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Abstract. How does the movement of individuals influence the persistence of a sin-
gle species and the competition of multiple populations? Studies of such questions
often involve the principal eigenvalues of the associated linear differential operators.
We explore the significant roles of the principal eigenvalue by investigating two types
of mathematical models for arbitrary but finite number of competing populations in
spatially heterogeneous and temporally periodic environment. The interaction terms
in these models are assumed to depend on the population sizes of all species in the
whole habitat, representing some kind of nonlocal competition. For both models, the
single species can persist if and only if the principal eigenvalue for the linearized op-
erator is of negative sign, suggesting that the best strategy for the single species to
invade when rare is to minimize the associated principal eigenvalue. For multiple
populations, the global dynamics can also be completely characterized by the asso-
ciated principal eigenvalues. Specifically, our results reveal that the species with the
smallest principal eigenvalue among all competing populations, will gain a compet-
itive advantage and competitively exclude other populations. This suggests that the
movement strategies minimizing the corresponding principal eigenvalue are evolu-
tionarily stable, echoing the persistence criteria for the single species.
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1 Introduction

Principal eigenvalue is a basic quantity associated with an elliptic or parabolic opera-
tor. The study of reaction diffusion equations in bounded domains often involves the
principal eigenvalue of the associated linear differential operator. In this paper, we con-
sider two types of mathematical models to illustrate the significant roles of the principal
eigenvalue in determining the global dynamics of these nonlinear systems for arbitrary
but finite number of competing populations. As applications, our results determine the
optimal movement strategies for populations with dispersal and nonlocal competition in
spatially heterogeneous and temporally varying environment.

1.1 Patch model

Consider the following single species model in K-patch landscapes:

du_

T dLu-+diag{m;(t) —uj}u, t>0, (1.1)

where u= (uy,---,ux), with u;(t) denoting the population size of the species in patch j at
timef; L= (&j) is a symmetric, cooperative and irreducible K x K matrix with constant en-
tries, which satisfies /;;=— ijéigij for all 1 <i<K, referred as the discrete Laplacian. Here
diag{a;} denotes the K x K diagonal matrix with diagonal entries ay,--,ax, and m;(t) is
a T-periodic function representing the growth rate of the species in patch j, which mea-
sures the environmental heterogeneity in both space and time. Parameter d >0 is the
migration rate of the species.
The dynamics of model (1.1) is related to the linear eigenvalue problem

dp .
1 =dLp+diag{m;(t)}p-+Ap, tcR, (1.2)
p(t)=g(t+T), teR,

which can be regarded as the linearization of the nonlinear model (1.1) at the trivial equi-
librium u=0. By the Krein-Rutman theorem [19], problem (1.2) admits a principal eigen-
value, which is real and simple, and the corresponding eigenvector can be chosen to be
positive; moreover, it has the smallest real part among all eigenvalues of (1.2).

Theorem 1.1. For each d >0, let A(d) denote the principal eigenvalue of (1.2).
(i) If A(d) <O, then problem (1.1) admits a unique positive T-periodic solution
p=(p1(t),-,px(t)) >0,
and u;j(t) — p;(t) as t — +oo forall j=1,...,K.
(ii) If A(d) >0, then u]-(t) —0ast—+oo forall j=1,...,K.
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Theorem 1.1 is a direct consequence of the theory of monotone periodic systems es-
tablished in [29, Chapter 3.1.2]. It is well known [4] that for an invading species to persist
successfully, the population will increase when rare and eventually stabilize at an equilib-
rium state. Theorem 1.1 establishes a necessary and sufficient condition for the survival
of an invading species, i.e. A(d) <0, which establishes a strong connection between the
dynamics of (1.1) and the principal eigenvalue of (1.2). The condition A(d) <0 reflects
many crucial information regarding the interaction between the movement of the species
and the heterogeneity of environment. In particular, if inf;-oA(d) is negative, there exists
some interval of diffusion rates for which the species can persist.

It is proved by [24, Theorem 2.1] that

AMO):=limA(d) = 1r£1]a<>§<T/ mi(t (1.3)
In the special scenario when m; is a constant (i.e. independent of ¢), the principal eigen-
value A(d) is the smallest eigenvalue of the symmetric matrix —dL—diag{mj} corre-
sponding to a positive eigenvector. It turns out that A(d) is nondecreasing in diffu-
sion rate d, so that by (1.3), the species can persist for some diffusion rate if and only
if maxj<j<gm;>0. In the context of source-sink theory [18], this implies that the popula-
tion can be sustained by immigrating among patches only when a source patch (in which
m; >0 for some j) exists.

The situation changes drastically when m] m](t) varies periodically in time t. Even

if A(0) >0, i.e. all patches are sink (in which fo m;(t)dt <0 forall j=1,...,K), it is still pos-
sible for species to persist through appropriate dlspersal among patches This surprising
phenomenon has attracted attention in both theoretical and empirical studies [25,28] and
is called dispersal-induced growth (DIG) in the literature [16,17]. Mathematically, the
DIG phenomenon occurs if A(0) >0 but A(d) <0 for certain positive diffusion rate d. By
Theorem 1.1, this means that the population would become extinct if isolated, but dis-
persal, at an appropriate rate, can induce the persistence of the population. Hence, the
dependence of principal eigenvalue A(d) on migration rate d plays a central role in this
context. We refer to [3,17] for more details.

To further understand the roles of the principal eigenvalue A(d) on the outcome of
species interactions, we consider the following multiple competing species in K-patch
landscapes:

du; .

