamical system (2.5) has no periodic orbits
inside the region R1. Further by the Poincaré-Bendixson theorem, we conclude that the
orbit (i.e. unstable manifold) emanating from the saddle point B must converge to O
as z→∞. This orbit generates a traveling wave solution (U,V) connecting B=((1−σ)s2,s)
to O= (0,0). Since the traveling wave ODE system (2.5) is autonomous, if (U,V)(z) is
a solution, then so is (U,V)(z)= (U,V)(z−z0) for any constant z0, which has the same
orbit as (U,V)(z) and corresponds to a traveling wave solution of the same speed that is
translated by a constant distance z0. Since B is a saddle point, there is only one unstable
manifold emanating from B and entering the region R1 and hence this heteroclinic orbit
is unique up to a translation.

Since V< s and σV2−sV+U<0 inside the region R1, then it follows that

Uz=
1

d
U(V−s)<0, Vz=

1

ε
(σV2−sV+U)<0,

which implies that the traveling wave profiles U and V obtained above are monotonically
decreasing. This completed the proof of Theorem 2.1(ii)-(a). We use Matlab PDEPE solver
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Figure 3: Numerical simulations of traveling waves generated by the model (1.3) connecting B to O, where
d = ε= 1 and σ = 0.5. The arrows indicates the wave propagation direction as time evolves and each curve
represents the solution profile at a certain time spaced by t=10 starting from the initial value (u0,v0) plotted
at the far left.

to numerically solve the system (1.3) and the numerical simulations of solutions are plot-
ted in Fig. 3 where we do obverse monotonically decreasing traveling waves propagating
as time evolves.

2.4.2 Heteroclinic orbit connecting A=(0,s/σ) to B=((1−σ)s2,s)

From Lemma 2.1, we know that A = (0,s/σ) is an unstable node and B = ((1−σ)s2,s)
is a saddle. Hence, there might be a heteroclinic orbit connecting A = (0,s/σ) to
B = ((1−σ)s2,s). Since A = (0,s/σ) is an unstable node, it is impossible to construct
an invariant set containing A as a boundary or interior point directly. Below we de-
velop an idea by reversing the direction of the possible orbit connecting A=(0,s/σ) and
B=((1−σ)s2,s). That is, we set ξ=−z and rewrite the ODE system (2.5) as

{

dUξ =−U(V−s),

εVξ =−σV2+sV−U.
(2.10)

Now A=(0,s/σ) is a stable node for the new system (2.10) with independent variable ξ
while B=((1−σ)s2,s) is still a saddle. If we can show that (2.10) has a heteroclinic orbit
connecting B=((1−σ)s2,s) to A=(0,s/σ), then the same heteroclinic orbit with reversed
direction gives a heteroclinic orbit connecting A = (0,s/σ) to B = ((1−σ)s2,s) for the
system (2.5). Next we focus on the proof of the existence of heteroclinic orbit connecting
B = ((1−σ)s2,s) to A = (0,s/σ) for the ODE system (2.10). To this end, we construct
an open and simply connected region R2 bounded by the following curves (see Fig. 2(b)
for an illustration):

Γ1={(U,V) |U=−σV2+sV, s<V< s/σ},

Γ2={(U,V) |0≤U≤ (1−σ)s2,V= s},

Γ3={(U,V) |U=0, s<V< s/σ}.
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Applying the same arguments as in Section 2.4.1, we can show the ODE system (2.10)
admits a heteroclinic orbit connecting B = ((1−σ)s2,s) to A = (0,s/σ) which is unique
up to a translation. For brevity, we omit the details here. Reversing the direction of this
orbit, we get a heteroclinic orbit connecting A=(0,s/σ) to B=((1−σ)s2,s) for the original
ODE system (2.5), which yields a traveling wave solution (U,V) to (1.3) unique up to
a translation. Since U<−σV2+sV and s<V<s/σ within R2, we have Uξ=−U(V−s)/d<0
and Vξ =(−σV2+sV−U)/ε>0. Hence, Uz =−Uξ >0 and Vz =−Vξ <0. This completes
the proof of Theorem 2.1(ii)-(b). We use numerical simulation to illustrate the traveling
wave profiles shown in Fig. 4 for this case, which are well consistent with the qualitative
results stated in Theorem 2.1(ii)-(b).

Figure 4: Numerical simulations of traveling waves generated by the model (1.3) connecting A to B, where
d = ε= 1 and σ = 0.5. The arrows indicates the wave propagation direction as time evolves and each curve
represents the solution profile at a certain time spaced by t=10 starting from the initial value (u0,v0) plotted
at the far left.

