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Abstract. Cancer is a multifaceted disease caused by dynamic interaction between ge-
netic mutations and environmental factors. Understanding the genetic mutations un-
derlying the development and progression of cancer is the stepstone for developing
effective treatments and therapies. However, these mutations occurred in only a small
fraction of cancer patients and it is extremely difficult to associate with cancer. Here,
we propose MutNet, a heterogeneous network embedding method which integrate
biomolecular network with cancer genomics data. Using pan cancer genomic data
from The Cancer Genome Atlas program and public protein-protein interaction and
pathway data, MutNet identifies rarely mutated cancer genes often overlooked by con-
ventional genetic studies. In addition, the unified vector representation of biological
entities allows us to reveal the tumor type specific cancer genes, cancer gene modules,
and potential relationships among different tumor types. Our heterogeneous network
embedding method holds the promise for the underlying mechanisms of cancer and
potential therapeutic targets.
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1 Introduction

Cancer is a complex disease caused by a combination of genetic and environmental fac-
tors. The genetic alterations (mutation, amplification, deletion, etc.) can change gene’s
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normal function, which in turn lead to the uncontrolled growth and division of cancer
cells [3]. Identification of these cancer genes is a key goal of cancer genomic analysis and
stepstone in the development of precision oncology and cancer therapeutics [15,33,37,47].
Some cancer genes are frequently altered across many different types of cancer and can
be easily identified, such as TP53, KRAS, and BRAF [47]. They are well studied in cancer
development and progression by disrupting cell cycle regulation, DNA repair, or signal-
ing pathways [37] in biomolecular network. However, some mutated cancer genes are
altered in only a small fraction of cancer patients or a particular cancer type or subtype
and are often overlooked in genetic studies [15,47]. These rarely mutated genes may play
a significant role in the development and progression of cancer through propagating in-
formation via biomolecular network. Therefore, it is in pressing need to develop novel
methods to identify these rarely mutated genes.

Whole exome sequencing (WES) allows researchers to sequence all of the protein-
coding regions of the genome, known as the exome, to identify genetic mutations asso-
ciated with cancer [33]. With the rapid accumulation of whole exome sequencing data,
several algorithms have been developed to detect genes that are significantly mutated
in cancer, such as ActiveDriver [33], TUSON [9], MuSiC [10] and MutSigCV [25]. They
used statistical framework to identify significantly mutated genes based on the frequency
and distribution of somatic mutations across tumor samples. OncodriveFM [16], Onco-
driveFML [29], OncodriveCLUST [42], and OncodriveCLUSTL [1] calculate the likeli-
hood that a given gene is under positive selection in tumor samples based on the fre-
quency and distribution of somatic mutations as well as gene-gene interaction informa-
tion. 20/20+ [45] uses a machine learning algorithm to analyze WES data and predict
driver genes that are likely to contribute to cancer development.

Despite the success of the above computational methods, there is still room to bor-
row information from gene interactions to boost rarely mutated cancer gene discovery.
It’s well known that genes play crucial roles in various biological processes by acting in
concert with each other within signaling and regulatory pathways, as well as in protein
complexes [22]. The coordinated action of multiple genes allows cells to carry out com-
plex functions such as growth, differentiation, and response to environmental stimuli.
Therefore, network-based methods, such as HotNet2 [26] and OMEN [46] have been de-
veloped to detect cancer genes based on the interaction network and mutation patterns
observed in WES data. Recently, EMOGI [36] integrates genomic data with other multi-
omics data with graph convolutional networks to identify cancer genes. P-NET exploits
hierarchical structure of biological pathways with convolution neural network to reveal
molecularly altered candidates [13].

However, the above network-based methods are limited to their capacity of single
type of molecules and associations, such as protein-protein interactions (PPI) and gene
co-expression relationships, and cannot capture the full complexity of biological systems
operating at many different levels [4, 24, 52]. We note that gene functional databased
including pathways [48], gene ontology [44] provide rich information from different as-
pects. One way to capture all the information is constructing a heterogeneous network to
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allow multiple types of molecules and relationships. Even sample’s meta information can
be incorporated as additional nodes such as tumor types. Integrating this heterogeneous
network with genomic data may help identifying rarely mutated gene. Furthermore,
representation learning in heterogeneous network allows high level representability and
scalability for integrated analysis [19,30] and drives advancements in various fields, such
as social network analysis, recommendation systems, and bioinformatics [5].

In this paper, we propose MutNet, a heterogeneous network representation-learning
method to integrate pan cancer genomic data with biomolecular network to identify
candidate cancer genes. We first constructed a heterogeneous network with five dif-
ferent types of nodes including tumor types, samples, mutations, genes and pathways.
The network is then embedded into a latent space with the genomic features and func-
tional features of nodes preserved with a semi-supervised representation method, meta-
path2vec [12]. After all the samples, mutations, genes, pathways together with tumor
types are embedded into a latent vector space, MutNet allows many flexible downstream
tasks by measuring vector similarity. MutNet prioritizes cancer genes from large pan-
cancer genomic data from the Cancer Genome Atlas (TCGA) and outperforms eleven
existing methods. In particular, MutNet predicts 57 novel rarely mutated cancer genes
(11 were reported in at least one dataset). Those cancer genes interact or co-pathway with
known highly mutated cancer genes, rather than have a high mutation rate themselves.
Moreover, MutNet identifies eight cancer gene modules associated with different func-
tion and pathway, tumor type-specific cancer genes, and potential relationship among
tumor types based on the unified vector representation.