— =d;Lu; —|—d1ag{m ZZu }u, t>0, i=1,...,N,

dt l ! i=1j=1 ! l (1'4)
u;(0)>0, i=1,...,N,

where u; = (uj1, -, uix),1 <i <N, with u;j denoting the population sizes of competing
species i in patch j, and m; is a T-periodic function representing their common growth
rate. These N species are assumed to be identical except for their migration rates, denoted
by d;>0,1<i<N.
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For the classical Lotka-Volterra competition models, the competition among different
species within a single patch is often assumed to depend only on the population sizes of
all species in the same patch. However, the interaction terms in model (1.4) depend on
the population sizes of all species in all patches, i.e. the effective growth rate of a species
at a particular patch is not only determined by the total biomass in that patch, but also
the total biomass in other patches. Such nonlocal competition effect is biologically rea-
sonable, particularly when the depletion of the common resources in the whole habitat is
incorporated. Specifically, nonlocal competition refers to interactions among species that
are influenced not only by the local population sizes but also by the population sizes in
other regions or patches. This type of competition can occur when species are affected by
common resources that are shared across different patches or when individuals can move
between patches, causing their presence in one patch to affect the competition dynamics
in another. This concept is particularly relevant in ecosystems where resources are lim-
ited and the depletion or availability of resources in one area can impact species across
a wider habitat. In this paper, we consider the nonlocal competition to better capture
these realistic ecological scenarios, where the growth rate of a species at a specific loca-
tion is influenced by the overall biomass distribution throughout the habitat. We refer
to [12] for a spatially continuous nonlocal competition model.

What is the optimal migration rate in the sense that the species dispersing by it com-
petitively excludes all other species with different migration rates? This question has
been investigated in the context of two-patch models (N =2), see e.g. [7,13,21]. In par-
ticular, Hastings [13] showed that if the environment is spatially heterogeneous but tem-
porally constant (i.e. m; is time-independent for each patch j and m; # my for some j#k),
then the slower diffuser can invade the faster diffuser when rare but not vice versa. In the
context of the theory of adaptive dynamics [9], the result of Hastings implies that zero
migration rate is a convergent stable strategy.

In this paper we study the question of selection on migration rates by considering
model (1.4) with nonlocal competition, in spatially heterogeneous and temporally peri-
odic environment.

Our first main result determines the global dynamics of model (1.4).

Theorem 1.2. For each i=1,...,N, let w; = (uj,---,u;x) be the solution of (1.4) with positive
initial data. Let A(d;) be the principal eigenvalue of (1.2) with d = d;, and the corresponding
eigenvector is denoted by @; = (@i1,--,@ix) > 0. Assume that A(d1) <0 and A(dy) < A(d;) for
j=2,...,N, then

(1)
K

u; —
Yim191

¢1>0, uw,---,uy = 0 as t — Hoo,

whereas u,(t) is the unique positive periodic solution of

du_|d mf (t) | =A(dy)—ulu, u(t)=u(t+T), teR (1.5)
dt_ dt j:1§01] 1 ’ = ’ . .
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Theorem 1.2 implies that the migration rates, identified as the minimal points for the
principal eigenvalue of (1.2), represent an optimal movement strategy. This strategy en-
ables a species to competitively exclude other species whose migration rate is associated
with larger A(d). It is referred to as an evolutionary stable strategy [26] in the theory
of adaptive dynamics. When the environment is spatially heterogeneous but temporally
constant, the principal eigenvalue A(d) is increasing in d, so that Theorem 1.2 implies the
smaller migration rate has apparent competitive advantage, which is consistent with the
findings of Hastings [13]. However, when the environment is spatially and temporally
varying, the dependence of principal eigenvalue A(d) on migration rate d turns out to be
more complicated. In particular, it was shown in [23, Theorem 1.3] that even in two-patch
case (K =2), there are at least three different outcomes, including the evolution of slow
dispersal, the evolution of intermediate dispersal, and the evolution branching. We refer
to Section 3 for more details.

1.2 Reaction diffusion model

Consider the time-periodic reaction diffusion equation of the form

U=V -(dVU—-aUb)+U(m(x,t)-U), x€Q, >0,
do,U—al(b-v)=0, x€0Q), t>0, (1.6)
U(x,0)=Uy(x) >#0, xeQ,

where () is a bounded domain in R” with smooth boundary 0Q) and v(x) denotes the unit
outward normal vector at x € d(). Eq. (1.6) serves as an important mathematical models
for the persistence of single population with logistic growth, where U(x,t) represents
the density of the single species at location x and time t. The function m € C(QxR)
accounts for the local carrying capacity or the intrinsic growth rate of the species, which is
assumed to be time-periodic with period T>0. Besides random diffusion, the population
is also assumed to move along vector field b € C!(Q x R;R"), which is T-periodic in t.
Parameter d >0 and « >0 represent the diffusion and advection rates, respectively. When
m=m(x) is time-independent and b=Vm(x) is a time-independent gradient vector field,
model (1.6) was first proposed by Belgacem and Cosner [2], see [5, 6, 8] and references
therein for the further studies in this case.
The dynamics of problem (1.6) is related to the linear eigenvalue problem

dp=V-(dVe—agb)+m(x,t)p+Ap, x€Q, tER,
do,¢p—ap(b-v)=0, x€d), teR, (1.7)
p(x,t)=@(x,t+T), xeQ, teR.

By the Krein-Rutman theorem, problem (1.7) admits a unique principal eigenvalue,
which is simple, real and has the smallest real part among all eigenvalues of (1.7), and
it corresponds to a positive eigenfunction, see [14, Proposition 16.1]. Similar to Theo-
rem 1.1, the dynamics of problem (1.6) can be characterized by the following result.



72 S. Liu, Y. Lou and S. Ma / CSIAM Trans. Life. Sci., 1 (2025), pp. 67-92

Theorem 1.3. For each d >0 and « >0, let A(d,a) be the principal eigenvalue of (1.7).

(i) If A(d,a) <O, then problem (1.7) admits a positive T-periodic solution, which is unique and
globally asymptotically stable among all non-negative and non-trivial (i.e. not identically
zero) initial data.

(ii) If A(d,a) >0, the trivial solution 0 is globally asymptotically stable among all non-negative
initial data.

Theorem 1.3 can be proved by [14, Theorem 28.1] or [15, Proposition 3.1], where the
case b =0 is studied, but their proofs are applicable to our setting. Similar to Theo-
rems 1.1, 1.3 implies that a population can persist if and only if the principal eigenvalue
of (1.7) is negative, namely A(d,a) <0. This suggests that selecting the diffusion rate d
and advection rate « that minimize principal eigenvalue A(d,«) is always beneficial to the
persistence of the population.