2.4.3 Heteroclinic orbit connecting A(0,s/σ) to O(0,0)

Now we prove that the system (2.5) admits heteroclinic orbits connecting A(0,s/σ) to
O(0,0). In Section 2.4.2, we show that there is a heteroclinic orbit connecting A(0,s/σ)
to B((1−σ)s2,s), which indeed is a separatrix denoted by Γ1 in the following. In Sec-
tion 2.4.1, it is shown that there is a heteroclinic orbit connecting B((1−σ)s2,s) to O(0,0),
which is another separatrix denoted by Γ2. To prove there is a heteroclinic orbit connect-
ing A(0,s/σ) to O(0,0), we now consider a simply connected open region R3 bounded
by Γ1,Γ2 and Γ3, where Γ3 denotes the segment OA, as shown in Fig. 2(c). We have pre-
viously shown that A is an unstable node and O is a stable node. Hence, any unstable
manifold emanating from A and pointing into the region R3 can not touch or intersect
curves Γi (i=1,2,3) because of the uniqueness of solutions to the ODE system (2.5). Next,
we shall apply the Bendixson-Dulac theorem to show that there are no closed/periodic
orbits existing within the region R3. For this purpose, we construct a Dulac function:
ϕ(U,V)=V−θ, where θ≫1. By (2.9), one can directly compute that
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∂

∂U
(ϕ f )+

∂

∂V
(ϕg)

=

(

1

d
+

2σ

ε
− θσ

ε

)

V−θ+1+sV−θ

(

θ

ε
− 1

d
− 1

ε

)

− θ

ε
UV−θ−1

=V−θ−1

(

1

d
+
(2−θ)σ

ε

)(

V2+
dθ−ε−d

ε+2dσ−dσθ
sV− θU

ε/d+2σ−σθ

)

.

It is straightforward to verify that

lim
θ→∞

(

V2+
dθ−ε−d

ε+2dσ−dσθ
sV− θU

ε/d+2σ−σθ

)

=
1

σ
(σV2−sV+U).

Since the region R3 is always on the left to the parabola U=−σV2+sV (see Fig. 2(c)),
we have σV2−sV+U < 0 in R3. It is also clear that 1/d+(2−θ)σ/ε < 0 as long as
θ> ε/(dσ)+2. Therefore, by choosing θ>0 sufficiently large, we can have

∂

∂U
(ϕ f )+

∂

∂V
(ϕg)>0

in R3. This means that (∂/∂U)(ϕ f )+(∂/∂V)(ϕg) 6=0 everywhere in the region R3. Hence,
the Bendixson-Dulac theorem entails that no periodic orbit is contained within the re-
gion R3. From the Poincaré-Bendixson theorem, the orbit emanating from the unstable
manifolds of A and pointing into the region R3 has to converge to the critical points O
or B. But it can not converge to the critical point B since it is a saddle point and Γ1 is
a separatrix. Therefore, this orbit must converge to the stable node O. Since there are
infinite many outgoing unstable manifolds from A entering the region R3, there will be
infinite many such heteroclinic orbits connecting A to O, which generate infinite many
traveling wave solutions. Since U<−σV2+sV in the region R3, it follows that

Vz=
1

ε
(σV2−sV+U)<0.

Due to the facts that V∈(0,s/σ) and 0<σ<1, there is a unique z0∈R such that V(z0)=s,
which implies V > s if z < z0 while V < s if z > z0. Noticing that Uz = U(V−s)/d, we
have Uz >0 if z< z0 and Uz <0 if z> z0. Collecting the above results for V, one finds Uz

will change the sign once at z= z0, namely the traveling wave profile U will change the
monotonicity once. This completes the proof of Theorem 2.1(ii)-(c). We plot the numerical
simulations of such traveling wave profiles in Fig. 5, which well agree with the results
recorded in Theorem 2.1(ii)-(c).

3 Nonlinear asymptotic stability

In this section, we prove the nonlinear asymptotic stability of the traveling wave solu-
tions (U,V) obtained in Theorem 2.1. Precisely, we show that the solution of (1.3)-(1.4)
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Figure 5: Numerical simulations of traveling waves generated by the model (1.3) connecting A to O plotted in
different ways, where ε=d=1 and σ=0.5 and initial value (u0,v0) is given by u0=exp(x−100)/(1+exp(2(x−
100))),v0 =1/(1+exp((x−100))).

approaches to a traveling wave solution (U,V)(x−st), properly translated by an amount
x0, i.e.

sup
x∈R

|(u,v)(x,t)−(U,V)(x+x0−st)| → 0 as t → +∞,

where x0 satisfies the following identity derived from the principle of conservation of
mass (cf. [35]):

∫ +∞

−∞

(

u0(x)−U(x)
v0(x)−V(x)

)

dx= x0

(

u+−u−
v+−v−

)

