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Abstract. Deep brain stimulation (DBS) is a prominent therapy for neurodegenera-
tive disorders, particularly advanced Parkinson’s disease (PD), offering relief from
motor symptoms and lessening dependence on dopaminergic drugs. Yet, theoreti-
cally comprehending either DBS mechanisms or PD neurophysiology remains elusive,
highlighting the importance of neuron modeling and control theory. Neurological dis-
orders ensues from abnormal synchrony in neural activity, as evidenced by abnormal
oscillations in the local field potential (LFP). Complex systems are typically character-
ized as high-dimensional, necessitating the application of dimensional reduction tech-
niques pinpoint pivotal network tipping points, allowing mathematical models delve
into DBS effectiveness in countering synchrony within neuronal ensembles. Although
the traditional closed-loop control policies perform well in DBS technique research,
computational and energy challenges in controlling large amounts of neurons prompt
investigation into event-triggered strategies, subsequently machine learning emerges
for navigating intricate neuronal dynamics. We comprehensively review mathemati-
cal foundations, dimension reduction approaches, control theory and machine learn-
ing methods in DBS, for thoroughly understanding the mechanisms of brain disease
and proposing potential applications in the interdisciplinary field of clinical treatment,
control, and artificial intelligence.
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1 Introduction

Increasing evidence suggests that both invasive and non-invasive modalities [14, 27, 36,
57,109] of brain stimulation present viable therapeutic avenues for addressing neurode-
generative disorders. Deep brain stimulation stands as the gold standard therapy for
neurodegenerative disorders, notably advanced Parkinson’s disease [4,128]. The thera-
peutic efficacy of DBS often yields remarkable outcomes, ameliorating parkinsonian mo-
tor symptoms while concurrently reducing reliance on dopaminergic medications [96,97].
Nevertheless, the underlying mechanism through which DBS operates and the complete
neurophysiological underpinnings of Parkinson’s disease remain incompletely under-
stood. Thus, the realms of neuron modeling and control theory assume substantial sig-
nificance in deciphering the fundamental mechanisms governing DBS.

The brain, an intricately structured entity, emerges as a complex hierarchical network
of interconnected neuronal networks [9, 70, 135]. Neurons assemble into distinct neu-
ronal ensembles, whose interplay engenders larger, more complex assemblies [40,44,112].
While considerable insight has been garnered into the microscopic scale regarding the dy-
namics of individual neurons, the understanding of macroscopic behavior of such inter-
acting populations of neurons remains extremely limited. It is widely postulated that the
functional and information processing capabilities of the brain, spanning from basic per-
ception to the realms of consciousness, emanate from the emergent collective dynamics
of these neuronal assemblies. The basal ganglia circuit [20], comprised of pivotal nuclei
such as the subthalamic nucleus (STN) and the internal segment of the globus pallidus
(GPi), assumes a critical role in the expression of movement disorder. Ongoing endeav-
ors are directed towards addressing dysfunction within this circuit, as a foundational
strategy for the design and implementation of DBS.

Symptoms of various neurological disorders, such as PD, are believed to stem from
overly synchronous activity within neural ensembles. The severity of clinical impairment
in PD is widely recognized to correspond with an increase in the beta (13-15Hz) oscilla-
tions in the local field potential (LFP) and in the activity of individual neurons within
the basal ganglia circuit [102]. Simultaneously, abnormal synchrony patterns are associ-
ated with malfunction in disorders such as epilepsy and PD [123]. Biological and neural
systems can be seen as networks of interacting periodic processes. A computational net-
work model of the STN and the GPi within the indirect pathway of the basal ganglia can
be aptly characterized by the Hodgkin-Huxley (HH) model [102].

The human brains comprises a multitude of dynamical units, this naturally and ur-
gently calls for developing efficient methods for properly extracting and quantifying the
collective behavior of the complex spatio-temporal dynamics of neuronal oscillators. Al-
though the dimensional reduction for large-scale neural oscillators from the perspective
of clinical experiments have been comprehensively investigated [41,103], theoretical di-
mensional reduction of the complex mathematical formulation of neuronal dynamics still
remains a gap. The basic idea of dimensional reduction is to replace the original high-
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dimensional dynamics with some low-dimensional dynamics that preserve key features
of the original dynamics. We review two major kind of reduction approaches including
phase reduction and dimension reduction. In phase reduction scenarios, we aim at sim-
plifying the description of d-dimensional dynamics for each oscillator to a scalar phase
dynamics. Hence, we reduce the dN-dimensional dynamics with N interacting oscilla-
tory oscillators to N-dimensional dynamics. In dimension reduction scenarios, the main
purpose is to collapse the networked dynamics with N nodes into a simplified version
with n < N effective dimensions and use it to detect the tipping point of the original
network [31].

Numerous mathematical models have been devised to explore DBS methodologies
aimed at the synchronization-induced psychiatric disorders through the elimination of
the synchrony among oscillatory neuronal ensembles. The feedback control scheme with
or without delays [91, 100] performs well in the DBS tasks, nonetheless, continuously
monitoring the brain state of patients and updating the control signal with fixed fre-
quency incur large computational burden, and may accumulate too much energy to pa-
tients. To alleviate the problem, event-triggered control is suggested as a energy-saving
surrogate of feedback control, which updates the control signal at the instants when the
current measurement vanish a predefined event function, thereby decreasing the number
of control renewals under suitable event function [45].

The neuronal dynamics are generally high-dimensional and highly nonlinear because
of the complex interaction between large amounts of brain neurons. Therefore, tradi-
tional control methods depending on delicate design of auxiliary functions and rigorous
mathematical analysis fail in this setting. As the growth of artificial intelligence (Al), the
machine-learning-based control method plays an ever more pivotal role in solving high-
dimensional complex tasks in cybernetics [104]. In this review, we consider two types
of control problems in neuronal systems: optimal control and stabilization control, both
studied systematically by the classic techniques [60, 120] and improved with machine
learning methods in recent advancements [56,131].

The main topic of this review aims at providing a comprehensive overview of the
mathematical models and control theory methods employed in the study of deep brain
stimulation technology mechanisms. It also integrates current theoretical advancements
to elucidate corresponding technological extensions, culminating in the proposition of
prospective avenues for future research endeavors.In the following, we provide an out-
line how to approach this paper. In Section 2, we review the neuronal models from single
neuron to neuronal group and illustrate how single neurons create network dynamics
both from biological perspective and biophysical perspective. In Section 3, we introduce
the dimensional reduction approaches including phase reduction and dimension reduc-
tion. In Section 4, we discuss the control schemes subsuming closed-loop feedback con-
trol and event-triggered control from the perspective of feedback. In Section 5, we review
the existing Al control methods in DBS and summarize the potential research directions
in this field in terms of optimal control and stabilization control.
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2 From a single neuron to neuronal network

Symptoms of several neurological disorders, such as PD, are thought to arise from overly
synchronous activity within neural populations. The severity of clinical impairment in
PD is known to be correlated with an increase in the beta (13-35 Hz) oscillations in the
local field potential (LFP) and in the activity of individual neurons in the basal ganglia
circuit [102] illustrated in Fig. 1(a). Though it is known that PD is underpinned by neu-
rodegeneration of substantia nigra (SN) dopaminergic neurons and by widespread pro-
gressive brain pathology, dysfunction at the neural circuit level remains uncertain.