As in Section 1.1, regarding the diffusion and advection rate as a strategy of the popu-
lation, we assess the effectiveness of such strategy by comparing it with other strategies.
To this end, we consider the following nonlocal model of N competing species:

N
atui:V-(diVUi—zinib)JrUi mi(x,t)—ZUj(t) , xeQ), t>0, i=1,...,N,

j=1
d;9, Ui — ;Ui (b-v) =0, xedq, t>0, i=1,...N, 18
U;i(x,0)=U;o(x), xeq), i=1,...,N,

where Uj(t) denotes the total population density of j-th species at time ¢ given by
Uj(t)::/ﬂuj(x,t)dx, 1<j<N. (1.9)

Here Uj;(x,t) represents the density of the populations i at location x and time ¢. The diffu-
sion rate and advection rate of population i are denoted by d; and «;, 1<i <N, respectively.
The growth rate of the i-th population at low densities is represented by function m;(x,t),
which is time-periodic with common period T > 0. No-flux type of boundary conditions
imposed on dQ represents the condition of no net migration across d(). The initial data
{U;p}N, are assumed to be continuous and non-negative.

Similar to model (1.4), the intra- and inter-specidic competition effects in (1.8) are
assumed to depend on an average population biomass in whole habitat. This is the non-
local interspecific competition and is motivated by a more general nonlocal competition
structure given by

N
) /QK<?C/!/) Uj(yt)dy, (1.10)
j=1
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where K >0 is a kernel function satisfying

K(x,y)dxdy=|Qf*.
[ [ KGoy)dxdy=|a

The competition component in (1.8) is a special form of (1.10) by choosing K=1. We
refer to [12] for more discussions on nonlocal competition effects in biological interaction
models.

Another special but important example is K(x,y) = d(x—y)|Q|?> with the Dirac mea-
sure J(+) supported at 0. In this case, the competition (1.10) is simplified to |Q|22]-I\L1 uj,
known as the Lotka-Volterra competition, which has been extensively investigated. For
example, when the environment is spatially varying but temporally constant (i.e. m; =
m;(x) is independent of t), Dockery et al. [10] considered the case « =0 and N =2, and
proved that the population with the slower dispersal rate has the advantage, which is the
so-called evolution of slow dispersal. However, when the environment varies both spa-
tially and temporally, the dynamics become much more complicated. We refer to [1, 15]
for the study of the scenario involving two species, where it is shown that the coexistence
of the two species is possible.

In this paper, the global dynamics of model (1.8), with the kernel K=1 in (1.10), is
investigated. It appears interesting to investigate the dynamics of (1.8) incorporating
a broader scope of competition as described by (1.10).

Theorem 1.4. Let U;(x,t), i=1,...,N, be the solution of (1.8) with nonnegative and non-trivial
initial data. Denote by A; the principal eigenvalue of problem (1.7) with d =d;,a = a;, and m
replaced by m;, and the corresponding eigenfunction is denoted by ¢;(x,t) >0. Suppose that
A <0and M </\]-for all j=2,...,N, then

L DU
U1< ,t) — fﬂ(pl(x,t)dx>0'

/Uz(x,t)dx,‘--,/ Uyn(x,t)dx — 0
0 Q

as t— 4-c0. Here U, >0 is the unique positive periodic solution of

du d
= b <ln/0q01(x,t)dx> —Al—u] u, +>0. (1.11)
Theorem 1.4 indicates that global dynamics of model (1.8) is completely determined
by the principal eigenvalue A(d,a) of problem (1.7). Assume that m;=---=my in QxR

so that these N populations share a common growth rate, which are identical except
for their diffusion and advection rates. Theorem 1.4 implies that the population, that
adapts its diffusion and advection rates to align with the smallest value of A(d,a) among
all populations, will gain a competitive advantage and competitively exclude all other
populations. In particular, the populations are unable to coexist, differing from the results
in [1,15] for Lotka-Volterra competition of two species. This finding is analogue to that of
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Theorem 1.2 for patch model (1.4). Therefore, the dependence of the principal eigenvalue
on diffusion and advection rates plays a central roles in understanding the evolution of
dispersal.

When a =0, the principal eigenvalue A(d,0) of problem (1.7) is studied in [22], which
reveals at least three different outcomes, including the evolution of slow dispersal, the
evolution of intermediate dispersal, and the evolution branching (though this is rare).
For general vector field b, it is thus of interest to understand the dependence of a on
general values of d and «, in particular, to determine where A(d,«) is locally minimized.

This paper is organized as follows. In Section 2, we provide some biological discus-
sions and numerical simulations to further illustrate the results of the paper. In Section 3,
we present the proofs of Theorems 1.2 and 1.4.

2 Biological discussions and numerical simulations

It is clear from previous section that the dependence of the principal eigenvalue A(d) on
the diffusion rate 4 is critical: For both single and multiple competing species, it is better
to minimize A(d). For single species, it is important to determine the sign of A(d) in or-
der to ensure the persistence of the species; namely, the single species can persist if and
only if A(d) is negative. Hence, if inf;-gA(d) is negative, there exists some interval of
the diffusion rates in which the species can persist. The so-called question of “dispersal
induced growth” asks whether it is possible for the species to persist for some diffusion
rates, even though it can not persist without dispersal. If we translate it into mathemati-
cal terms, it essentially asks whether it is possible to have non-negative limit lim; oA (d)
but inf;-gA(d) is negative. In fact, one can further ask whether it is possible for a single
species to persist for some diffusion rates even though it can not persist without dis-
persal or in well mixed environments; i.e. both limits lim; ,gA(d) and lim;_,,,A(d) are
non-negative but inf;-gA(d) is negative. These questions beg for further studies of the
dependence of A(d) on d, which is of independent interest mathematically.

For two or more competing species, it is important to determine how to minimize A(d)
so that the optimal “trait” competitively excludes other species and to determine how
trait will evolve in spatially and/or temporarily varying environments. When the envi-
ronment is spatially heterogeneous but temporally constant, we know that A(d) is mono-
tone increasing with respect to diffusion d, so slow diffusion rate is favored. When the
environment is spatially and temporally varying, the dependence of principal eigenvalue
on diffusion rate d becomes complicated.