2 Methods

2.1 Identification of cancer genes with MutNet

MutNet is based on network representation learning and takes advantage of genes’ PPIs
and pathways to identify candidate cancer genes. As shown in Fig. 1, samples’ genomic
features including their somatic mutations are first integrated with the PPI network and
pathways to construct a heterogeneous network. MutNet then identifies candidate can-
cer genes in the heterogeneous network by propagating the relationships among the ge-
nomic features, PPIs, and pathways through semi-supervised representation learning.
The details are described in the following sections.

2.1.1 Inputs

MutNet takes the whole exome sequencing (WES) data of samples, protein-protein inter-
action network, and the biological pathways as inputs.

WES is powerful for identifying genetic mutations associated with inherited diseases,
such as cancer and widely used for genetic diagnosis, genetic counseling, and personal-
ized medical treatment for patients with inherited diseases. Particularly, we used the
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Figure 1: Schematic diagram of MutNet framework. MutNet takes whole exome sequence data from samples
along with biological networks including PPIs and pathways as input. MutNet outputs candidate cancer genes
or pathways. The three major steps include: 1. Heterogeneous network construction, 2. Representation learning,
and 3. Network propagation. With both genomic and functional features integrated, MutNet embeds nodes
including samples, tumor types, mutations, genes, and pathways into a latent space, and prioritizes pan-cancer
or tumor-specific candidate cancer genes and pathways.

WES data from TCGA collected by Tokheim et al. [45]. WES data is preprocessed into
a heterogeneous network

Gwes= (Vwes={S,T,M,G},Ewes={Es_1,Es-m,Em-c}), (2.1)

where Vs includes four distinct node types including the samples S, their correspond-
ing tumor type T, and the somatic mutations they possess M, as well as mutations to
the genes G, and the edges s abstracts the heterogeneous relationships between the
nodes, including Es_r for a tumor type T of a sample S, Es_j; for a sample S with a mu-
tation M, Ep;_¢ for a mutation M in a gene G.

A protein-protein interaction (PPI) network is a representation of the interactions
among different proteins in a biological system. It can be abstracted as a weighted
undirected graph, with nodes representing genes and edges representing their interac-
tions. The STRING database is a publicly available resource that provides information
on protein-protein interactions for a wide range of organisms [41]. The database is based
on a combination of experimental data and predictions from computational methods, and
it includes interactions from a variety of sources, such as protein-protein interactions, co-
expression, co-occurrence, and experiments. STRING allows researchers to identify key
proteins and pathways that are involved in the development and progression of cancer.
Physical interactions among genes are used for constructing network in this work. The
PPI network is prepossessed into a homogeneous network

Grri= (Vrri=G,Eppi=Ec—q), (2.2)

where G represents the genes and Eg_ ¢ represents the physical interaction between the
genes.
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REACTOME [14] is a publicly available database that provides information on biolog-
ical pathways. It covers a wide range of organisms and pathways, including metabolic
pathways, signaling pathways, and disease-related pathways. A gene-pathway network
is constructed by processing the database download from REACTOME. Pathways are
connected into a hierarchical structure with known child-parent relationships, and genes
are connected to pathways by their annotation

gPathwuy = (VPathwuy = {G/P}/ 5Puthway = {EG—P/EP—P})/ (2.3)

where Vpgtuqy includes two distinct node types including the genes G, and the path-
ways P, and the edges Epqpway abstracts the hierarchical relationships between pathways
as Ep_p for a pathway P; is a child pathway of another more generalized pathway P,,
and E_p for a gene G participates in a pathway P.

2.1.2 Network construction

To integrate the WES data with knowledge graphs, MutNet interagates Gy s with Gppy
and Gpasnway to constructs a heterogeneous network with five types of nodes and six types
of edges

GrtutNet=(Vmutner={S, T,M, G, P}, Epntusner={Es—1,Es—m,Em—-c,Ec—c,EG—p,Ep—p}). (2.4)

This allows a comprehensive and integrative exploration of the molecular mechanisms
underlying cancer and a deeper understanding of the interactions between different ge-
nomic features and candidate cancer genes.

2.1.3 Network representation learning

Within the heterogeneous network, we use representation learning to propagate infor-
mation over the network structure and derive embedded vectors for the nodes.

Taking the constructed heterogeneous network as input, we convert the information
contained in the network structure into an embedding vector for each node in a low-
dimensional space, such that the vector of each node in this space forms a signature of
the node which is useful for modeling hidden associations. Metapath2vec [12] provides
a powerful method for heterogeneous network representation learning with meta-path-
based random walks followed by a node co-occurrence based word2vec [27] embedding.

Meta-paths represent specific sequences of node types within a heterogeneous net-
work, designed to capture intricate high-order relationships across different node types.
To capture the complex interplay among nodes of various types and scales, we define six
distinct meta-paths for conducting random walks.