To date, DBS of the STN or the GPi [42] has recently been recognized as an impor-
tant form of intervention for alleviating motor symptoms associated with Parkinson’s
disease, but the mechanism underlying its effectiveness remains unclear. Hence, numer-
ous investigations embark upon modeling from the neuron itself and the brain-circuit of
pivotal nuclei, thereby scrutinizing their collective dynamical behaviors. In this section,
we firstly embark upon an exploration of the mechanistic modeling of single neuron and
synaptic connections, with an elucidation of their applications pertinent to DBS. Given
that abnormal collective dynamical behaviors frequently ensue thereafter, we pivot to-
wards a dual elucidation, encompassing both biological and biophysical perspectives on
neuron modeling. Such endeavors are underpinned by the premise that investigations
into collective behaviors often exhibit favorable attributes conducive to subsequent theo-
retical analyses and applied research endeavors, thereby affording a broader applicability
within the realm of DBS technique research.
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Figure 1: (a) Neuronal structure consists of thalamus, STN, globus pallidus externus (GPe), and GPi. Here,
“4" and “-" denote the excitatory and the inhibitory effects, respectively. The STN exhibits an excitatory
influence on the other nuclei, whereas the GPe exerts an inhibitory influence on its own and other nuclei, and
GPi exerts an inhibitory influence on the thalamus. (b) Equivalent electric circuit representation of the HH
neuron model. (c) An overview of the charge-balanced bi-phasic stimulus pulses.
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2.1 Model a single neuron

Single neuron can generate and convey information through the interplay of ion chan-
nels which have dynamics at different timescales, voltage thresholds and inactivation.
Early research often revolved around the HH model [28,48,76,113,114], which provided
a foundational framework by simplifying the complex models. Neuronal models are
classified as conductance-independent (phenomenological) models, aimed at capturing
the neuronal input-output behavior using abstract mathematical language, with mini-
mal concern for the specific physiological structure of neurons. Subsequently, further
investigation delved into study neuronal model integrating principles from biophysics
and mathematical approximations, FitzHugh-Nagumo (FHN) model [29, 46, 74, 98, 99]
and other conductance-dependent (biophysical) models were proposed. These endeav-
ors sought to mirror neuronal behavior by simulating the specific electrophysiological
properties of neuronal cell membranes, including the reconstruction of their conductive
channels [15]. In this section, we delve into the framework of describing the single neu-
rons by using their action potentials, with particular emphasis on the HH model and the
FHN model.

2.1.1 Hodgkin-Huxley model

The Hodgkin-Huxley model, initially devised to simulate the action potential generation
in the axon of a giant squid [48], operates through the intricate interplay of dynamical ion
channels whose activation and inactivation states depend upon gating variables derived
from experiments (see Fig. 1(b)). This model’s capability renders it used in evaluating the
electrode performance for DBS experiments. The direct experimental assessment of the
parameters of the HH model is enabled by the appropriate biophysical levels of abstrac-
tion [8,71]. Investigation into axonal responses involves the application of various input
stimuli, wherein the shape and the duration of the applied pulses exert notable influence
on the initiation of an action potential.

As it base, research delve into modeling cells via the HH model originating from
different nuclei. As elucidated in prior studies [102, 119], each cell type is described
by single-compartment conductance-based biophysical model within the HH formalism,
with membrane currents representative of cells in pivotal nuclei within the basal gan-
glia circuit. In each instance, the synaptic current I, ,g originating from structure a and
targeting structure f is defined as

sz—>ﬁ =8u—p [0 — Ea—>ﬁ] ZS{’“
j

Here, g, >0 is the maximal synaptic conductance, E, 4 is the synaptic reversal poten-

tial, and s/, satisfies the equation of the form

SIIX :Aa[l_Sa]Hoo(va_elx)_Baslx.
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Therefore, the neuronal dynamics vy, of the thalamic neurons is governed by

Cin0th = — It — INa — Ix — It — Igpi—sth + Ism,
P hoo (UTH) — I

! (o) (2.1)
A Too(UTR) —hTRH

Th Tr(vTh)

where I1, INa, and Ik represent the leak, the sodium and the potassium currents, respec-
tively. Moreover, It is a low-threshold calcium current, Igp;_, 1 represents the input cur-
rent from GPi to Thalamus, /1y, and rqy, are the gate variables, and Iy represents senso-
rimotor input to the thalamus modeled by step function as

e (o(Z) (D)L s

where igys is the amplitude, H is the typical step function such that

0, x<0,
H(x):{1 x>0

In addition, p is the period of Isy; and J is the duration of the input.
Given that STN represents the frequent focal target in DBS interventions, the model-
ing of the neural dynamics of STN neurons [119] entails

Cm0stn = — I, — Ix — INa — IT — Ica — Igpe—sTN + IDBS, (2.3)

where Ipgs is modeled as

IDBs:iDBS.H<sin<ﬂ>> : [1—H<sin<w>>} (2.4)
PDBS PDBS

Here, ipps corresponds to simulation amplitude, ppgs is the stimulation period, and dpgs
represents the duration of each impulse. The specific parameter can be configured based
on the strategy employed in DBS therapy [102]. Nevertheless, such unbalanced single-
phase stimulation currents may cause side effects on neural tissues [26]. Hence, to miti-
gate such concerns, a charge-balanced bi-phasic (CBBP) pulses paradigm was proposed.
This approach encompasses of short-duration, high amplitude anodic pulse, followed by
a long-duration, low amplitude cathodic pulse, as illustrated in Fig. 1(c), which is widely
used in surgical DBS procedures.

2.1.2 FitzHugh-Nagumo model

Brain network models offer a framework for simulating and comprehending the hu-
man brain as a nonlinear dynamical system. Within such models, each brain region is
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conceptualized as a node, with its dynamics governed by a specific dynamical model.
The FitzHugh-Nagumo (FHN) model, known for its simplicity relative to the HH model
[29,76], is often favored as a representation of nodal dynamics in brain network research.

The FHN model is given by
dav 1

— =V-V*-W+z
3; 3 2.5)
EIE‘(V—[I—FbW),

where V is membrane potential, which can generate action potentials through positive
feedback, W denotes the recovery variable, regulated by negative feedback to reset the
system, and z is the injected current from external environment. The above ordinary
differential equations consider the membrane potential only depends on time. When
the dissipation of voltage across the membrane is taken into consideration, the spatial-
temporal dynamics of a neuron is further modeled by the following partial differential
equations (PDEs):

3 2
W, VY
R14% '
gZS(V‘Fﬁ—’YW)/

where D is the diffusion coefficient and can be eliminated by rescaling the space variable,
the rate parameter e <1 incurring the membrane potential V and the recovery variable W
form the fast-slow dynamics, the parameter set of f and -y renders the neuron excitable
without the external stimulation. In [90], the PDE version of the FHN model under high
frequency stimulation (HFS) is considered as

oV 3 %

v

_ _V—E—W—FDW‘*‘“COS(ZM)' 2.7)
oW |
B —eVHBmW),

where the HFS is regulated by the parameters a2 and w.
Utilizing the Liénard transformation, we can transfer the FHN model into the Van der
Pol model [52], which can be written in a succinct two-dimensional formulation
xX=y,
y=pu(l—x*)y—x.