2.1 Biological discussions on patch model

In this subsection, we apply the theory of adaptive dynamics to further illustrate Theo-
rem 1.2. Model (1.4) has a trivial periodic solution (0,---,0), and N periodic solutions

(Plzol‘"/0)1"‘/(OI“‘,Pi/‘"/0)/"‘/(0/"‘/O/PN)/
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where only one population is present. For each i=1,...,N, p;=(pi1,---,pix) is the unique
positive periodic solution of the problem

%:d-Lp%—diag{m-—fp-}p- teR
dr iLPi j = ij (Pir ’ 2.1)
pi(t) =pi(t+T), teR.

In the framework of adaptive dynamics, we can view the i,-th species as a resident pop-
ulation with density p;,, adopting a given strategy d;, at ecological equilibrium. Compar-
ing (2.1) with eigenvalue problem (1.2), it can verified that

1 TE
A(d; ):_T/o Y pijdt (2.2)
=1

for some constant ¢ >0, where A(d;,) is the principal eigenvalue of problem (1.2) with
d=d; . Let the /-th species be an invasive population (e.g. a rare mutant) with stra-
tegy dy. The outcome of the invasion is determined by the invasion fitness A(dy,d;,),
which measures the advantage to the invader species playing strategy d; over the resident
population playing strategy d; . Mathematically, the fitness function A(dy,d;,) can be

L
given by the principal eigenvalue of the following problem:

de . K

ar :dquH—dlag{m]- — Zpi*]}(p—/\(p, teR,
j=1

p(t)=o(t+T), tER.

Together with (1.2) and (2.2), it is not difficult to observe that
A(dg,di,) =Mdy,) —Ady). (2.3)

Equality (2.3) provides an explicit connection between the persistence criterion and
the invasion fitness. Biologically, the invasion fitness A(dy,d;,) represents the long-term
exponential growth/decay rate of the mutant with strategy d, when it invades a resi-
dent population adopting strategy d; . Hence, when A(dy,d;,) >0, the rare mutant strat-
egy d; experiences exponential growth, whereas it undergoes exponential decay when
A(dy,d;,) <0. It follows by (2.3) that the invading population can invade successfully
when rare only when A(dy) < A(d;,), i.e. the strategy resulting in a smaller principal
eigenvalue of (1.2) is favored. This observation is consistent with the findings in Theo-
rem 1.2.

It is therefore of interest to investigate the dependence of principal eigenvalue of (1.2)
on migration rate d. For two-patch case (K =2), such question was considered in [23]. It

was shown in [23, Theorem 1.3] that there are at least three different outcomes, including

(1) d— A(d) is monotone increasing,
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(2) d~— A(d) is initially decreasing and then increasing,
(3) d+— A(d) is initially increasing, then decreasing, and finally increasing.

See also Figs. 1 and 2 for some numerical examples.

The signs of fitness A(dy,d;,) can be analysed graphically by means of “pairwise inva-
sibility plot” (PIP). Based on (2.3), the graphs of d— A(d) and the corresponding PIPs can
be illustrated in Figs. 1 and 2. In PIPs, the regions in which A(dy,d;,) >0 are illustrated

by shaded components, while the regions in which A(dy,d;, ) <0 are illustrated by blank
ones. The boundaries of these regions consist of the zero sets of A(dy,d;,), which always
includes the diagonal due to A(d;,,d;,) =0 for all d;, >0. To see the evolutionary outcomes
in PIPs from Figs. 1 and 2, we look along a vertical line through a point on the d; -axis
representing the strategy of resident population. The parts of this line located within
a shaded area correspond to strategies on the dy-axis for which A(d,d;, ) >0, suggesting
potentially invading populations. Conversely, the parts of the line inside a blank area
correspond to strategies for which A(dy,d;,) <0, signifying populations that are unable

to invade.

o.LF - : - - -0.995

0.2 0.4 0.6 0.8 1 5 10 15 20
d;, d;,

Figure 1: The numerical examples for Cases (1) and (2), where the graph of d+— A(d) and the corresponding
pairwise invasibility plots are illustrated. Here, we choose K =21, m;(t)= (j/10)sin?(27tt) for Case (1),
m;(t) =1+sin(7j/10)sin(27t) for Case (2), and j=0,1,2,...,20.
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Case(3)-(i) Case(3)-(ii) Case(3)-(iii)

-0.18 -0.18

-0.18

-0.2

-0.22

T 024
=

Ad)
A(d)

-0.26

I '
-0.28 1 ' -0.28
I '

I I I '
-0.3 . - -0.3 > - -0.3

In(d;)
In(d;)
In(d;)

-2 10 8 -6 -4 -2 0 -12 -10

- 8 6 4 - - 8 6 -
in(d;.) In(d;.) in(d;.)

Figure 2: The numerical examples for Case (3), where the graph of d— A(d) and the corresponding pairwise
invasibility plots are illustrated. Here, we choose K=21 and m;(t)=cos(7j/20)/4+sin(7j/10)sin(27twt) with
w=0.15,0.21,0.25 and j=0,1,2,...,20.

In Case (1), the principal eigenvalue A(d) is increasing in d as illustrated in Fig. 1.
For any resident population with diffusion rate d; , the mutant adopting strategy d, can
invade and have a positive fitness if and only if d, <d;, , and hence d;, =0 is a convergence
stable strategy [11]. This indicates the evolution of slower dispersal, as observed in spa-
tially heterogeneous but temporally constant environment by Hastings [13]. In Case (2),
diffusion rate d, > 0 is the unique minimal point of A(d). The vertical line through d,
lies entirely inside the blank area in Fig. 1. This implies A(d;,d,) <0 for all d, #d.,
namely no mutant can invade the resident with rate d,. The strategy d. is identified as
a global evolutionarily stable strategy (ESS) [26]. The evolution of intermediate dispersal
happens in this case. In Case (3), diffusion rate d* is a local maximal point of principal
eigenvalue A(d) as illustrated in Fig. 2, so that (2.3) implies A(d,,d*) >0 for all d, # d*
and dy~d*. Hence, for the resident with strategy d; =d*, all nearby mutants can invade
and have a positive fitness. Hence, strategy d* is not evolutionarily stable and the nearby
population will evolve away and towards some ESS. In contrast, diffusion rates 0 and d.
are local minimal points of A(d) and exhibit evolutionary outcomes opposite to that of d*.
We shall discuss this in three different scenarios.