1. MPrspgp (T—S—M—-G—P—P—P---): traverses all tumor types and samples to
collect basic mutation information.

2. MPopmst (G—M—-S—T—-S—M—-G—M—-S---): co-mutation for samples with same
tumor type or within the same gene is captured by this meta-path.
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3. MPpgpmst (P-G-—M—-S—T—-S—M—-G—P—-G—M---): co-pathway of genes and
mutations occurring in two co-pathway genes are depicted.

4. MPgc (G—G—G---): this meta-path mainly captures the interaction relationship
among genes.

5. MPggmst (G—G—M—-S—T—-S—M—G—G---): similar with 3, and mutations oc-
curring in two interacted genes are depicted.

6. MPcgpp (G—=G—P—P—G—G---): functional information including PPI network
co-pathway are captured in this meta-path.

We traverse nodes on the constructed network and generate a corpus C where each
sentence is a sequence of nodes. Formally, a sequence Cysp(up) € C with a meta-path MP
and a initial node ug is generated from a stochastic process M, where M; represents the
node visited by the random walk at step ¢, and My =ug. The transition probability from
node u to node v along the metapath MP at step f is defined as

1
, ueMpP®), veMPUY,  (y0)eE,
Puyp(u,0,t) =< k€ MPtD | (u,k) €E] (w,0) (2.5)

0 otherwise,

where MP®) is the node type at step t defined in MP. Cyp(19) starts from up and pro-
ceeds by iteratively transitioning from the current node u; to the next node u;1 according
to the transition probabilities in Pyp. All possible initial nodes in a predefined meta-path
are traversed and the random walk process is repeated N times for each initial node and
meta-path to generate a corpus C.

Through random walking based on pre-defined meta-paths within the constructed
heterogeneous network, we capture high-order neighborhoods that encompass the co-
occurrence of mutations and the co-functioning of genes in a series of node sequences.
These nodes are subsequently embedded into a latent space, where genes and mutations
exhibiting co-function or co-occurrence within the heterogeneous network tend to exhibit
higher cosine similarity. Nodes embeddings in a unified latent space X € RIY* are then
obtained by minimizing the following loss function:

E:ZUEVZteTUZ‘uGN(t,v,w)logp(u’v;9>l (2.6)

where T, is the set of node types, N(t,0,w) denotes the neighbour nodes from type ¢
within distance w to node v in corpus C, and

eXu’Xv
p(ulv;0) = SIS B
where X, is the embedding vector for the node v, and 6 is the mapping from the nodes
to the latent space and is optimized during training. A relatively high cosine similarity
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between two embedded vectors suggests that the corresponding nodes are similar in
terms of their connections and topological properties within the network. Specifically,
the optimization of the objective function can be accomplished by a word2vec process
which was used for capturing close words in sentences.

Notably, tumor type and sample nodes within our network introduce meta-informa-
tion about cancer beyond the molecular level, allowing for information sharing across
various cancer types. This unified vector representation of biological entities within the
heterogeneous network serves as a foundational model for cancer genomics and has the
potential for diverse applications.

214 Network propagation

With the heterogeneous network embedded into a latent space, MutNet assigns MutScore
to genes and identifies cancer genes in three steps: Calculation of S;4,, network construc-
tion, and network propagation. A weighted mutation frequency for each sample and
gene is first calculated

WMut(s,8) = Zopem,(s)nM,(g) (1+r(s,m)) (1+r(m,g)), (2.7)

where M;(s) is the set of mutations in samples, M, (g) is the set of mutations occur in
gene g, and r(s,m) (r(m,g)) is the cosine similarity of s and m (m and g) in the embedded
latent space.

Then S, is defined as follows:

YsesWMut(s,
Sraw(g): 5€5 ’S|u( g)/ (28)

where S is the set of samples and |S| is the set size.

Overall, the S, prioritize genes with relatively higher mutation frequency. Rarely
mutated genes interact or co-pathway with highly mutated genes can also be a cancer
gene, and in order to figure out these genes, we construct a network based on the PPI
network and pathways. The adjacency matrix of the PPI network is constructed as

1L (818 €,
App1(8i,8j) = ! 29
rri(i 8] ) {O, otherwise. @9)
And the adjacency matrix of the pathways-based network is defined as
. EEE
Apathwuy(gi/gj) = PePgINP(s) ’G(p) ’ ' l o (210)
0, otherwise,

where P(g) = {p € P|(g,p) € £} is the set of pathways that gene g participate in, and
G(p)={g<€G|(g,p) €&} is the set of genes in pathway p.
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With App; and Apsthwey defined, the network for score propagation is defined as
Anp=qApp1+(1—9) Apathway. 2.11)

where g € (0,1) is a parameter for constructing the graph, and 4=0.2 in our results. The
network Anp combines the interaction and co-pathway relationships among genes. Net-
work propagation is conducted on the network with S,4, as initial information