This model has been applied in studies concerning the control theory of deep brain stim-
ulation techniques [88].

(2.8)

2.2 Biological perspective

As is commonly acknowledged, a comprehensive investigation into the underlying me-
chanisms of DBS necessitates the consideration of neuronal circuits. These neural circuits
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within the brain exhibit a complex architecture, comprising interconnected populations
of neurons, rather than isolated individual units. In this section, we elucidate both 1D
dynamical system and 2D dynamical systems which considered both excitatory and in-
hibitory neurons, whereby the activity are described using firing rate.

2.2.1 Integrate-and-fire model

A straightforward feedforward network [117] is depicted in Fig. 2(a), wherein the post-
synaptic neuron generates activity through the integration of the presynaptic inputs u
weighted by the matrix m, denoting the strength of the synaptic weights. This yields
I= Zjlil mju;, representing the current encountered by the postsynaptic neuron. Given
the linear scaling of presynaptic input units by the postsynaptic neuron, the firing rate
activity can be articulated through a differential equation, which reads

Ty%:—vﬂLF(I):—ijF(m-u), (2.9)

where v is a leak term, 7, is the time constant, and F is a nonlinear function. Upon extend-
ing the feedforward network into encompass multi-postsynaptic neurons (see Fig. 2(b)),
then we obtain

Tr%:—ijP(Mu). (2.10)

Here, M represents the strength of the connection from a given presynaptic neuron to the
postsynaptic neuron.

Figure 2: (a) A sketch of the neurons processing the input into the output. Here, u is the activity of the
presynaptic neurons, m is the strength of the synaptic weights between the pre- and the postsynaptic neurons,
and v is the activity of the postsynaptic neuron. (b) The construction of a feedforward network from multiple
presynaptic neurons to multiple post-synaptic neurons. Here, M represents the strength matrix of the synaptic
weights between the pre- and postsynaptic neurons. (c) The rate-based model consists of coupled excitatory
and inhibitory neuronal populations, where wgg and wy; represent the weight matrix of inter-cluster oscillators
for each cluster, wgp and wyg are the weight matrix of intra-cluster structure, IEXt and If’Xt are the input current
of excitatory population and inhibitory population, respectively. (d) Applying the local stimulation to modulate
the neural activity of the target region.



L. Yang et al. / CSIAM Trans. Life. Sci., 1 (2025), pp. 93-133 101

2.2.2 Wilson-Cowan model

In the realms of modeling nuclei within the human brain, the entire postsynaptic neurons
can be simplified as a single population, characterized by a single scalar to describe the
firing rate of the entire population of neurons due to their similar properties. The entire
populations of excitatory and inhibitory neurons can be modeled with the same rate-
based equations. These two populations are coupled together (see Fig. 2(c)), then we get
the Wilson-Cowan model for a single population of neurons as

dT’E

Tp—— =—T1F +FE (wEErE —WET + IEXt) 4

dt

| (211)
Tld—tl =—-n+hk (T/UIET’E —wnr+ IIeXt) ’

where the leaky terms —rg and —r; represent the population decay over time subsequent
to the removal of the external input. Meanwhile, the cumulative synaptic input into each
population is integrated through the nonlinear Fg /1 (+) function. Within the exploration of
regional stimulation as illustrated in Fig. 2(d), brain regions are conceptualized as nodes
within a brain network, whereupon the j-th nucleus can be modeled as

T% = —Ej(t) + (SE_max_E]‘(t))SE <C1E]'(t) —Czl]'(t) —}—C52AjkEk(t_T§)>,
dr; ¢ (2.12)
T = G0+ (Stmac— (1) St(eaEj () — s (1)),

where E(f)/I(t) represent the firing rate of the excitatory /inhibitory population, respec-
tively, T signifies a time constant, and w;(t) and v;(t) are drawn from a standard normal
distribution. Inter-regional interactions are established via the excitatory population, fa-
cilitated by a connectivity matrix A = (A;;) and time delays denoted by 7, are derived
from real data between brain regions. The transfer function is given by the sigmoidal

function
1 1

Sg/1(x) = e Trem (2.13)

Building upon this framework, we can proceed to intricately examine the dynamical be-
havior of the entire system under regional stimulation in the presence of both stimulation
and external noise [75].

2.3 Biophysical perspective

One of the most prominent collective phenomena observed in an oscillator network is
the emergence of nodes synchronization and oscillation in unison. Therefore, the model-
ing of the disorder diseases can be approached by leveraging the biophysical properties
of the system, through the imposition of a phase model such as the Kuramoto model or
a network of theta neurons. Neurons are typically classified into two categories due to
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different firing patterns and threshold properties, based on the nature of the onset of spik-
ing as a constant injected current exceeds an effective threshold [47,49]. Type-I neurons
exhibits continuous evolution of membrane potential during an action potential, initi-
ating spiking at an arbitrarily low rate, whereas Type-II neurons display a more abrupt
transition, commencing spiking activity at a non-zero rate immediately upon threshold
is exceeded. From a neurophysiological standpoint, excitatory pyramidal neurons are
often categorized as Type-I, while fast-spiking inhibitory interneurons commonly belong
to Type-11[79]. Near the spiking onset, Type-I neurons are conceptually modeled as theta
neurons [66], and an exemplary model representing Type-II neurons is the Kuramoto
model [6].

2.3.1 The theta neuron
The phase equation of theta neuron is modeled as
0= (1—cos8)+(1+cos)y, (2.14)

where 6 is a phase variable on the unit circle and # is a bifurcation parameter related
to the injected current. For 7 <0, the neuron is attracted to a stable equilibrium which
represents the resting state illustrated in Fig. 3(a). An unstable equilibrium is also present,
representing the threshold. If an external stimulus pushes the neuron’s phase across the
unstable equilibrium, & moves around the circle and approaches the resting equilibrium
from the other side. When 6 crosses 6 = 71, the neuron is said to have spiked [23].