For Case (3)-(i), diffusion rate d, is the minimal point of A(d) and serves as the global
ESS as in Case (2). Unlike d,, in the corresponding PIP of Fig. 2, the vertical line through
d;, =0 lies inside both blank and shaded areas. This implies that the mutant with small
diffusion rate d, will be unable to successfully invade the immobile resident (4;, =0), and
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thus 0 is a local ESS. This corresponds to the fact that 0 is a local minimal of principal
eigenvalue A(d).

For Case (3)-(ii), it is illustrated in Fig. 2 that diffusion rates 0 and d. are minimal
points of A(d), both of which are local ESS. The resident adopting strategy 0 or d, can
resist the invasion of any other strategy with strategy d, >0 and d, #d..

For Case (3)-(iii), diffusion rate 0 is the minimal point of A(d) and the vertical line
through 0 lies entirely the blank area as in PIP of Fig. 2. Hence, any mutant is unable to
invade the immobile resident, and strategy 0 is the global ESS. In contrast, strategy d. is
a local ESS in this case.

2.2 Numerical examples for reaction diffusion model
In this subsection, we perform some numerical simulations for multi-species competition
model with more general nonlocal competition structure (1.10). Specifically, similar to
(1.8) we consider the following model:
N
o:U; =d;AU;+U; {m(x,t) —Z/ K(x,y) ll](y,t)dy , x€eQ), t>0, i=1,...,N,
=17
9, U; =0, x€aQ, t>0, i=1,.,N, 29
U;i(x,0)=U;(x), xeq, i=1,...,N,

where K > 0 denotes the competition kernel satisfying

" K(x,y)dxdy=|Q,
/Q/Q (x,y)dxdy =|Q

and the time-periodic m(x,t) is the common growth rate of competing species.
We assume N =2,Q00=(—1,1), and m(x,t) = 1+sin(7tx)sin(27t). Moreover, for each
a€(0,1), we define

K(x,y)= [%cos (%) —1—4 Ga(y), (2.5)

where G,:(—1,1)+— [0,1] is defined by
~ yel-ad
Ga (y) — { a/ 4 7
0, yé&(—an).

Case 1: a=1. When a=1, it follows by (2.5) that K(x,y) =1. Hence, under the above
assumptions, model (2.4) takes the following form:
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( 2 1
BtulzdlAU1+U1[m(x,t)—Z/ U]-(x,t)dx}, xe(—-11), t>0,
=171

2 1
atU2:d2AuZ+U2[m<x,t)—Z/ Uj(x,t)dx}, xE(—l,l), t>0, (26)
=171
UL (£1,) =9, Uy (£1,1) =0, £>0,
\U1(x,0):LI1,0(x), UQ(X,O):UZ()(X), xE(—l,l),

which is a particular example for model (1.8). For each d >0, let A(d) be the principal
eigenvalue of the problem

0t =dox @+ (1+sin(mx)sin(27t)) p+Ap, xe(—-1,1), teR,
dep(£1,1) =0, tER,
¢(x,t)=p(x,t+1), xe(=1,1), teR.

Theorem 1.4 implies that the dynamics of (2.6) are determined completely by principal
eigenvalue A(d). We thus compute A(d) numerically and numerical simulations for the
dependence of A(d) on diffusion rate d is shown in Fig. 3(A). This is consistent with
the theoretical result in [22], namely function d — A(d) is initially decreasing and then
increasing, and there is a minimum point d, ~ 2.2 such that A(d,) =ming-gA(d). Next,
we shall verify that d, ~2.2 is a global evolutionarily stable strategy (ESS) as proved by
Theorem 1.4, see also Section 3.

To this end, we perform some numerical simulations for the solution (U, Uy) of (2.6)
with different diffusion rates (dy,d») € [0,3] x [0,3] as shown in Fig. 3(B). Therein the blank
areas represent the regions where the species with diffusion rate d; wins the competition,
while the shaded areas represent the regions where the species with diffusion rate d
wins. Observe that the vertical line through d; = d, lies entirely inside the blank area,
signifying the dominance of the species with diffusion rate d; =d, over its competitor
with a different diffusion rate. Hence, such d, is a global ESS, which is consistent with
the observations in Fig. 1.

Case 2: 1€ (0,1). Whena € (0,1), model (2.4) can be rewritten as

U, = dlaxxu1+ul[ F“(x Z/ Ayt dy] xe(=1,1), t>0,
atuz—dZaxxu2+u2[ F”ax i/ Uj(y,t dy] xe(=11), t>0, (27
acUi (£1,1) =, Un(£1,1) =0, o £>0,
Uy (x,0) = Ua(x,0) =exp(x?), xe(—1,1),
where
Fi(x)= <1_2a>ncos(%> +a
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Figure 3: (A) The dependence of principal eigenvalue A(d) on diffusion rate d. The solid line indicates the
value of A against d, while the dashed line indicates A(0) =A(+o0)=—1. (B) The competition results of
(Uq,Uy) with different diffusion rates (d1,d»). The insert plot shows the long-time behaviors of (U7,U;) with

different diffusion rates (d1,dy)=(2.2,1.0). The black indicates Ul(t):jbl Uy (x,t)dx, while the grey indicates
T 1
Uy (t)= [y Up(x,t)dx.

In what follows, we will explore how kernel function K(x,y) affect evolutionarily stable
strategy (ESS).

We choose diffusion rates (d1,dz) €[0,3] x [0,3] for given a € (0,1), the competition re-
sults of (U3,Uy) with different (dy,d,) are shown in Fig. 4. The simulation results suggest
that there exist two constants 0 <a, <a* <1 such that the followings hold:

(i) For 0<a<a,, diffusion rate d =0 is the unique singular strategy, which is globally
evolutionarily stable. This implies the evolution of slow dispersal, see Fig. 4(A).