+βr1(u−,v−),

where r1(u−,v−) denotes the first right eigenvector of the Jacobian matrix of (1.3) with
d = ε = 0 at (u−,v−). The coefficient β yields the diffusion wave in general [35]. Both
β and x0 are uniquely determined by the initial data (u0,v0). For the stability of small-
amplitude shock waves of conservation laws with diffusion waves (i.e. β 6= 0), we refer
to [27, 36] for details. In the present paper, we will neglect the diffusion wave by assum-
ing β=0 but consider the stability of large-amplitude waves (i.e. |u−−u+| and |v−−v+|
can be arbitrarily large). The stability of large-amplitude traveling waves of conserva-
tion laws is a prominent question, and there are no results for general conservation laws
(cf. [11,26,27]) except some special systems (cf. [19,23]). Then by the conserved equations
in (1.3), we can show that

∫

R

(

u(x,t)−U(x+x0−st)
v(x,t)−V(x+x0−st)

)

dx=
∫

R

(

u0(x)−U(x+x0)
v0(x)−V(x+x0)

)

dx



J. Li and Z.-A. Wang / CSIAM Trans. Life. Sci., 1 (2025), pp. 153-178 167

=
∫

R

(

u0(x)−U(x)
v0(x)−V(x)

)

dx+
∫

R

(

U(x)−U(x+x0)
V(x)−V(x+x0)

)

dx

=
∫

R

(

u0(x)−U(x)
v0(x)−V(x)

)

dx−x0

(

u+−u−
v+−v−

)

=~0. (3.1)

This allows us to employ the technique of taking anti-derivative to decompose the solu-
tion as

(u,v)(x,t)=(U,V)(x+x0−st)+(φz,ψz)(z,t), (3.2)

where z= x−st. That is

(

φ(z,t),ψ(z,t)
)

=
∫ z

−∞

(

u(y,t)−U(y+x0−st),v(y,t)−V(y+x0−st)
)

dy

for all z∈R and t≥0. It then follows from (3.1) that

φ(±∞,t)=ψ(±∞,t)=0, ∀t≥0.

The initial data of (φ,ψ) is thus given by

(φ0,ψ0)(z)=
∫ z

−∞

(

u0(y)−U(y+x0),v0(y)−V(y+x0)
)

dy (3.3)

with (φ0,ψ0)(±∞)=0.
Before stating our results on the stability of traveling wave solutions, we shall intro-

duce some notation. In the sequel,
∫ ∞

−∞
f (x,t)dx and

∫ t
0

∫ ∞

−∞
f (x,t)dxdt will be abbreviated

as
∫

f (x,t) and
∫ t

0

∫

f (x,t). Hk
w(R) denotes the space of measurable functions f so that√

w∂
j
x f ∈L2(R) for 0≤ j≤ k with norm

‖ f‖Hk
w(R) :=

(

k

∑
j=0

∫

w(x)|∂j
x f |2dx

)
1
2

.

For simplicity, the conventions

‖ f‖ :=‖ f‖L2 (R), ‖ f‖w :=‖
√

w f‖L2(R), ‖ f‖k :=‖ f‖Hk(R), ‖ f‖k,w :=‖·‖Hk
w(R)

for k=1,2,.. . will be used. We also use C to denote a generic positive constant indepen-
dent of time t which may vary in the context.

Theorem 3.1. Let (U,V)(x−st) be a traveling wave solution obtained in Theorem 2.1. Assume
that there exists a constant x0 such that the initial perturbation from the spatially shifted traveling
wave profile (U,V) with shift x0 is of integral zero, namely the initial value (φ0,ψ0) defined
in (3.3) satisfies (φ0,ψ0)(±∞)=0. Then there exists a constant δ>0 such that if

‖u0−U‖1,w+‖v0−V‖1+‖φ0‖w+‖ψ0‖≤δ,
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the Cauchy problem (1.3)-(1.4) has a unique global solution (u,v)(x,t) satisfying

(u−U,v−V)∈C
(

[0,∞);H1
w×H1

)

∩L2
(

(0,∞);H2
w×H2

)

,

where the weight function w(z) :=1/U(z) for z∈R. Furthermore, the solution has the following
asymptotic stability:

sup
x∈R

|(u,v)(x,t)−(U,V)(x+x0−st)| → 0 as t → +∞.

Remark 3.1. When σ<0, similar results on the nonlinear asymptotic stability of traveling
wave solutions have been obtained in [19] for ε> 0 small. But the nonlinear asymptotic
stability results in Theorem 3.1 for σ>0 hold true for any ε>0. This is another essential
difference between σ< 0 and σ> 0, in addition to the differences on the traveling wave
profiles discussed in Remark 2.1. Moveover, it is worthwhile to note that the nonlinear
asymptotic stability in Theorem 3.1 particularly holds true for the case that U is a non-
monotone pulsating wave profile since the unified approach used to prove the stability
result does not depend on the monotonicity of U.