We formulate a cluster of N theta neurons as follows:

0 = (1—cosb;)+ (1+cosb;) [17j+ Leyn |, (2.15)
where 0; is the state of the j-th neuron with the index j€{1,...,N'}. Moreover, the coupling

term Iyyn = (k/N)LN, Py (6;), where P, () =a,(1—cosf)" with n €N and the normaliza-
tion constant

. 27 2" 1B(n+1/2,1/2)
n— " TT -
/ (1—cos(x))"dx m
—T7T
such that
2
/ P,(6)d6 =27, (2.16)
0

Here, B(-,-) denotes the Beta function, P, (6) becomes more and more sharply peaked as n
increases, and k represents the synaptic strength considered the same for all neurons.
In Fig. 3(b), the blue circle delineated by dashed lines represent the oscillator in stable
state. With couplings, the oscillators rotate along the unit cycle synchronized as shown
in Fig. 3(c). The macroscopic behaviour of the theta network is defined by the order
parameter

9 (2.17)

M=

Il
—_

2(t) &
)
where |z(t)| €[0,1] represents the extent of synchronization at time .
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Figure 3: (a) The system (2.14) experiences a Saddle-Node Infinite Periodic Cycle bifurcation as 7 increases
from 0— to 0+. When 17 <0, the system exhibits two equilibria: one is stable (represented by a solid red point),
while the other is unstable (hollow red point). Both equilibria lie on a vertical line and shift towards the right
simultaneously as 77 increases. The two equilibria coincide at (1,0) when 7=0. In this case, any trajectory moves
counterclockwise to (1,0) when t— oo, For 17>0, the equilibria disappear. The trajectory of the system moves

around the unit circle periodically with a period T:f(f”[(l—l—}y)—f—(}y—l)cosﬁ}*1d9. Dynamics of a cluster of the
theta neurons governed by (2.15) for k=0 (without coupling, b) and for k>0 (with coupling, c). The blue points
correspond to the instances where 77; <0, indicating equilibrium states in the absence of coupling. However,
when coupling is present, these points exhibit synchronized movement alongside red points, which correspond
to the instances where 77; >0. Similarly, system (2.21) shows unsynchronized dynamics without coupling (d)

and shows synchronized dynamics with coupling (e). The red arrows in (b)-(e) represent the order parameter
defined in (2.16) or (2.20).

2.3.2 From Stuart-Landau oscillator to Kuramoto model

Self-oscillating oscillator refers to a system capable of sustaining self-sustained oscilla-
tions in the absence of external forces. In study of the synchronized self-oscillating os-
cillators, researchers have observed the instances where, in spite of variations in ampli-
tude among individual oscillators, their phases remain coherent. This observation has
led to the conceptualization of “phase synchronization”. Notably, Kuramoto proposed
a phase approximation approach to address this phenomenon, wherein equations gov-
erning the phases of individual oscillators are approximated. If the behavior of each
individual oscillator conforms to the canonical Hopf bifurcation, the classical Kuramoto
model emerges.
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Initially, we consider the coupled Stuart-Landau (SL) oscillators as follows:
zj=(iwj+1—|z|*)z+KZ, j=1,2,...,N, (2.18)

where z; represents the dynamics of the j-th oscillator, with w; denoting its inherent nat-
ural frequency. The parameter K is the internal and global coupling strength, while
Z=(1/N) Z]-Iilzj is the mean-field coupling term. Notably, the natural frequencies of
each are not identical but obey a specific probability distribution g(w). When K=0, each
oscillator rotates along with its own natural frequency, thus illustrating a state of unsyn-
chronized dynamics. Letting z; :pjeief and K=0, we have g;= (1 —p;‘)pj, and then p;—1,
the system (2.18) is rewritten as

0j=w;+K-Im{re ¥}, (2.19)
where
el ieief (2.20)
N =

is the order parameter, and Im{-} represents the imaginary part of a given complex num-
ber. From a physical perspective, r is the centroid of the coupled oscillators. Therefore,
system (2.19) can be written as

: KY
QjIZUj—i-N;Sin(@i—@j), (2.21)
=

which becomes the traditional Kuramoto model. For sufficiently large K [59, 91, 100],
system (2.21) shows phase synchronization.

Finally, we explain the physical meaning of order parameter in detail because this
amount is widely used in mathematical analysis of neuronal dynamics. The values of |r|
vary in the interval [0,1]. In the desynchronization state, the phase 6; are uniformly dis-
tributed over the interval [0,27t], which corresponds to a nearly zero value for r (see
Figs. 3(b,d)). Conversely, in the synchronization state, the phase 6, are highly concen-
trated around a single value, leading to being close to 1 (see Figs. 3(c,e)). Consequently,
small values of |r| signify the desynchronization state, whereas values of |r| close to 1
signify synchronization state. Therefore, we may employ |r| as a metric to describe the
degree of synchronization.

3 Reduction methods for coupled oscillators

Due to the complicated interaction between a large number of nodes in the network, the
task of investigating the networked dynamics is not trivial. Therefore, a common choice
is to reduce the original high-dimensional dynamics to some low-dimensional dynamics
that preserve major information of the original dynamics. There are two major kind of
reduction methods, viz., phase reduction and dimension reduction. In phase reduction
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scenarios, the major idea is to simplify the description of n-dimensional dynamics for
each oscillator to a one-dimensional phase dynamics, thus the evolution on the stable
limit-cycle of each oscillator is determined by a single periodic phase variable [6]. In this
setting, biologically relevant information is captured by the phase dynamics which are
easier to analyze and assess. In dimension reduction scenarios, the main purpose is to
collapse the N-dimensional networked dynamics into a simplified version with n < N
effective dimensions and use it to predict the global activity of the original network [31].
In addition to the dynamics, the network structure plays a pivotal role in this case. Below
we summarize the phase reduction and dimension reduction based methods in DBS, and
further discuss the potential directions in this field.

3.1 Phase reduction

Delivering stimulation to the ventrolateral thalamus is an common clinical treatment to
suppress the patient’s symptom. To determine the timing of updating the stimulation,
phase dynamics can be set as an effective indicator. H. Cagnan et al. [10] employ the
band-pass signal from the dominant tremor axis to calculate the phase of tremor, once
the real time phase arrives a patient-specific certain threshold, a transistor-transistor logic
(TTL) pulse is sent to the patient, which gives rise to tremor suppression. In addition to
the phase-specific stimulation, researchers have showed that PD is associated with exag-
gerated coupling between the phase of beta oscillations and the amplitude of broadband
activity in the primary motor cortex, in which the phase-amplitude coupling (PAC) is
a phenomenon observed in neural oscillations where the amplitude of high-frequency os-
cillations is modulated by the phase of low-frequency oscillations [18]. Therefore, an ef-
fective way to relax the symptoms of patients is achieved by alleviating excessive beta
phase locking of motor cortex neurons [19].

All these previous research demonstrate the efficacy of phase based control in DBS
tasks. Nonetheless, a major challenge in applying the phase based control methods into
different neuronal oscillators is how to obtain the phase from their original dynamics.
In classic coupled oscillator models, neural oscillators correspond to individual neurons
described by a set of variables possessing periodic limit-cycle. A mathematical descrip-
tion of such a neuron can be simplified by projecting the state of the neuron on its phase,
a one-dimensional scalar variable, which in absence of external input increases with con-
stant frequency from 0 to 27, corresponding to an evolution of a neuron from spike to
spike [3,7,126]. Therefore, an effective way to bridge the gap between the clinical treat-
ment and mathematical model is to finding the phase reduction dynamics of general
nonlinear neuronal oscillators.