(ii) For a, <a <a*, there are three singular strategies d =0,d*,d, for some 0 <d* <d.,
depending on a. It can be observed in Figs. 4(B-]) that while strategy d=0 is a global
ESS, strategy d=d., severs as a local ESS and is a increasing function of a. In contrast,
strategy d = d* is not evolutionarily stable and all nearby mutants can invade it,
which can be decreasing in 2 and d* (O as a /"a*.

(iii) For a* <a <1, diffusion rate d = d, is the unique singular strategy and serves as
a global ESS, see Figs. 4(K-L).

Hence, the dynamics of (2.7) are rather rich and interesting for different a € (0,1). It
will be of interest to generalize Theorem 1.4 to more general problem (2.4) and to inves-
tigate the impact of competition kernel on the evolution outcomes.
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Figure 4: The competition results of (Uy,U;) with different diffusion rates dq,d, for given a. The blank areas

represent the regions where (Ul*,O), while the shaded areas represent where (O,UZ*). The dash-dotted line
indicates d; ~d*, while the dashed line indicates dj ~d..

3 Mathematical proofs

3.1 Proof of Theorem 1.2

In this subsection, we will prove Theorem 1.2. We first prepare the following result.

Lemma 3.1. For each i=1,...,N, let ¢; = (@i1,---,@ix) >0 denote the principal eigenvector of
problem (1.2) with d =d;. Then v=¢;/ Z]K:1 @ij is the unique positive periodic solution of the
problem
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dv P ) K
T iLv+diag mj— Z;mjvj v, tE€R,
]:
v(t)=v(t+T), teR.
Proof. For eachi=1,...,N, let A; be the principal eigenvalue of problem (1.2). Set @, :=
Z;il @ij- Similar to (3.7), by (1.2) one can calculate v=g¢;/ Z]K:l ¢ij satisfies

(3.1)

g_ldﬁoi qu)l}

dt 7, dt )2
_ 4L (Pz+d1ag{m }~(Pl+/\(pZ Pi im-gﬂ-%—k@-
P, 1%, 7% (9,2 A

:diLv+diag{m]- — Zm]-v]}v.
j=1

This verifies that v=¢;/ Z;il @ij is a positive solution of (3.1). It remains to show the
uniqueness of the solution to (3.1).
To this end, let v=(vy,---,vk) be any positive solution of (3.1). We observe that

d K K K K K
azvj: (1—Zvj> ijl)], Zvj(t):,zvj(t+T)’
j=1 j=1 j=1 j=1 j=1
from which one can deduce

K
Zvj(t)zl, VteR. (3.2)
=1

Next we assume that v = (Uf,- o ,v;g) and v~ = (v;,---,vg ) are two positive periodic

solutions of (3.1). Set

a0 —exp{i[/tm] ot (5)ds— 4 [V ms ]} ©3)

Define w":=f*vt and w™:= f~v~, then we calculate that

dw™
dt

_ + +_ W+
=dLw" +diag{m;jw" — Zm] €R,

dw™ _ . _ _ (3.4)
T_dLW +d1ag{m]}w —T/O ;m]vj dt, teR,

wh(t)=wh(t+T), w (t)=w (t+T), teR.

Recall that A; is the principal eigenvalue of (1.2). By the uniqueness of principal eigen-
function of (1.2) up to some constant multiplier, we observe from (3.4) that w™ (t)=cw ™ (t)
for some constant ¢ >0 and
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1/Tf tar=2 [T o di=—a (35)
— m;v; t:—/ m;v; dt=—A;. 3.5
Toj:lff Toj:l]]
It follows by (3.2) that

k k

+ - _
'ZU]- :ZU] :1, VtG]R,
j=1 j=1

and thus by definition, 2;‘(:1 w]+ =f" and 2;‘(:1 w; =f". This together with w (£)=cw™ (t)
implies f(t) =cf (t) for all t € R. Using (3.3) and (3.5), we deduce

Kt
Z/ m;j(s) (v] (s)—v; (s))ds=logc, VtER,
j=1""
whence we derive that
K
Y mi(t)ol ()=} m(t)v; (1), VtER. (3.6)
j=1

Define v:=vt —v~. By (3.6), we see that

dv . S
d_:dLy—i-dlag Ai—]ijvj v, teR,

v()=v(t+T), Zv )=0 teR,

which implies v(#) =0, and hence v =v~ as desired. The proof is now complete. O
Next, we prove the following asymptotic result.
Lemma 3.2. Let u;= (u;,---,ujx) >0 be the solution of (1.4). Then for any t € [0,T],
lim ui(H—nT) B q)i(t)
n——+oo Z;-ilul‘j(t—l—i’lT) 2]1-<:1 (Pl](t)

where @; = (@i1,---,@ix) >0 denotes the principal eigenvector of problem (1.2).

=0, i=1,...,N,

Proof. For any i=1,...,N, define

):i“ij(t)/ Viizui(t) t>0. (3.7)

By (1.4) and (3.7), direct calculations yield

dvi _ 1du; _ d”lf
dt u; dt () 2
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d ul N
— ——+diag{m Zu Zm]uzj u12u1
i=1

1

K

=d,;Lv;+diag{ m { Z j0ij } (3.8)
j=1

It follows from (3.7) that

Zvl] =1, VteR, i=1,..,N, (3.9)

which implies that v;(t) is uniformly bounded in t € (0,+c0). Hence, it follows by
(3.8) that dv;(t+nT)/dt is uniformly bounded for all n >1. Up to extraction, v;(t+nT)
converges uniformly on any bounded interval of t € R to some T-periodic vector p; =
(pir,++,pik) >0 as n — oo, which satisfies (3.1) and Zfilpij(t) =1 for all t € R (due to
(3.9)). By the irreducibility of migration matrix L, it is easily seen that p; >0, i.e. vec-
tor p; is a positive periodic solution to (3.1). A direct application of Lemma 3.1 yields
pi=oi/ Z]I-<Z1 @ij, which completes the proof. O