To show Theorem 3.1, we first derive the equations for (φ,ψ). Indeed, substituting
(3.2) into (1.3), assuming x0=0 without loss of generality, using (2.3) and integrating the
resulting system in z, after some calculations, we get











φt=dφzz+(s−V)φz−Uψz−φzψz, z∈R, t>0, (3.4a)

ψt= εψzz+(s−2σV)ψz−φz−σψ2
z , z∈R, t>0, (3.4b)

φ(±∞,t)=ψ(±∞,t)=0. (3.4c)

We look for solutions of system (3.4) in the following solution space:

X(0,T) :=
{(

φ(z,t),ψ(z,t)
)

: φ∈C
(

[0,T];H2
w

)

,φz∈L2
(

(0,T);H2
w

)

,

ψ∈C([0,T];H2),ψz∈L2
(

(0,T);H2
)}

,

where w=1/U. Notice that the traveling wave profile U>0 is bounded in R. Then there
is a constant c0>0 such that w≥ c0.

Define

N(t) := sup
τ∈[0,t]

(‖φ(·,τ)‖2,w+‖ψ(·,τ)‖2).

Using the Eq. (2.5a) and Vz<0, we obtain

|Uz|
U

=
|V−s|

d
≤ v−

d
,

∣

∣

∣

∣

(

φ√
U

)

z

∣

∣

∣

∣

=

∣

∣

∣

∣

φz√
U
− φUz

2U
√

U

∣

∣

∣

∣

≤ |φz|√
U
+

v−
2d

· |φ|√
U

.
(3.5)
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Hence, by a Sobolev type inequality ‖ f‖2
L∞ ≤2‖ f‖L2‖ fx‖L2 for all f ∈W1,2(R), we have

sup
τ∈[0,t]

{
∥

∥

∥

∥

φ(·,τ)√
U

∥

∥

∥

∥

L∞

,

∥

∥

∥

∥

φz(·,τ)√
U

∥

∥

∥

∥

L∞

,‖ψ(·,τ)‖L∞ ,‖ψz(·,τ)‖L∞

}

≤C0N(t), (3.6)

where C0=C0(v−,d) is a positive constant. Owing to (3.2), Theorem 3.1 is a consequence
of the following result for the reformulated system (3.4).

Proposition 3.1. Let the assumptions in Theorem 3.1 hold. There exists a positive constant δ0,
such that if N(0) ≤ δ0, then the Cauchy problem (3.4) has a unique global solution (φ,ψ) ∈
X(0,+∞) satisfying

‖φ‖2
2,w+‖ψ‖2

2+
∫ t

0

(

‖φz(·,τ)‖2
2,w+‖ψz(·,τ)‖2

2

)

dτ

≤C
(

‖φ0‖2
2,w+‖ψ0‖2

2

)

≤CN2(0) (3.7)

for all t∈ [0,+∞). Moreover, it holds that

sup
z∈R

|(φz,ψz)(z,t)| → 0 as t → ∞. (3.8)

To prove Proposition 3.1, we first present the local existence of a unique solution
to system (3.4), which can be obtained by the standard iteration argument (cf. [4]) and
details will be omitted for brevity.

Proposition 3.2 (Local Existence). For any δ1>0, there exists a positive constant T0 depending
on δ1 such that if (φ0,ψ0)∈ H2

w×H2 and N(0)≤ δ1, then (3.4) has a unique solution (φ,ψ)∈
X(0,T0) satisfying N(t)≤2N(0) for any t∈ [0,T0].

The global existence of solutions to system (3.4) follows from local existence of solu-
tions stated in Proposition 3.2 alongside the following a priori estimates, based on the
standard continuation argument.

Proposition 3.3 (A Priori Estimate). Suppose that (φ,ψ)∈ X(0,T) is a solution to (3.4) ob-
tained in Proposition 3.2 for some T > 0. Then there exists a constant δ2 > 0 independent of T
such that if N(t)≤ δ2 for any t ∈ [0,T], then the solution (φ,ψ) of (3.4) satisfies (3.7) for any
t∈ [0,T].

We prove Proposition 3.3 by a series of results shown below.