U(O) = (Sraw(gl)/'"/Sraw(gn))/ (2.12)

and the propagated results are defined as S 4p with S,4, propagated on the network
oY) = (1—k) o ANp+ko'?, (2.13)

where App is the normalized network propagation metric Axp whose sum of each row
equals to 1, and k€ (0,1) is a parameter for propagation, and k=0.33 in our results. Then
the propagated score can be obtained by iteration

Sap=limo). (2.14)

t—o0

2.1.5 Outputs

MutNet outputs candidate genes based on the S,,, and S4p calculated in the Egs. (2.8)
and (2.14). Genes with high S, have high mutation rates themselves, while S 4p depict
the average mutation rate passing through interaction or co-pathway relationships. Can-
didate cancer genes are identified as genes with both relatively high S,,, and Ssp. We
select a threshold for the scores according to their distribution

Tpc = percentile(Sraw(g)|g€G,0), (2.15)

where 6 can be selected according to requirement, and 8 =0.9 in our results. Then the set
of predicted cancer genes are defined as

PCG={8<€G|Snw(g)>Trcc,Sar(g) > Trcc}- (2.16)

These two restrictions ensure that genes with a relatively high mutation rate and fre-
quently mutated interaction genes are accurately identified as cancer genes.

2.2 Evaluation of cancer gene prediction

Since the pan-cancer data offer an extensive molecular and genetic feature shared across
various cancer types [28], we conducted our experiments based on a comprehensive pan-
cancer dataset derived from TCGA collected by Tokheim et al. [45] to test whether Mut-
Net can predict cancer genes accurately. Methods assign a p-value or score to each gene
and the predicted gene set can be versatile from strict to soft according to the selection
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of the threshold. We calculate AUROC (area under the receiver operating characteristic
curve) as a metric for evaluating the ranking of genes with standard cancer set. To calcu-
late AUROC, the model’s true positive rate (TPR) is plotted against its false positive rate
(FPR) at various classification thresholds. The area under the resulting curve is then com-
puted, which gives an indication of the model’s ability to distinguish between positive
and negative samples.

Standard known cancer genes are collected from the following four different datasets:

¢ KEGG cancer pathway: https://www.genome. jp/entry/pathway+hsa05200 [23].
¢ MutPanning: http://cancer-genes.org[11].
¢ OncoKB: https://www.oncokb.org/cancerGenes [7].

¢ Cancer Gene Cosmic: https://cancer.sanger.ac.uk/cosmic [40].

Results from methods including 20/20+, ActiveDriver, OncodriveFM, TUSON, On-
codriveFML, MuSiC, MutSigCV and OncodriveCLUST are collected from Tokheim et al.
[45]. For methods which output g-values for genes, —logg is used for ranking genes
and evaluation. As for 2020+ which outputs three p-values for each gene for tumor sup-
pressor gene, oncogene, and driver gene respectively, combining p-values of tsg p-value,
oncogene p-value, and driver p-value with Fisher’s method is calculated and used for
gene ranking. Genes with g < 0.1 are defined as predicted cancer genes identified by
these methods. Results from network-based methods including HotNet2 and EMOGI
are not trained on the same WES dataset and obtained by following the literature. We
collected genes with top 10% score from HotNet2 and EMOGI as predicted cancer genes.
p-values or scores for genes calculated by OMEN are not available, so we collected the
top 80 genes from OMEN to compare the precision, recall, and f1-score.

Sap of genes are used for ranking genes for our method, MutNet, in evaluation. As
results in different methods various in the genes they cover, we extend the results to the
union set provides by all methods, and the absent genes in different methods are added
to the tail of the ranked gene list.

2.3 Contribution of PPI network and co-pathway network

To make clear that the benefit from genetic features of PPI network or co-pathway net-
work, we calculated the respective contribution of PPI network and co-pathway network
for each node. With the S,4, representing the contribution of genomic features, contribu-
tions of the two networks are defined as

Crpi(g) =ZgccAprpi(8,8')Sraw(g), (2.17)
Cputhway (8) = z‘(vg/EGA;mthway (g/g/) Sraw <g)/ (2-18)

where App; and A sinway represent normalized adjacency metric of PPI network Appj and
co-pathway network A 44,44, respectively.
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2.4 Tumor type specific cancer gene

The representation learning aspect of MutNet enables the derivation of tumor type-speci-
fic cancer genes, which is crucial for shedding light on the distinct molecular mechanisms
underlying various cancer types. To identify tumor type specific cancer genes, we first
calculated tumor type specific score St for each tumor type t and gene g

o ZSGS,TS:tWMut(S/g)

where Ts(s) denotes the tumor type of sample s.
Then tumor type specific cancer genes for tumor t are defined as

TSG(t)={g€PCG|St(t,8) > Trsc,pr({WMut(s,)|T(s) =t},
(WMut(s,g)|T(s) £6)) <8}, (2.20)

where Trsg = percentile({St(t,)|t € T,g € G},0),p:(-,-) represents the p-value of t-test
statistics, 8’ can be selected according to requirement, and 6’ =0.05 in our results.