Finally, we are in a position to prove Theorem 1.2.
Proof of Theorem 1.2. Step 1. Recalling the definitions in (3.7), we show that
u(t) — u.(t) and u(t), -, un(t) — 0 as t — +oo, (3.10)

where u,(t) is the unique positive periodic solution of (1.5).
By (3.7), we calculate from (1.4) that

du; (& AN .
df = ijvij—Zuk ug, t>0, i=1,...,N. (3.11)
=1 i=1

Denote ¢; = (¢i1,--+,¢ix) > 0 by the principal eigenvector of the problem (1.2). Summing
both sides of (1.2) from j=1 to K gives

d K
dtzqol]_zm](l)l]‘i‘/\ Z(Pl]’ teR. (3.12)
j=1 j=1
Applying Lemma 3.2, we derive from (3.12) that
K t)
lim Zm] v;j(t+nT)= 27( )ii( <1n2q01] ) A

n_H—OO j=1 Z]:l qolj(t)

Hence, the limiting system of (3.11) can be written as
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dw;, |d [, & N .
=% 1n];¢ij(t) —Ai—k;wk w;, t>0, i=1,..N. (3.13)

Let (w,---,wn) be the solution to (3.13) with any positive initial data. We shall show
wi(t) — u(t)>0 and wy(t),--,wn(t) — 0 as t — —oo. (3.14)

Then (3.10) can be proved by a direct application of the theory of asymptotically periodic
systems established in [29, Chapter 3.2.2] (see, e.g. [29, Theorem 3.2.2]). To this end, set

w;(t)

Wi(t):=———+——, t>0, i=1,...,N. (3.15)
Z Z]I‘<:1 @ij(t)
By (3.13), direct calculations yields
W N
ddtl:<—/\i—2wk> w;, t>0, i=1,...,N. (316)
k=1

In particular, dW; /dt < (—A; —wq)W; for all t >0, and thus Wi (t) is uniformly bounded
in t € (0,+0c0). Define Z;:=W;/W; for any i=2,...,N. It follows from (3.16) that

dz; _
dt

Due to Ay < A; foralli=2,...,N, we deduce

(Al—Ai)Zi, Vt>0, i=2,...,N.

Zi(t):;/vi(((())))exp{(}u—/\i)t} — 0 as t — +oo.

Since W (t) is uniformly bounded, we derive that W;(t) —0 for all i=2,...,N, and thus by
(3.15) one obtains wy,---,w, — 0 as t — 4-00. Hence, the limiting equation of w; in (3.13)
is the desired (1.5). Due to A; <0, the periodic solution u, >0 of (1.5) is asymptotically
stable, and thus wy — u, as t — 400, which verifies (3.14). Hence, (3.10) holds.

Step 2. It follows from (3.10) that up,--- ,uy —0 as t —+o0 and the limiting equation of u;
in (1.4) can be written as the following linear equation:

dw . K
"7 =dLw+diag{m;—u.}w, ;wj(t) =u.(t), t>0. (3.17)

Applying the theory of asymptotically periodic systems in [29, Chapter 3.2.2] again, it
suffices to show that for any solution w of (3.17) with positive initial data,
«(f
W — = L;(<> @1 as t — Hoo. (3.18)
i=191j
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By (1.2) and (1.5), we calculate that

dyp .
ar —dLy —diag{m;—u.}¢p
u*(t) |:d(p1 3
_ —— —di Ly —diag{m;(t) }¢1
Z]K:HDIJ' d ]

p1 [du(t) o d s
+ Z;‘i] 901] |: dr +M*(t):| _E <1nj_Z1(P1]<t)> l/;

d, & d [ &
I (hl];(l’lj(t)) _A<d1)] Y- (hlg(l’lj(t)) %

]

=Ad)p+

=0,

which implies that ¢ is a positive periodic solution of (3.17). Hence, the principal eigen-
value of the operator d; —d;L—diag{m;—u.} is 0 corresponding to eigenvector ¢ > 0.
Since the principal eigenvalue is simple due to the Krein-Rutman theorem, it is easily
seen that 1 is the unique positive periodic solution to (3.17). Then by the classical argu-
ments we can conclude that w(t+nT) — () as n— +oo, which proves (3.18). The proof
is now complete. O

3.2 Proof of Theorem 1.4

In this subsection, we are concerned with the global dynamics of problem (1.8) and prove
Theorem 1.4. For eachi=1,...,N, we rewrite problem (1.7) as

919=V-(diVe—w;pb)+m;(x,t)p+rp, x€Q, tER,
didy¢—a;p(b-v)=0 xed), teR, (3.19)
p(x,t)=g@(x,t+T), xcQ, tER,

where m; is a time-periodic function given in (1.8).

Lemma 3.3. Forany i=1,...,N, let U;(x,t) be the solution of problem (1.8) with nonnegative
initial data and ¢; > 0 be the principal eigenfunction of problem (3.19). Then for any t € [0,T],

there holds
U;(x,t+nT) @i(x,t)

Ui(t+nT) _fQ(pi(x,t)dx
Proof. For eachi=1,...,N, define

=0.
L2(Q)

1
n—+o0

Ui(x,t)
ui(t) ’

Vi(x,t):=

where U;(t) is defined by (1.9). Observe that
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/Vi(x,t)dle, VE>0, i=1,...N. (3.20)
@)

Using (1.8), direct calculations yield

atll LI antU dx

V=
7 i5
—i[V-(d-VU-—ocU-b)]ﬂLﬂ [m(x t)—iU} _ U { mU-dx—U-g_-
Ui i i iU Ui i\X, = j U’ZZ o i l]‘:] j
V-(dz-VVi—aiVib)+ {mi(x,t)—/ mz-Vz-dx] Vz (321)
0

Foranyi=1,...,N, let A; €R be the principal eigenvalue of (3.19) and define
t
Vi(x,t) :=exp {/\iH— / / mi(x,s)Vz-(x,s)dxds} Viln,t), Y(xH)eQxR.  (3.22)
0JQ

By (3.21), we calculate that V; solves

0 Vi=V-(d;iVVi—a;Vb) +m;i(x,) Vi+ AV, x€Q, >0, (523)
diaUVi—lXiVi(b'l/):O, x€ad), t>0. .
The adjoint problem of (3.19) can be written as
—op=d;Ap—a;b-Vp+m;(x,t)p+Ap, x€Q, teR,
d,P=0, x€d), teR, (3.24)

P(x,t)=9(x,t+T), xeQ, teR.