Specifically, we consider the neuronal oscillator under the DBS control as follows:

x=F(x)+u(xt), xcR% (3.1)

Here, F is the self-dynamics of the neuron possessing a stable-limit cycle I' that can incur
spike of the neuron, and u is the external forcing representing the DBS stimulation. The
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phase function is defined as a periodic function 6(x):[0,27t) =T on limit-cycle, and its in-
verse is denoted as x7(6):T'— [0,277). In order to find the corresponding phase dynamics,
we need to extend the definition of phase to the vicinity of limit-cycle because the exter-
nal forcing may perturb the original limit-cycle. We define the concept of isochron x(x)
as the level set of 6(x), i.e. [127]

X(x0)={y: tli_)rglo]x(t;xo) —x(ty)|=0}, VxoeTl.

Here, we use x(t;x() to represent the solution initiated at time 0 from x(. The strength of

control u is required to be weak to keep the trajectory in the vicinity of I', which is consis-

tent with the clinical treatment because the patient should not be stimulated strongly [7].
The evolution of phase is deduced from the law of chain derivative as

.90

9—5-(F(x)+u(x,t)). (3.2)

A basic assumption in phase reduction theory is that the natural oscillation of the uncon-
trolled system possesses constant frequency, i.e. (00/0x)-F(x)=w. Since the limit-cycle T
is stable, we evaluate the dynamics on I' to leading order as follows:

9:w+a—6 u(t) Ew+Z(0)-u(x7(0),t). (3.3)
ox 2(0)

Here, Z(0) denotes the gradient of phase 6 evaluated on the limit-cycle and is commonly
referred to as the phase response curve (PRC) [23,72,77]. The PRC determine the reaction
mechanism of the self-dynamics to the external forcing, which varies from different types
of neuronal oscillators. However, analytical formulation of PRCs is lacking for most limit-
cycle systems due to the irregular shape of the limit-cycle. In the context of neuronal
oscillations, PRCs are further classified into two typical types: A Type I mode with as
purely positive function values of PRC, and a Type II mode with PRC having negative
parts [23]. Recent studies reveal a counter-intuitive phenomenon that the type of PRC
may change due to the modulation of bioelectricity current and chemical media such as
choline [25,37,116,130], instead of keeping a static PRC type. Our framework can take this
PRC type transition into consideration by treating the external modulation as a change to
the self-dynamics F(x). Specifically, consider Fy(x) and F; (x) as the self-dynamics of the
neuronal oscillation before and after the neuronal modulation, respectively. The changes
of the self-dynamics lead to the changes of the periodic solution from which the phase
variable 8 ; and phase frequency wy; are extracted, and hence lead to the changes of the
gradient of the phase functions Zy(60y) and Z;(61). If the functions Zy and Z; belong to
the Type I and the Type II PRCs, respectively, then we obtain an explanation of the PRC
transition from the perspective of mathematical model.

To quantitatively identify the property of PRCs, we employ the following direct me-
thod that is extensively employed to find the PRCs [34,77]. We note that
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0 _(20 a0\
ax_ axl"”’axd ’

0y O tee) —0(x) i=1,..4, (3.4)
axi e—0 S
x:(x1,...,xd)T, ei:<0,...,\1,'/,...,0)T, izl,...,d.

i-th

Therefore, by quantifying the change of the phase resulting from the perturbation x —
x+¢ee; for sufficient weak ¢, we obtain the approximate PRC along the direction ¢; as

90 O(x+ee) —0(x) o Axeb
ox; e e/

x=x7(6p). (3.5)

Since the phase motion has constant frequency and the limit-cycle is stable, the A, may
be measured as the phase gap between x(t;x) and x(t;x+¢e;) for large t such that the
perturbed trajectory collapse to the limit-cycle. For neuronal oscillations, the timing of
a neural action potential generally corresponds to 6 =0. Then, A, (q) . can simply be in-
ferred by measuring deviations from the expected timing between spikes and scaling the
deviations. Similarly, the PRC at other phase can be measured by repeating the aforemen-
tioned procedure initiated from timing shifting after spike. For other general dynamical
systems, more sophisticated methods are developed to obtain the PRCs, including solv-
ing the partial differential equations in adjoint method [24], processing the electroen-
cephalogram (EEG) recordings with low signal-to-noise [110], and estimating the phase
of a population of phase-locked [95] or phase-unlocked [55] oscillators from experimen-
tal data. For the completeness, we summarize the general formalism of phase reduction
under coupled control as the end of this section, we also illustrate the workflow of phase
reduction in Fig. 4(a).

Definition 3.1 (Phase Reduction). Consider the networked dynamics with N nodes as

N
xi:P(x)+ZAi]-H(xi,xj), xG]Rd, (3.6)
j=1
here A = (Aj;) is the network structure, F and H are the self dynamics of each node possessing
a stable limit-cycle I and the interaction term between nodes, respectively. In phase reduction, we

aim at finding the phase function 6 =0(x) such that the corresponding phase dynamics takes the
following closed-form formula:

N
bi=w+)_ A;T(6:,0)), (3.7)
j=1
where w is the natural frequency of the self-dynamics, T'(6;,0;) is the interaction between nodes
i,j depends only on their phases. The core idea in achieving the phase reduction is to find the
PRC Z(0) =06/ E)x\x7 ) In phase reduction settings, the network structure is generally set as

Ajj=K/N, where K represents the strength of coupling.
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Figure 4: lllustration of the phase reduction and dimension reduction. (a) Phase reduction method reduces
the d-dimensional limit-cycle oscillator to a closed-form scalar phase dynamics for each node. (b) Dimension
reduction includes two approaches: The first is the Ott-Antonsen method that reduces the coupled phase
dynamics of N nodes to closed-form dynamics of one scalar order parameter, and the second is Gao's method
that reduces the coupled d-dimensional dynamics of N nodes x; to a closed form d-dimensional dynamics of %,
which is the weighted sum of x;.

Using the aforementioned phase reduction method, we further elaborate on the term
“deciphering deep brain stimulation” used in the title of this article. We observe that
the mechanism underlying the abnormal synchrony of neuron cells, which is relevant to
the DBS field, lies in the phase response function of neuronal oscillators. Consequently,
once the PRC of the relevant neuronal oscillators is uncovered, such as the Type I and
the Type II PRCs, analyzing the onset of synchrony from the reduced phase dynamics
of the neuronal cell population becomes feasible. Then, researchers are able to design
treatments aiming at desynchronization of the abnormal synchrony, based on the insights
gained from the reduced phase dynamics.