2.5 Candidate cancer pathways

MutNet uses the unified embedded vectors of the genes to rank the pathways in terms
of their importance in cancer. The unified pathways representation with other nodes in
the heterogeneous network provides the chance for identifying candidate cancer genes.
For each pathway in REACTOME used for network construction, score to measure the
potential cancer pathways S%, is calculated as follows:

deGP(p)Smw(g) (1—|—T(g,p))
Gp(p)]

sh = (2.21)

and

hH 1+7(g,
sh,= s<Gr(p)sarlg) (1H7(8 P)), (2.22)

Ge(p)]
where Gp(p) represents the set of genes participating in the pathway p annotated in
REACTOME, S,,,(g) and Sap(g) are calculated above, and (g, p) is the cosine similarity
of gene ¢ and pathway p in the embedded latent vector space.
Candidate cancer pathways set CCP is defined as

CCP= {Pep,sfuw(r)) > TCCP/SZP<P) > TCCP}/ (2‘23)

where Tccp is the threshold, and Tccp =0.1 in our results.
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2.6 Cancer gene modules

By representing tumor types and samples as embedded vectors in a unified latent vector
space, MutNet is capable of uncovering potential relationships between different tumor
types based on their genomic features, i.e. tumors are assigned with a vector representing
their genetic features, and cosine similarity is used for association estimating. Cancer
genes predicted previously are divided in to non-overlapping groups according to their
embedded vectors in the unified latent space. Pair-wise genes similarity is first calculated
and a mutual-kNN network is constructed by linking two genes if they are each other’s
KNN, i.e. for any two genes g; and gj, if g; is one of the k-nearest neighbors of g; and g;
is one of the k-nearest neighbors of g;, then an edge is added connecting ¢; and g; in the
network. We select k=15 in our analysis, and use the Louvain algorithm in the Python
network package networkx for community detection.

2.7 Genetic relationships between different tumor types

Genetic relationships between different tumors are inferred by combing tumor type spe-
cific St and the cosine similarity between the embedded vectors of tumor types and
genes. The tumor type-specific genes’ St is computed in Eq. (2.19), and genetic simi-
larity between tumors is then computed based on the vectors which combine the genetic
features of tumors and predicted cancer genes

D(t;,t;) =7(St(t;,),S1(t;,")), (2.24)

where Sr(t,-) € RIPCCl is the tumor type-specific score across all predicted cancer genes
with tumor type t, and r(-,-) is the cosine similarity of the two vectors.

3 Results

3.1 MutNet outperforms existing methods in identifying cancer genes

We trained MutNet on a high-confident WES dataset from Tokheim et al. [45] along with
PPInetwork and gene-pathways network to identify cancer genes. We compared MutNet
with eleven state-of-the-art methods for cancer gene prediction. These includes the meth-
ods ranking genes simply by their mutation rates and methods based on different types
of machine learning algorithms, as well as statistical and bioinformatics approaches.
Four of them, including ActiveDriver [33], MuSiC [10] and MutSigCV [25], and Mutation
Rate, rank gene mainly according to their mutation rates. Five methods including Onco-
driveFM [16], OncodriveFML [29], OncodriveCLUST [42], TUSON [9], and 20/20+ [45]
combine other information including mutation types, PPI, gene expression by traditional
statistic models to optimize their prediction of cancer genes. Three network-based meth-
ods include HotNet2 [26], OMEN [46], and EMOGI [36]. EMOGI [36] is a supervised ma-
chine learning method taking multi-omics data including WGS, methylation, and RNA-
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seq along with PPI network as input, and other methods takes genomic data such as WES
or WGS along with open access database to rank genes.

We evaluated the performance of each method using a variety of metrics, including
AUROC, recall, precision, and fl-score. To ensure that our validation is comprehensive,
four different known cancer gene sets (KCG), including Cancer Gene Cosmic, MutPan-
ning, OncoKB, and KEGG cancer gene sets, are collected as approximate gold standard
positives for evaluation. Details for collecting of predictions from other methods and cal-
culation for metrics are described in Section 2.2. As shown in Fig. 2A, MutNet overall out-
performs mutation rate-based methods, multi-information-based methods, and network-
based methods in predicting known cancer genes across the four gold standard datasets.
Next, we used KEGG pathway as gold standard since it is known as a collection of man-
ually drawn pathway maps representing our knowledge of the molecular interaction,
reaction and relation networks for cancer. Taking advantage of knowledge integration
MutNet obtains the highest AUROC in predicting functional cancer genes collected from
KEGG pathway database [23] comparing with all other results. This demonstrates Mut-
Net’s ability to integrate multiple source information and boost the remote associations.
EMOCGI performs the best in AUROC for Cosmic and OncoKB cancer gene set due to
the fact that it integrates paired multi-omics data including DNA methylation and gene
expression by supervised learning from known cancer genes.

The comparison of AUROC among methods suggested that MutNet provides a high-
quality ranking of candidate cancer genes. We then evaluated the Predicted Cancer Genes
sets (PCG) generated from different methods for their recall, precision, and fl-score. In
total 702 candidate cancer genes are selected by MutNet (Fig. 2B). 2020+ and TUSON pro-
vide smaller predicted cancer gene sets and reaches relatively high precision and f1-score,
and MutNet outperforms other methods besides EMOGI in predicting cancer genes from
KEGG cancer pathway, which suggests that MutNet is powerful in predicting rarely-
mutated cancer genes (Fig. 2C and [55, Figs. S2x]). Moreover, across methods compa-
ration shows that MutNet reaches the highest mean correlation with all other methods,
which suggests MutNet'’s high consistency with other methods ([55, Fig. S2C]).