We denote ¢; >0 by the principal eigenfunction of (3.24) associated to A;. By (3.23), it
can be proved by [27, Lemma 6.4, Chapter 6.4.1] (see also [20, Lemma 4.3.1]) that for any
convex C? function H:R— R, there holds

i Lo (G )as=—a Lomn ()5 (3)]

Without loss of generality, we assume fQ ¢i(x,0)¢;(x,0)dx=1foralli=1,...,N. Set

dx, Vt>0. (3.25)

1 ~ .
pi.—@/ﬂtpi(x,O)Vi(x,O)dx, i=1,...,N.

By letting H(x) =1 and H(x)=x in (3.25) respectively, we deduce that

dt/qolxtl/)lxt dt/l'blxt (x,t)dx=0, Vt>0,
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which implies that

_ L [ , _
/Qq)i(x,t)l/)i(x,t)dle, @/Qvl(x,t)gbl(x,t)dx_pl, V> 0. (3.26)

( 1’ >
¢'

Hence, by Poincaré inequality we deduce that there exists some constant C >0 such that

2
RS A
iPi dJC< ZCd Y| — dx| dx
dt Q(Pl( PQD) Pivi Qi ‘Q‘ @i

—ocd, [ ¥ {Vl Pi / ( ) dx] dx. (3.27)
Qi Q| 2
It follows from (3.26) that

L2l (2o o 2o

o (3)4) o - o ()5
(o 2)#) B foms ()]
(o)) >

This together with (3.27) implies

2

l/J1< pl(p)zdx——Zd/gol/)l dx, Vt>0.

dt Q@i

l/]l < /l)[]l 2
dt Q(pl(V pigi) dx<—2Cd; | *1(V;—pigi)*dx, V>0,

for which we apply the Gronwall inequality to derive that

zl(V —0i9;)*dx < Cie 2, Y0
Q @i

for some constant C; > 0. Hence, it holds
Vil ) =pigi( ) 120y — 0 as ¢ — oo, (3.28)
which together with (3.20) and (3.22) 1mp11es

exp{/\t—i—//mlxs i(x,9) dxds} /(plxt

:/ Vz-(x,t)dx—pl-/ @i(x,t)dx — 0, as t — oo.
0 0
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Therefore, by (3.22) and (3.28) we can conclude that for any ¢ € [0, T},

Vi(x,t—f—nT)—igoi(x't)

lim
n—+oo ngDl'(x t dx L2(Q)
Vi(x,t+nT) @i(x,t)
= lim =0.
notoo | p; [ @i(x ) dx fnqol t)dx |12
The proof is now complete. O
We are in a position to prove Theorem 1.4.
Proof of Theorem 1.4. Recalling definition (1.9), we shall prove that
Uy(t) — Ui (t)>0 and Ux(t),---,Un(t) — 0 as t — +oo. (3.29)

Then Theorem 1.4 can be proved by the same arguments as in Step 2 of Theorem 1.2. By
(1.8), we calculate that
dUi ' N __ — )
= /Qmi(x,t)Vi(x,t) dx—};llj(t) U, Vt>0, i=1,...,N. (3.30)

A direct application of Lemma 3.3 yields

: /ml x,t)@i(x,t)dx
lim [ m;(x,t)Vi(x,t+nT)dx=
oo / §01 Xt

where ¢; > 0 is the principal eigenfunction of problem (3.19) corresponding to principal
eigenvalue A;. Integrate both sides of (3.19) with respect to x over (), then

, Vte[0,T], (3.31)

%/(.)Gf’i(x,t)dx:/(.)mi(x,t)qoi(x,t)der}\i/Qq)i(x,t)dx,

which together with (3.31) implies

lim [ m;(x,t)Vi(x,t+nT) dx:% <ln/ q)i(x,t)dx> —A;, Ytel0,T). (3.32)
0

n—+o00 /)

Hence, the limiting system of (3.30) can be written as

dw,
— [dt<ln/ (plxtdx> A ]Zw ]wi, £>0. (3.33)
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Given any constant vector u = (u1,---,uy) >0, we define S;(t,s,u) and W;(t,u) as the
solutions of (3.30) and (3.33) satisfies S;(s,s,u) = W;(0,u) = u;, respectively. By (3.32), we
can derive that

lim |S;(t+nT,nT,u)—W;(t,u)|]=0 uniformly for te[0,T].

n—r+o00
In particular, letting u=U;(nT) gives
ngrfw| LIi(t—i—nT) —W; (t,Ui(nT)) | =0.
Therefore, U;(t+nT) is asymptotic to an solution of limiting system (3.33).
Next, we shall show that for any u = (uy,---,un) >0,

Wi(tu) — U(t) and Wo(tu),--- Wn(t,u) — 0 as t — oo, (3.34)

where U, > 0 is the unique positive periodic solution of (1.11). Then we can apply the
theory of asymptotically periodic systems established in [29, Chapter 3.2.2] (see e.g. [29,
Theorem 3.2.2]) to complete the proof of (3.29). To this end, we define

Wz-(t,u)

Wi(tu): = —51"——, Vt>0.
/Q @i(x,t)dx
By (3.33) we can calculate that
d;/;/i _ [_/\i—]iwj(t)} W, +>0. (3.35)
In particular, we have
dW

oo [ ]
- _[ M W1/qul(x,t)dx}w1, £>0,

which implies that W (t) is bounded as t — +oo.
Set Z;:=W;/W; for any i=2,...,N. By (3.35) direct calculation yields

%:(Al—Ai)Zi, Vt>0, i=2,...,N.
Due to A <A; forall j=2,...,N, this implies
W;(0
Zi(t)= ~]( )exp{(/\l—}\j)t} — 0 as t — 4o, j=2,...,N.
W1(0)

Since Wi (t) is bounded as t— +o0, we thus deduce that W] (t)—0forall2<j<N, and thus
Wa,---,W, — 0 as t = +-co. Hence, the limiting equation of W in (3.33) is desired (1.11).
Since A1 <0, (1.11) admits a unique positive periodic solution denoted by U., which is
asymptotic stable. Therefore, W; — U, as t — +oo, which proves (3.34). Hence, (3.29)
holds. The proof is now complete. O
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