Lemma 3.1. Under the assumptions of Proposition 3.3, there exists a constant C>0 independent
of t such that if C0N(t)≤min{d,ε/3}, then the solution of (3.4) satisfies

∫

φ2

U
+
∫

ψ2+d
∫ t

0

∫

φ2
z

U
+ε
∫ t

0

∫

ψ2
z ≤C

∫

(

φ2
0

U
+ψ2

0

)

. (3.9)



170 J. Li and Z.-A. Wang / CSIAM Trans. Life. Sci., 1 (2025), pp. 153-178

Proof. Multiplying the Eq. (3.4a) by 2φ/U and the Eq. (3.4b) by 2ψ, and adding them, we
obtain

(

φ2

U
+ψ2

)

t

+
2dφ2

z

U
+2εψ2

z +φ2

[

−
(

d

U

)

zz

+

(

s−V

U

)

z

]

−2σVzψ2

=

[

2dφφz

U
−
(

d

U

)

z

φ2+
s−V

U
φ2−2φψ+2εψzψ+(s−2σV)ψ2

]

z

− 2φφzψz

U
−2σψψ2

z . (3.10)

By the Eq. (2.5a) , a direct calculation yields

−
(

d

U

)

zz

+

(

s−V

U

)

z

=0. (3.11)

Then integrating (3.10) in z along with the fact Vz<0, we get

d

dt

∫

(

φ2

U
+ψ2

)

+2d
∫

φ2
z

U
+2ε

∫

ψ2
z+2σ

∫

|Vz|ψ2

≤2
∫ |φφzψz|

U
+2σ

∫

|ψ|ψ2
z . (3.12)

By Young’s inequality alongside (3.6) and the fact that 0<σ<1, we can estimate the two
terms on the right-hand side of (3.12) as follows:

2
∫ |φφzψz|

U
≤2

∥

∥

∥

∥

φ√
U
(·,t)

∥

∥

∥

∥

L∞

∫ |φzψz|√
U

≤C0N(t)
∫

φ2
z

U
+C0N(t)

∫

ψ2
z ,

2σ
∫

|ψ|ψ2
z ≤2C0N(t)

∫

ψ2
z .

Then substituting the above two inequalities into (3.12) yields that

∫

(

φ2

U
+ψ2

)

+
(

2d−C0N(t)
)

∫ t

0

∫

φ2
z

U
+
(

2ε−3C0N(t)
)

∫ t

0

∫

ψ2
z ≤

∫

(

φ2
0

U
+ψ2

0

)

,

which gives (3.9) under our assumption C0N(t)≤min{d,ε/3}.

We proceed to derive the estimate of the first order derivatives of (φ,ψ).

Lemma 3.2. Let the assumptions of Proposition 3.3 hold. Then there exists a constant C>0 such
that if C0N(t)≤min{d,ε/3}, then the solution of (3.4) satisfies

∫

φ2
z

U
+
∫

ψ2
z+d

∫ t

0

∫

φ2
zz

U
+ε
∫ t

0

∫

ψ2
zz ≤C

∫

(

φ2
0z

U
+

φ2
0

U
+ψ2

0z+ψ2
0

)

. (3.13)
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Proof. Differentiating (3.4) with respect to z yields

{

φzt=dφzzz+(s−V)φzz−Vzφz−Uψzz−Uzψz−(φzψz)z, (3.14a)

ψzt= εψzzz+(s−2σV)ψzz−2σVzψz−φzz−2σψzψzz. (3.14b)

Multiplying the Eq. (3.14a) by 2φz/U and the Eq. (3.14b) by 2ψz, after some careful calcu-
lations, we end up with

(

φ2
z

U
+ψ2

z

)

t

+
2dφ2

zz

U
+2εψ2

zz+φ2
z

[

−
(

d

U

)

zz

+

(

s−V

U

)

z

]

=

[

2dφzzφz

U
−
(

d

U

)

z

φ2
z+

(s−V)

U
φ2

z−2ψzφz+2εψzψzz+(s−2σV)ψ2
z

]

z

− 2Uzφzψz

U
− 2Vzφ2

z

U
−2σVzψ2

z−
2φz(φzψz)z

U
−4σψ2

z ψzz. (3.15)

Using (3.11) again, we integrate (3.15) over R×(0,t) alongside the fact ψ2
z ψzz =(ψ3

z /3)z

and arrive at

∫

(

φ2
z

U
+ψ2

z

)

+2d
∫ t

0

∫

φ2
zz

U
+2ε

∫ t

0

∫

ψ2
zz

=
∫

(

φ2
0z

U
+ψ2

0z

)

−2
∫

Uzφzψz

U
−2

∫

Vzφ2
z

U
−2

∫

σVzψ2
z−2

∫

φz(φzψz)z

U
. (3.16)

Recalling (3.5) and (2.5), we have

|Uz|
U

=
|V−s|

d
≤ v−

d
.