3.2 MutNet benefits from integrating genomic and functional features

MutNet involves in two main steps, the heterogeneous network representation learning
for integrating genomic and functional features to obtain a foundation representation,
and the network propagation for further enhance functional features for cancer gene pre-
diction. Utilizing the foundational representation within the heterogeneous network, we
calculate a weighted mutation rate (S,4) that integrates both genomic and functional
features (Eq. (2.8)). This foundational representation prioritizes mutations that are cru-
cial to the samples, resulting in higher weights during the calculation of S, for those
rarely-mutated but crucial genes. Genes ranked and selected based on S,,, demonstrate
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higher AUROC and f1-score compared to those selected solely based on mutation rate
([55, Fig. S2D]). These findings indicate that MutNet derives significant benefits from the
heterogeneous learning approach and outperforms the mutation rate based methods.
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Figure 2: MutNet predicts functional cancer genes accurately. (A) AUROC of ranked cancer genes by different
methods with four independent benchmark datasets. MutNet predicts functional cancer genes accurately. (B)
The landscape of cancer genes predicted by MutNet. Overall, 702 genes are predicted as cancer genes by
MutNet, of them 264 are recorded in at least one dataset. (C) Comparison of precision, recall, fl-score, and
num of predicted cancer genes from different methods comparing with cancer gene from KEGG. MutNet provides
high quality candidate cancer genes. (D) MutNet prioritizes genes with high PPl and high pathway contribution.
Known cancer genes tend to have higher Sraw and network contribution. (E) 57 genes are uniquely predicted by
MutNet, of them 11 are recorded in at least one dataset. (F) UMAP for the embedded vectors of an EGF-centric
heterogeneous subgraph. Rarely mutated gene EGF interacts, co-mutates and co-pathways with other cancer
genes, and is identified as a cancer gene in MutNet. (G) AGRN and EGF have physical interaction with 16
known cancer genes, and are predicted as cancer genes by MutNet.
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HotNet2 [26] also involves in a network propagation on a PPI network to predict can-
cer genes. MutNet further integrates the PPI and co-pathway between genes to identify
cancer genes. To make clear the contribution of genomic features (S4,), PPI network,
and co-pathway network in cancer genes identification during the network propagation,
we deconvolute the network propagation output, S4p, into three parts. We analyzed
the differential distribution of the known cancer genes and the predicted cancer genes
versus the all-gene background (Section 2.3). As shown in Fig. 2E, PPI network and co-
pathways network helps to differentiate the cancer from the other genes. Moreover, by
propagation on the network, rarely-mutated cancer genes are further selected out with
relatively high S4p. In summary, MutNet provides high quality candidate cancer genes
by integrating the WES data with functional information including protein-protein inter-
actions and gene pathways.

Furthermore, an ablation study is designed for the network propagation step in Mut-
Net. The network is constructed from PPI network and genes co-pathway network, and
the S 4p reaches a combination of genomic features and network structure. Adjusting the
proportion of PPI network and genes co-pathway network illustrates the importance of
the two gene functional networks, and the adjustment of the restart ratio in the network
propagation reveals that both genomic features and the network structure contribute to
the cancer genes identification. MutNet obtains the highest performance by combining
different networks and genomic features ([55, Fig. S2E]). This suggests that all of the
components are indispensable for an accurate identification of cancer genes.

3.3 MutNet identifies rarely mutated cancer genes

Overall, MutNet predict 702 candidate cancer genes (Fig. 2C, [55, Table S1]), and 264 of
them are reported in at least one KCG set. 57 cancer genes are uniquely predicted by Mut-
Net and are missed by other methods (Fig. 2E), and 11 of them were reported as a cancer
gene in at least one of the KCG set. These genes are rarely mutated in cancers, and are
ignored by other methods and the datasets. For example, EGF is involved in cancer path-
ways according to KEGG and has been uniquely identified as a cancer gene by MutNet.
To investigate EGF’s relevance to cancer, a subgraph was sampled from the heteroge-
neous network, consisting of samples, mutations, genes, and pathways closely related to
EGF. As depicted in Fig. 2F, UMAP was utilized to display the embedded vectors of the
nodes. EGF is found to be connected with several critical signaling pathways, including
NOTCH signaling, EGFR signaling, and PI3K/AKT signaling in cancer. Furthermore,
several cancer genes, such as ERBB4, EGFR, and NOTCH1, were found to interact and
mutate in the same samples with EGFE. Together this shows heterogeneous network al-
lows MutNet to identify EGF as a rarely mutated cancer gene and holds the promise for
better biological interpretation.