3.2 Dimension reduction

The aforementioned phase reduction method simplifies the dN-dimensional coupled os-
cillatory with d-dimensional self-dynamics and N oscillators to N-dimensional phase dy-
namics. To further reduce the complexity of the system, we introduce the dimension
reduction methods, which simplify the N-dimensional phase dynamics to lower dimen-
sional dynamics with effective dimension n<N or even n=1. We begin with the classical
Ott-Antonsen method, which plays a pivotal role in finding the low-dimensional behav-
ior of the large dynamics [80]. For the collective neuronal oscillators inter-playing as the
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Kuramoto model, the phase dynamics is described as

. K&
Gi:wi+NZ;sin(9j—6i), (38)
]:
where each natural frequency {w;,i=1,...,N} is sampled from a given distribution g(w).

The coupling term in the left-hand side of Eq. (3.8) is related to the order parameter
r= (1/N)Z]-Ii1e‘9f as follows:

oy Koo e e
—Zsm (0;—6;) ZIm 0=0) = KIm(re 1Gl)zi(i’e i _prel®). (3.9)

By substituting Eq. (3.9) into Eq. (3.8) and using the Liouville equation [53], we obtain the
continuity equation for distribution of the phase f(0,w,t) as

af K —if * 16 _
at+ae{f[w+i(re re )H_o (3.10)
with the constraint 5
f(6,w,t)d8=g(w). (3.11)

The following relation holds true in the limit of N — oo from the law of large number [94],
27 oo |
- / / e £(8,w,t)dwd. (3.12)
0 —o0

We consider the series expansion of f in interval [0,277] as
F= Y ae®, a= - / " ity (3.13)
N kez ‘ , o 27 Jo ' .

According to Eq. (3.11), we have ap = g(w)/(27), leading to the equivalent formulation
of f as

f= 8(w) {1+ ) bkeike] , b= a. (3.14)
27 iz

Next, we restrict the expansion to a special case with by =bX and k> 0. By substituting
Eq. (3.13) into Eq. (3.10) and aligning the coefficients of the term el’, we obtain

A(brel®) 9

K :
i6 2 0| __
o +ae [wb1e + = (rb e ]_0, (3.15)

which further implies

f?ﬁ—g(rb%—r*) +iwb, =0. (3.16)
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The relation between r and b, is deduced from Egs. (3.12) and (3.14) as

2w poo 0 o0
r*:/ / e_lef(G,w,t)ddeZ/ ﬂleU:/ b1g(w)dw. (3.17)
0 J-oo o -

To proceed, we illustrate how to analyse the complex phase dynamics with the scalar
dynamical system in Eq. (3.16). For example, the natural frequency of single cluster neu-
ronal oscillators can be set as the unimodal Cauchy distribution

h 1

8() = o i (3.18)

Without loss of generality, we consider wy=0 and h=1. By applying the residue theorem
[115] to Eq. (3.17) at singular point wy—ih of ¢(w), we obtain

r* =Dby (wo—ih, ) =by (—ih,t). (3.19)

Considering the polar coordinate representation r = pe'¥ and putting it into Eq. (3.15), we
have

K K
o+ (1—§>p+§p3:0. (3.20)

Here, p=0 is the equilibrium of the system representing the desynchronization state of the
coupled oscillators, which is related to the normal state of brain. Therefore, by analyzing
the stability of the equilibrium under patient specific parameters, we have the ability to
identify and predict the symptoms of the patient from the theoretical perspective.

In addition to the reduction of single cluster of neuronal oscillators, more sophisti-
cated dimension reduction methods have been cultivated in recent years. Thibeault et al.
[121] consider phase dynamics with more general coupled terms instead of the Kuramoto
model. Inspired by the Ott-Antonsen method, Wang et al. [125] propose the stability the-
ory for dimension reduction method of multiple clusters of neuronal oscillators, which
validates the feasibility of partial control in DBS. In this case, the effective dimension
of reduced system equals to the number of clusters. Other methods have been devel-
oped that are applicable to oscillatory oscillators which are not described by the phase
dynamics. Gao et al. [31] directly reduce the networked dynamics of oscillators as their
weighted sum based on the structure of the network, the corresponding one-dimensional
reduced system accurately reveals the tipping point of the original dynamics. Laurence et
al. [58] improve Gao’s method by replacing the weight vector as the solution of an op-
timization problem related to the eigendecomposition of the structure. Jiang et al. [50]
take the cluster structure of the network into consideration, and proposes to apply Gao’s
method separately to each cluster of the network, leading to a more robust and effective
reduced dynamics. We put the aforementioned Ott-Antonsen method and Gao’s method
for dimension reduction in Fig. 4(b). Similarly, we summarize the general formalism of
dimension reduction as the end of this section.
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Definition 3.2 (Dimension Reduction). Consider the networked dynamics in Eq. (3.6), where,
however, we do not require F has a stable limit-cycle. The aim of dimension reduction is to find
a weight vector « =a(A) = (aq,...,0,)7, a reduced weight B, and

x=F(%)+BH (%, %), (3.21)

the closed-form dynamics of the weighted variable =Y ;a;x; such that the time trajectory of %(t)
in dynamics (3.21) approximate the weighted trajectory Y_;a;x;(t) in dynamics (3.6) in an optimal
manner based on some prescribed measurement.

The aforementioned dimensionality reduction methods pave the way to simplifying
the complex networked dynamics of neuronal cells or biological oscillators. A direct
application stemming from these reduction approaches is designing therapy strategies
for patients by controlling the reduced dynamics. Generally, the networked dynamics
exhibit high non-linearity, large spatial dimensions, and individual variability in each
node, which pose difficulties for designing control policies. Through the phase reduc-
tion or dimension reduction method, the original complex system is reduced to a lower-
dimensional system, thereby facilitating the design and analysis of control strategies for
the system. Moving forward, we will introduce control theories in the next section that
can be applied in such scenarios.

4 Control theories in DBS therapy

Controller synthesis often presents inherent difficulties, primarily due to the computa-
tional challenges arising from the high dimensionality of neuronal dynamics. To ad-
dress this, dimensionality reduction techniques have been established, which allow us to
construct a simplified system that accurately captures the basic features of the original
higher-dimensional model, effectively mitigating the primary challenge. Consequently,
the constructed simplified dynamics serve as an effective substitute for the original sys-
tem, facilitating controller synthesis for complex dynamical systems. In the following
sections, we delve into a few but essential control theories related to the DBS therapy.
We begin with a definition for the adaptive feedback control scheme.

Definition 4.1 (Adaptive Feedback Control). Consider a controlled system
= f(x,0(t)u(t), @1)

where x(t) is the state variable, ®(t) is some unknown parameter or disturbances (may be high-
dimensional, time-varying, and unbounded), and u(t) is the controller to be designed. If the
controller u(t) does not depend on ©(t) but only depends on the state x(s) for s € [0,t], the
controller is said to be an adaptive feedback controller.