Thus, by Young’s inequality, we get

∣

∣

∣

∣

Uzφzψz

U

∣

∣

∣

∣

≤ v−|φzψz|
d

≤ dφ2
z

2U
+

v2
−Uψ2

z

2d3
≤ dφ2

z

2U
+

ūv2
−ψ2

z

2d3
,

where ū = supz∈R
U(z). Indeed, we have that ū ≤ (1−σ)s2, where s varies in different

wave profiles (see the statement of Theorem 2.1).

Using the Eq. (2.5b), one has

|Vz|≤
σv2

−+sv−+(1−σ)s2

ε
=: c0.

It then follows that

−2Vzφ2
z

U
−2σVzψ2

z ≤2c0
φ2

z

U
+2σc0ψ2

z .
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Noticing that ‖φz/
√

U‖L∞ ≤C0N(t) from (3.6), we use Cauchy-Schwarz inequality to get

φz(φzψz)z

U
=

φz√
U
· φzz√

U
·ψz+

φz√
U
· φz√

U
·ψzz

≤2C0N(t)

(

φ2
zz

U
+

φ2
z

U
+ψ2

z+ψ2
zz

)

.

Then inserting the above estimates into (3.16) and using (3.9), we end up with

∫

(

φ2
z

U
+ψ2

z

)

+2d
∫ t

0

∫

φ2
zz

U
+2ε

∫ t

0

∫

ψ2
zz

≤
∫

(

φ2
0z

U
+ψ2

0z

)

+
(

C+C0N(t)
)

∫ t

0

∫

(

φ2
z

U
+ψ2

z

)

+C0N(t)
∫ t

0

∫

(

φ2
zz

U
+ψ2

zz

)

≤C
∫

(

φ2
0z

U
+ψ2

0z+
φ2

0

U
+ψ2

0

)

+C0N(t)
∫ t

0

∫

(

φ2
zz

U
+ψ2

zz

)

, (3.17)

where we have used (3.6) in the second inequality. Therefore, if C0N(t)≤min{d,ε/2},
the inequality immediately (3.13) follows from (3.17).

Next we give the estimates of the second order derivatives of (φ,ψ).

Lemma 3.3. Under the assumptions of Proposition 3.3, there exists a constant C>0 such that if
C0N(t)≤min{d,ε/3}, we have the following estimates:

‖φzz‖2
w+‖ψzz‖2+d

∫ t

0
‖φzzz(·,τ)‖2

wdτ+ε
∫ t

0
‖ψzzz(·,τ)‖2dτ

≤C
(

‖φ0‖2
2,w+‖ψ0‖2

2

)

, (3.18)

where w=1/U.

Proof. We differentiate (3.14) with respect to z to get











φzzt=dφzzzz+(s−V)φzzz−2Vzφzz−Vzzφz−Uzzψz

−2Uzψzz−Uψzzz−(φzψz)zz, (3.19a)

ψzzt = εψzzzz+(s−2σV)ψzzz−4σVzψzz−2σVzzψz−φzzz−2σ(ψzψzz)z. (3.19b)

Multiplying the Eq. (3.19a) by 2φzz/U and the Eq. (3.19b) by 2ψzz, with some tedious
computations, we have

(

φ2
zz

U
+ψ2

zz

)

t

+
2dφ2

zzz

U
+2εψ2

zzz+φ2
zz

[

−
(

d

U

)

zz

+

(

s−V

U

)

z

]

=

[

2dφzzzφzz

U
−
(

d

U

)

z

φ2
zz+

(s−V)

U
φ2

zz−2ψzzφzz+2εψzzψzzz+(s−2σV)ψ2
zz
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−4σψzψ2
zz−

2(φzψz)zφzz

U

]

z

− 4Vzφ2
zz

U
− 2Vzzφzφzz

U
− 2Uzzφzzψz

U
− 4Uzφzzψzz

U

−6σVzψ2
zz−4σVzzψzψzz+2(φzψz)z

(

φzz

U

)

z

+4σψzψzzψzzz. (3.20)

Thanks to Eqs. (2.3) and (2.5) along with results in the existence Theorem 2.1, we can
easily have

|Vz|≤C, |Vzz|≤C,
|Uzz|

U
≤ (V−s)2

d2
+
|Vz|

d
≤C,

|Uz|
U

≤ v−
d

(3.21)

for some constant C>0. Then the following inequalities obviously hold:
∣

∣

∣

∣

4Vzφ2
zz

U

∣

∣

∣

∣

≤C
φ2

zz

U
, 6σVzψ2

zz ≤Cψ2
zz, 4σVzzψzψzz≤C

(

ψ2
z+ψ2

zz

)

.