We showed that all the newly predicted genes have direct or indirect associations
with cancer by literature search, and researches reveal their potential roles in cancer de-
velopment ([55, Table S2]). For example, some studies have suggested that FRMRP2 may
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be a potential target for cancer therapy due to its role in regulating cell division [28]. Mu-
tations in HELZ?2 are associated with the prognosis in endometrial cancer [32]. The site
and total immunohistochemistry score of COL7A1 expression in gastric cancer showed
prognostic significance for OS and distant metastasis, respectively, which suggests that
COL7A1 could be a novel biomarker with diagnostic and therapeutic value [35]. Prog-
nostic analysis revealed high VPS13D expression to be associated with the adverse OS
in acute myeloid leukemia [50]. As shown in Fig. 2G, the newly predicted cancer gene,
AGRN, interacts with the uniquely predicted known cancer gene, EGF, and share 16 com-
mon cancer gene neighbors in PPI network [41]. Some studies also suggested that AGRN
was significantly overexpressed in papillary thyroid cancer (PTC) and higher expression
levels of AGRN were significantly associated with metastasis and poor prognosis of PTC
patients [51].

3.4 MutNet identifies tumor type specific cancer genes

We utilized MutNet to identify cancer genes specific to different tumor types, leverag-
ing the inclusion of tumor types as nodes in our heterogeneous network. With tumor
types and samples, mutations, genes embedded into a single latent vector space, MutNet
identifies 38 tumor type specific cancer genes for 24 cancers (Fig. 3).

MutNet identifies KRAS, the well-known pancreatic ductal adenocarcinoma (PDAC)
driver gene, as the most PDAC-specific cancer gene as shown in our heatmap result
(Fig. 3). KRAS is a commonly mutated gene in PDAC, a type of pancreatic cancer [38].
Mutations in KRAS are found in approximately 95% of PDAC cases, making it one of
the most frequently mutated genes in this cancer type. KMT2C, TGFBR2, SMAD4 and
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Figure 3: MutNet identifies tumor type specific driver genes. MutNet predicted cancer genes for each tumor
type as well as tumor type specific cancer genes by taking pan-cancer whole exome sequence data along with
samples’ tumor types as input. Overall, 38 genes are identified as tumor type specific genes for 24 tumor types.
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PXDN are also identified as PDAC-specific cancer genes. They have been implicated
in the development and progression of PDAC through their roles in regulating cellular
processes such as epigenetic modifications, signal transduction, and cellular differenti-
ation [32,53]. Other significant associations include IDH1 in low grade glioma, APC in
colorectal cancer, VHL in kidney clear cell carcinoma, PTEN in endometrial carcinoma,
DNAHS5 in melanoma and so on.

3.5 MutNet reveals cancer associated pathways and modules

After single cancer genes are identified, we move on to their cooperation in latent mod-
ules. We identified 14 pathways that were considered as crucial in cancer development
using the REACTOME database. Out of these 14 pathways, 7 are related to disease, and
the others are involved in signal transduction processes, gene expression (transcription),
or cell cycle (Fig. 4A, [55, Table S3]). On average, these pathways are annotated with
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3.4 genes and contain 1.8 annotated cancer genes, highlighting their significance in the
molecular mechanisms of cancer. This information can be used to better understand the
functional relationships between genes and pathways, and to develop new therapeutic
strategies for cancer treatment.

In addition to utilize pre-defined gene sets, MutNet also discovers new candidate can-
cer genes by creating a latent representation for all the genes in a unified space. MutNet
allows a deeper understanding of the interactions between genes and reveals potential
cancer gene modules. Cancer genes are connected by constructing a k nearest neighbor
(kNN) network from their embedded vectors. Gene modules are defined by detecting
communities in the cancer genes’ network. Eight modules containing 702 predicted can-
cer genes are defined (Figs. 4B, 4C). This provides a comprehensive and integrative view
of the cancer genes across different cancer types.

We then investigate the functional characteristics of the modules using KEGG path-
way gene set enrichment analysis and revealed that those modules correspond to crit-
ical cancer hallmarks such as ECM-receptor interaction, axon guidance, cell adhesion
molecules, and the Ras signaling pathway (Fig. 4D, [55, Table S3, Fig. S3]). Additionally,
we highlighted the difference in functionality among the modules by the differentially
enriched pathways. For example, pathways enriched in module 4 includes several path-
ways related to cancer and other diseases such as p53 signaling pathway, pathways in
cancer, and human T-cell leukemia virus 1 infection. In addition, amyotrophic lateral
sclerosis, a progressive neurodegenerative disease, is also among the identified path-
ways. These pathways may provide insights into the molecular mechanisms underlying
cancer. Module 8 is enriched in various biological processes and signaling pathways that
play important roles in cancer development and progression, including extracellular ma-
trix (ECM)-receptor interaction, protein digestion and absorption, complement and coag-
ulation cascades, and pathways in cancer. These processes and pathways are known to
be associated with tumor invasion, angiogenesis, and immune response evasion, among
others.