Various mathematical models have been developed to explore the effectiveness of
the DBS techniques for addressing synchronization-induced mental disorders. The DBS
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techniques aim at eliminating synchronization in oscillatory neurons through the imple-
mentation of appropriate control scheme, broadly categorized into open-loop control [91]
and closed-loop control (see Fig. 5(a)). It is widely acknowledged that, while open-loop
control strategies exhibit limited robustness and consume considerable energy, closed-
loop control approaches offer superior sustainability, robustness, and energy efficiency.
Numerous feedback schemes have been validated as effective methods to achieve syn-
chronization elimination in coupled neuronal networks [5,13,65,73,85-88,91,92,100,101].
Nevertheless, while the phenomenon of synchronization is destroyed, the signal wave-
form is also disrupted, thereby affecting the effective transmission of information within
the neurons themselves [118]. Notably, adaptive control schemes have emerged in the
previous studies [132,134], wherein the coupling gains dynamically adjust and optimize
the values through system’s evolution, thereby preserving the original waveform of the
signal effectively.

4.1 Adaptive feedback control scheme

Modeling of the DBS treatment techniques has primarily focused on applying adaptive
control to the dynamics of all nodes within the system [111,132-134], aiming to achieve
desynchronization [12]. However, considering the clinical context where the DBS inter-
ventions are typically localized to specific brain regions, there arises a pertinent question
regarding the implications of controlling only a subset of nodes on the dynamics of the
entire system. In [125], they postulate the existence of two distinct clusters of neurons
within this system (see Fig. 5(b)). Specifically, one of these clusters is dedicated to rep-
resenting the target region, which is modulated through the application of DBS. Concur-

(a) (b) PD State

Cluster 1 K Cluster 2

== Filt -
] e Y e )9

L 4
LFP
D — add control

D/A |+ ] Data Processing I Ieallhy State

Trigger

Cluster 1 Cluster 2

— Stimulator C D

K2

Ry =0 Ry =0

Figure 5: (a) A schematic of the closed-loop DBS strategy. (b) Applying control to only one cluster within the
two-cluster systems facilitates the transition of the entire system from the PD state (upper panel) back to the
healthy state (lower panel).
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rently, the other cluster is sparsely connected to the target region and is thought to serve
a distinct functional role within the larger network.

4.1.1 Adaptive scheme design for Eq. (2.18)
Initially, we add a feedback delay control on Eq. (2.18), which yields the system

Zj=(iwj+1-|z*)zj+KZ+L(t)Z, j=1.2,...,N, (4.2)

where 7 is the delay constant,
ZH)=—) z(t), Z=Z(t—7)

represents the feedback delay. L(t) denotes a time-altered, complex-valued adaptive cou-
pling strength. Using the transformation z; = p]-elef and letting p; — 1, we have the phase
dynamics

0j=w;+Im{[Kr+L(t)r(t—7)]e ¥ }. (4.3)

Let L=|L|e!” where L=C+iS. Hence, C=|L|cosvy and S=|L|siny with v &€ (-, 7], which
further yields

: KX CY S Y
9]-:wj—}—NZ;Sin(ei—Gj)+NZ;Sin[ei(t—T)—Gj]+NZ;COS[9i(t—T)—9]-]. (4.4)
1= 1= 1=

To formulate an adaptive technique for the coupled Kuramoto system, we define the
energy function as

Q2Q:()=In(t-T)P=lr P =reri,

whenever 7>0. In this pursuit, the information exclusively from the first cluster in a two-
cluster system is utilized. Thus, the synchronized state and the desynchronized state
correspond to |r1(t)| =1 and 1 (t) =0, respectively. The steady states are typically exist
at the minimal or/and the maximal values of Q. Leveraging the steepest descent method
(SDM), setting 1 (t) =0 as the target state, and ascertaining the minimum of Q(t), the
dynamics governing the real and imaginary components of the adaptive scheme L are
designed as follows:

C=-—1n1-0cQ-H(|r1 | —€), S=-12-05Q-H(|r1|—e€), (4.5)

where 11,6 > 0 are adjustable control parameters, and H is the standard Heaviside step
function. The explicit form of the energy can be computed as

N, 2

1M
Q=In(t-0)f =3 Lt

1]':1
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The energy without delay is defined as Qo(f), and then
Qo(t) =# ()1} (t) +c.c.=2Re{r1 (t)r} (1)}, (4.6)
where c.c. represents the complex conjugate of the preceding formula, and
. 1§t o
I’l(t) = E;le 19]
i9; 1 —i0; 1 * * i0;
Z1e 1w+ Kr+Lr(t T)le —Z[Kr +Lr(t—1)e"
AL L,
Son(t—1)— 571 (t—71)s1(t)+g(0,K,N).

2

Here 51 (t) = (1/N1)Z;V11e2‘9f and g(0,K,N) is generated by 0, K, and N. By L=C+iS5, the
control can be written as

IcQo(t)=Re{ri (t—1)r} (t)—ri (t—T)ri ()s1 () }, (47)
9sQo(t) = —Im{r (t=T)ri (t) = r{ (t=T)r{ ()1 (1) }.
Then, by taking t =t — T and the adaptive control scheme can be rewritten as
C=—mRe{ o] =12t c51,c) JH(|r1,| —€), 18)

S=mIm{ [r1pcrs =17 2017 t51,c] JH(|r1,| —€).

When consider the coupled Stuart-Landau equations, the complex-valued coupling gain
dynamically obeys
C=—-2mRe{Zr:Z;}H(|Z:| —€),

. (4.9)
$=2mpIm{ Zy: ZEVH(|Z | —€).

4.1.2 Feasible parameter regions

In order to analytically illustrate the feasibility of the adaptive techniques proposed
above, we set L(t) =L = C+iS as a constant number in (4.4), so that we need to locate
the parameter region of L in the complex plane for eliminating synchronization for (4.4).
To this end, using the Ott-Antonsen ansatz leads to that

K L
q=—iwa— > (ra® —r*)— 5 [r(t—T)a® —r(t—1)*], (4.10)
where the order parameter is

r :/+Ooa(w,t)g(w)dw. (4.11)

—00
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In this section, we consider a special case of the natural frequency distribution as

V2 1
gw)=—"— (4.12)
which has not been discussed yet in the literature.

Firstly, we try to obtain an analytical expression for r*. As discussed in [80], the func-
tion w(w,t) can be analytically extended to the lower half complex plane (see Fig. 6(a)),
satisfying |a(w,t)| <1. Denote by Tr = SgUTk the closed curve in the lower half complex
plane, where

Sk={s|s:R——R}, Tp={Re”|0:7—27}.

Note that g(w) has two poles, i.e. w=e"™/4,e73/4 in the lower-half complex plane.
According to the residue theorem [115], we obtain

/r g(w)a(w,t)dw=27i[Res (goc,e_%i )+Res(ga,e” K )]- (4.13)

Here, R > 0 is sufficiently large. Res(:,-) represents the residue for a given analytical
function. By utilizing L’'Hopital’s rule, we obtain
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Figure 6: (a) The contour I'g used in Eq. (4.13). (b) When K =3, the feasible stability region shrinks as T
increases. (c) The event-based DBS gives pulse stimulation to patient once the monitored brain signal x(t)
satisfies the triggering condition h(x(t))=0.
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V2 o1
-—.—a

w—se-Ti/4 T w41

71 1

— T lX(e 4/t)’4'e737.[i/41

. _amy V21
)= lim (w—e 4)'?.w4—|—1

(w,t)

a(w,t)

Furthermore, we have the estimations as

——a(w,t
T 7T w4+1zx(w, Jdw

27r\/§ iRel? .
- 7T R4e419_|_1
S/271\/§ iRel?