Using (3.6) and Cauchy-Schwarz inequality alongside the fact 0<σ<1, we can get

4σψzψzzψzzz≤2C0N(t)
(

ψ2
zz+ψ2

zzz

)

and
∣

∣

∣

∣

(φzψz)z

(

φzz

U

)

z

∣

∣

∣

∣

≤
∣

∣

∣

∣

ψz
φzz√

U

φzzz√
U

∣

∣

∣

∣

+

∣

∣

∣

∣

v−ψz

d

φ2
zz

U

∣

∣

∣

∣

+

∣

∣

∣

∣

ψzz
φz√

U

φzzz√
U

∣

∣

∣

∣

+

∣

∣

∣

∣

v−ψzz

d

φz√
U

φzz√
U

∣

∣

∣

∣

≤ Cφ2
z

U
+
(

C+C0N(t)
)φ2

zz

U
+2C0N(t)

φ2
zzz

U
+C0N(t)ψ2

zz.

Noticing that U≥0 is bounded, by Young’s inequality and (3.21), one has
∣

∣

∣

∣

2Vzzφzφzz

U

∣

∣

∣

∣

≤C

(

φ2
z

U
+

φ2
zz

U

)

,

2|Uzzφzzψz|
U

≤C|φzzψz|≤
φ2

zz

U
+Cψ2

z ,

4|Uzφzzψzz|
U

≤ 4v−|φzzψzz|
d

≤ φ2
zz

U
+Cψ2

zz.

Using the above inequalities alongside (3.11) and integrating (3.20) over (0,t)×(−∞,∞),
we end up with

∫

(

φ2
zz

U
+ψ2

zz

)

+2d
∫ t

0

∫

φ2
zzz

U
+2ε

∫ t

0

∫

ψ2
zzz

≤
(

C+2C0N(t)
)

∫ t

0

∫

(

φ2
zz

U
+ψ2

zz

)

+C
∫ t

0

∫

(

φ2
z

U
+ψ2

z

)

+2C0N(t)
∫ t

0

∫

(

φ2
zzz

U
+ψ2

zzz

)

.

Therefore, we get the desired inequality (3.18) by using (3.9) and (3.13) under the condi-
tion C0N(t)≤min{d,ε/3}.
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Proof of Theorem 3.1. Owing to (3.2), Theorem 3.1 is a consequence of Proposition 3.1. We
know the global estimate (3.7) has been given by Proposition 3.3 which is verified by the
results in Lemmas 3.1-3.3. Therefore, to finish the proof of Theorem 3.1, it remains to
prove (3.8) in view of (3.2). To show (3.8), we first recall a basic result (cf. [7]):

if f ∈W1,1(0,∞) and f ≥0, then f → 0 as t → ∞. (3.22)

Then from the global estimate (3.7), we claim that

‖φz(·,t)‖+‖ψz(·,t)‖ → 0 as t → +∞. (3.23)

We first show that ‖φz(t)‖→ 0 as t→+∞. Noticing that ‖φz‖2 ∈ L1(0,∞) was given by
(3.7) directly by the fact that ‖φz‖2≤c‖φz‖2

w for some constant c>0, we just need to show
d(‖φz‖2)/dt∈ L1(0,∞). To this end, we remark that U,V,Uz and Vz are bounded due to
the results in Theorem 2.1 and equations in (2.5). Then from (3.14), (3.5) and (3.6), by the
integration by parts and the Young inequality, we find

d

dt
‖φz‖2=

d

dt

∫

R

φ2
z =2

∫

R

φzφzt

=2
∫

R

φz[dφzzz+(s−V)φzz−Vzφz−Uψzz−Uzψz−(φzψz)z]

≤C
∫

R

(

φ2
z+φ2

zz+ψ2
z+ψ2

zz

)

≤C
(

‖φz(t)‖2
1,w+‖ψz(t)‖2

1

)

,

where we have used the fact ‖φz(t)‖1 ≤ c1‖φz(t)‖1,w for some constant c1 > 0. Then it
follows from the global estimate (3.7) that d(‖φz‖2)/dt∈ L1(0,∞), which further implies
that ‖φz(t)‖2→0 by (3.22) and hence ‖φz(t)‖→0 as t→+∞.

We next show that ‖ψz(t)‖→ 0 as t→+∞. Since ‖ψz‖2 ∈ L1(0,∞) follows from (3.7)
directly, it remains to show d(‖ψz‖2)/dt ∈ L1(0,∞). Similar to the argument above, we
have

d

dt
‖ψz‖2=2

∫

R

ψzψzt

=2
∫

R

ψz[εψzzz+(s−2σV)ψzz−2σVzψz−φzz−2σψzψzz]

≤C
∫

R

(

φ2
zz+ψ2

z+ψ2
zz

)

,

which alongside (3.7) implies d(‖ψz‖2)/dt∈L1(0,∞). This gives that ‖ψz(t)‖2 →0 due to
(3.22) and hence ‖ψz(t)‖→0 as t→∞.