3.6 MutNet groups tumor types according to their vector representations in
network

MutNet is capable of uncovering potential relationships between different tumor types
based on their genomic features based on the unified latent embedding. This may help us
to identify common patterns and shared characteristics across multiple tumor types, with
the goal of improving our understanding of cancer as a whole [6]. Clustering samples
based on their embedded vectors reveals that samples from the same cancer type exhibit
high similarity. Interestingly, some patterns with relatively high similarity are observed
across different cancer types, suggesting the possibility of a shared genomic similarity or
relationship between different types of tumors (Fig. 5A). For example, neuroblastoma is
closely associated with thyroid carcinoma as well as pancreatic adenocarcinoma.
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Genetic similarity between tumors is then analyzed based on the unified vector rep-
resentation and the predicted cancer gene set. Our results show that tumor types are
divided into two clusters mainly according to their overall mutation rate (Figs. 5B, 5C).
The overall mutation rate among tumor types can vary greatly depending on a variety of
factors, such as the specific type of cancer, the stage of the cancer, the patient’s age, and
exposure to environmental carcinogens. The first cluster with overall higher tumor type-
specific score, St, contains nine tumors including melanoma, lung adenocarcinoma, and
lung squamous cell carcinoma, endometrial carcinoma, head and neck squamous cell car-
cinoma, bladder urothelial carcinoma, esophageal adenocarcinoma, colorectal, and stom-
ach adenocarcinoma. Three most highly mutated tumors in the cluster, i.e. melanoma,
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lung adenocarcinoma, and lung squamous cell carcinoma, shared common genetic mu-
tations including TP53, CDKN2A, BRAF, EGFR, and PIK3CA [17,31,43].

Cancers including pancreatic adenocarcinoma, LAML (acute myeloid leukemia), pro-
state adenocarcinoma, CLL (chronic lymphocytic leukemia), medulloblastoma, thyroid
carcinoma, and neuroblastoma are all types of cancer that are generally considered to
have a low mutation burden and are clustered in our analysis [20]. There are common
features that can alter DNA methylation and gene expression, as exemplified by that pan-
creatic adenocarcinoma, LAML, and CLL are all associated with mutations in epigenetic
regulators, such as DNMT3A, IDH1/2, and TET2 [8, 18, 39]. Mutations and activation of
the hedgehog pathway have been found in medulloblastoma and thyroid carcinoma [34],
and alterations in the RAS/RAF/MEK/ERK signaling pathway are commonly found in
thyroid carcinoma and neuroblastoma [2]. These findings may have implications for un-
derstanding cancer biology and developing effective treatments that can target multiple
tumor types.

4 Discussion

In this paper, we propose MutNet as a representation learning-based method for integra-
tive analysis of genomic features with genes’ functional information. One of the main
advantages of MutNet lies in its ability to incorporate a wide range of genomic features,
tumor types and sample annotations along with functional information. This allows for
the integration of different types of data and knowledge, including somatic mutations,
PPIs, and pathways, which can provide a comprehensive understanding of the molecular
mechanisms driving cancer development and progression. As an example, we demon-
strate that MutNet provides high quality candidate functional cancer genes and identi-
fies rarely mutated cancer genes. In addition, by incorporating meta information from
cancer patient samples, MutNet is able to reveal tumor type specific cancer pathways,
potentially enabling the discovery of new targets for cancer treatment.

Moreover, MutNet’s network representation learning strategy allows us to build a
foundation model for many downstream tasks to identify complex biological interac-
tions, providing a comprehensive view of cancer biology. By identifying potential cancer
gene modules, MutNet can reveal how different genes work together to drive cancer
development, potentially enabling the discovery of new biomarkers and therapeutics.
Another key advantage of MutNet is its ability to associate different tumor types based
on their genomic features. By identifying different genomic features that are unique to
different types of cancer, MutNet can help researchers better understand the underlying
biology of these diseases and develop personalized treatments and therapies. However,
the computational demands of MutNet can be substantial, especially when handling ex-
tensive datasets. The construction, optimization, and training processes of the hetero-
geneous network involve a large number of nodes and edges, necessitating significant
computational resources and time. Enhancements in efficient network representation



Y. Luetal. / CSIAM Trans. Life. Sci., 1 (2025), pp. 22-44 41

learning theorems and advancements in hardware offer avenues to improve computa-
tional efficiency. Moreover, MutNet utilizes the shallow network representation learning
method, metapath2vec, to integrate the heterogeneous data in the heterogeneous net-
work. For the next step, we will further explore advanced deep-learning methods, such
as HGT [21] and HAN [49], to extract more comprehensive information from the hetero-
geneous network.

MutNet is a highly adaptable framework that can effectively integrate various ge-
nomic features and identify significant biological signatures. In our current research, we
have employed tumor types as sample’s meta information, but the framework is flexi-
ble enough to accommodate other meta information such as pathological subtypes, sur-
vival time, drug information etc. Furthermore, MutNet supports meta information fu-
sion analysis for individual samples, enhancing its versatility and applicability. Using
a comparable architecture, we aim to expand the integration of diverse multi-omics data
within the heterogeneous network. Our ongoing research involves adapting the Mut-
Net framework to incorporate whole-genome sequencing data and explore the roles of
noncoding drivers. We also aim to investigate the interactions between coding and non-
coding drivers to gain deeper insights into cancer biology. Overall, MutNet’s versatility
and adaptability make it a valuable tool for exploring the complexities of genomics data
and identifying significant biological features.
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