Now with (3.23) in hand, for all z∈R, it follows from (3.7) that

φ2
z(z,t)=2

∫ z

−∞
φzφzz(y,t)dy

≤2‖φz(t)‖‖φzz(t)‖≤2‖φz(t)‖‖φzz(t)‖w → 0 as t → ∞.
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This implies that supz∈R
|φz(z,t)|→0 as t→∞. The same argument applied to ψz gives

sup
z∈R

|ψz(z,t)| → 0 as t → ∞.

Hence, (3.8) is proved and the proof of Proposition 3.1 is finished. Consequently, we
obtain Theorem 3.1.

4 Summary and discussion

We are concerned with the existence and nonlinear stability of a conservational system
(1.3) with a parameter σ=−ε/χ, which is transformed from a singular Keller-Segel type
chemotaxis system (1.1) via the Cole-Hopf transformation (1.2). When σ<0 (i.e. χ>0 and
chemotaxis is attractive), it has been shown in the literature [19, 23] that the system (1.3)
admits a unique type of traveling wave solution (U,V)(z) satisfying Uz < 0 and Vz > 0,
which is nonlinearly stable against a small perturbation. In this paper, we consider the
traveling wave solutions of (1.3) with σ> 0 (i.e. χ< 0 and chemotaxis is repulsive) and
surprisingly find that there are three different types of traveling wave profiles (U,V), in
contrast to the case σ < 0. The common feature of these three different traveling wave
profiles is that Vz < 0 (namely V is always monotonically decreasing), see Theorem 2.1
and numerical simulations showing different traveling wave profiles in Figs. 3-5. Our re-
sults indicate the repulsive chemotaxis may have very different dynamics from attractive
chemotaxis. Moreover, we develop a unified approach based on the weighted energy
estimates and the technique of taking anti-derivative to show that all traveling wave so-
lutions are nonlinearly stable if the initial data are small perturbations with zero integral
from the spatially shifted traveling wave profiles (see Theorem 3.1).

In the rest of this section, we shall discuss the existence and/or stability of traveling
wave solutions to the original Keller-Segel system (1.1). Due to the possible logarithmic
singularity, the Keller-Segel system (1.1) was rarely directly studied. Instead it was often
studied via the Cole-Hopf transformation (1.2) which transforms (1.1) into a nonsingu-
lar system (1.3). Now a natural question is whether the results of the transformed sys-
tem (1.3) can be transferred to the original Keller-Segel system (1.1). The answer seems
to be elusive since the Cole-Hopf transformation (1.2) is not necessarily solvable for w
given v solving (1.3). Below we shall briefly discuss whether a traveling wave solution
of (1.1) can be obtained from (1.3) via (1.2).

In the attractive case χ > 0,µ > 0, where σ =−ε/χ < 0, it was shown (cf. [32]) that
(1.3) admits a unique traveling wave solution (U,V) such that V<0,Uz <0,Vz >0. Then
solving the Cole-Hopf transformation V =

√
χµWz/(µW) for W, one can get a traveling

wave profile W(z) satisfying Wz>0, which along with U gives a traveling wave solution
of (1.1), see details in [24]. However, in the repulsive case χ < 0,µ < 0 considered in
this paper, where σ> 0, we have shown that (1.3) admits three different traveling wave
profiles (U,V) as recorded in Theorem 2.1. Now assuming (U,W)(z) is a traveling wave
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solution of (1.1) satisfying (U,W)(±∞)=(u±,w±), where W is solved from (1.2)

λV(z)=−Wz

W
(4.1)

with λ=−µ/
√

χµ> 0. Then there must exist a point z∗ ∈R such that W(z∗) 6= 0 (since
otherwise W≡0 is not a traveling wave profile). Solving (4.1) directly, we get

W(z)=W(z∗)e
−λ
∫ z

z∗ V(ξ)dξ . (4.2)

Note that the traveling wave profile (U,V) of (1.3) satisfies V > 0 and Vz < 0 (see the
statement of Theorem 2.1), namely V is a monotonically decreasing traveling wavefront
with V(−∞)=v−>0. Then it follows that

∫ z
z∗

V(ξ)dξ→−∞ as z→−∞. This immediately
implies by sending z→−∞ in (4.2)

W(−∞)=∞,

which contradicts the fact W(−∞)=w−. That is the function W(z) in (4.2) solved from
(4.1) does not give a traveling wave profile for (1.1) although U is a traveling wave profile
of (1.1). This exhibits an interesting phenomenon: in a two-component repulsive chemo-
taxis model (1.1), one solution component is a traveling wave profile but the other is not.
This differs from the attractive chemotaxis model (1.1), which has been shown (cf. [24])
to admit both traveling wave profiles U and W via the Cole-Hopf transformation (1.2).
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