@ 70 |Rée 011

Vi ‘

/TRg<w)“<w/t)dw‘ _

(Reie,t)de‘

a(Re'?,t)|d6

g\@% —~ 0 (R > o).

Letting R — 4-00 of both sides of Eq. (4.13) yields

* . \/E _m 1 \/E _ 3mi 1
r*=—2rti- {?(x(e 4't)'47-e*3”i/4+?.“(e 4 ,t)~74.eim/4
Substituting w=e~"/4,e=37/4 into Eq. (4.10) yields
(
051:%(—1—1)041—%(1’&%—1’*)—%[r(t—r)uc%—r(t—r)*],
052:%(1—1)042—%(1’&%—1’*)—%[r(t—r)uc%—r(t—r)*},
;T

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

where a1 = a(e”™/4,t) and ay = a(e 3"/ t). We intend to find the parameter region
of L for ensuring stability of a1, =0 of Eq. (4.18) (i.e. achieving an elimination of the
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synchronization). A linearization of Eq. (4.18) at a1 = ap =0 gives ¥ = Hx+Gx(t—1),
where x = [a1,a2]T,

L g(—i;)%(m) p —%(i—Kl) |
Ky LK
L L
o %(iﬂ) —%(1—1)
26+ —Z6-1)

Hence, the characteristic equation det[A] — H —e*7G] =0 is computed as

V2, K. L _aep. V2, K. L aeps
[ —7(—1—1)—2(1+1)—Ze AT(i4-1) _7(1_1)+Z(1_1>+Ze AT(i-1)

— (—%(i—l)—%e‘”(i—l)) (%(i+1)+%e—“(i+1)> =0

Using the geometric approach developed in [134, Appendix B], we obtain the feasible sta-
bility region for L in the complex plane. As seen in Fig. 6(b), the stability region shrinks
as T increases. This suggests that the time delay plays a negative role in forming a stabil-
ity region in the complex plane of L.

4.2 Event-triggered control scheme

The aforementioned feedback control scheme requires continuously monitoring the po-
tential signal of patients, such as EEG signal, and updating the control signal, which
may accumulate too much energy to patient. To alleviate the pressure exerted on the
patient by the continuous application of control signal, event-based methods have been
employed. Compared to the feedback control which updates the control signal at a series
of predefined explicit times, event-triggered control (refer to Fig. 6(c)) updates the con-
trol signal at the instants when the current measurements violate a predefined triggering
condition, thereby triggering a state-dependent event [45].

According to the specific observable variables in neuromodulation systems based on
electrical stimulation, different event mechanisms are set to modulate the duration of
control stimulation to the patient. In [106], local field potential (LFP) is selected as the
observable variable and the electrical stimulation applied to the patient is triggered once
the LFP crosses a certain threshold. Specifically, the threshold on the LFP amplitude is
set at —3 RMS, the LFP is dynamically computed with a history of 30 seconds. The 100
milliseconds post-stimulation history is excluded from the computation to avoid con-
tamination by the stimulation artifact. In [43,62-64, 68, 84,122], the adaptive deep brain
stimulation (ADBS) mechanism is considered, in which the beta band LFP is monitored,
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and the threshold for triggering the stimulation was set manually so that the DBS would
be switched on for about 50% of the time when the patient was at rest.

For completeness, below we give the mathematical description of the event triggered
control scheme in DBS tasks.

Definition 4.2 (Event-Triggered Control). Consider the controlled system as

x:f(x,u(t)), 4.19)

where the event-triggered implementation of the feedback controller is defined as u(t) =K (x(ty)),
te <t <tyy1, while the triggering time is decided by

tean :inf{t >t h(x(t)) :0}
for some predefined event function h.

Specifically, in the aforementioned examples, the state x is set as the LFP signal, the
event function / is set as the difference of x and the predefined threshold.

5 Al-driven control

We note that the exact mechanisms of DBS are still a matter of debate [21, 35,51], and
therefore finding effective DBS policies requiring the control policies for different kinds
of dynamical systems. Due to the high dimension and non-linearity property of brain
neurons, the neuronal dynamics are generally coupled with complicated structure and
complex dynamics. Therefore, traditional control methods based on delicate design of
the control formulation fail to handle such elaborate tasks. Since the universal approxi-
mation theory of neural networks was proposed by [16], Al-driven control methods have
been developed to circumvent the problems incurred by highly complex systems in the
interdisciplinary fields of medical treatment, control theory and biomathematics. We re-
view two major types of control policies in DBS: optimal control and stabilization control,
as illustrated in Fig. 7. In our review, the methods introduced in optimal control belong
to the data-driven settings in which we only have the measurement data of the brain
signals, while the stabilization control belong to the model-driven cases where the math-
ematical models of neuronal dynamics are known. As both of the control problems have
been studied extensively using the traditional techniques [60, 120], recent advancements
in machine learning pave a way to cultivate more efficient and practical control policies
for them.

5.1 Optimal control

Suppression of the abnormal synchronous behavior of coupled neuronal dynamics has
been widely accepted as the goal of the DBS. Since the suppression process corresponds
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Figure 7: An illustration of the Al control methods for realizing the DBS. (a) The abnormal brain state
corresponds to the synchronization of neuronal oscillators. To eliminate the synchronization, both the optimal
control (b) and stabilization control (c) are considered to design the neural network based treating policy from
the mathematical model of coupled neuronal system. (d) After control, the synchronization phenomenon is
suppressed to achieve the normal brain state.

to control of a large network of interacting neurons, the target of the DBS can be natu-
rally regarded as an optimal control problem that achieving the best performance while
obeying the dynamics of neurons. In the optimal control setting, we have an objective
functional depending on controlled trajectory and the controller that measures the per-
formance of the control process. The task is to find the best controller that maximize the
objective functional under specific constraints, e.g. the controlled state evolves along the
controlled dynamics and the control value should not exceed a certain threshold. A gen-
eral mathematical formulation of the optimal control problem is described as follows:

T
A
max] (xo, o1 —tZ’rr u(t)),

st x(t+1)=f(x(t)u(t)), G1)

u(t)eU(t),

where 7 is the reward function depending on the controlled state x and the control value
u,7 is the discount factor, f, dubbed as environment, defines the controlled dynamics,
U(t) captures the constraint on the control value at time step t. In the last decades, many
control methods are developed to handle such kind of problem under the DBS settings,
including both online learning methods, e.g. model predictive control [38,61], and offline
learning methods, e.g. model-based reinforcement learning (RL) [32]. Generally speak-
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ing, online learning methods has the ability to find the optimal control value at specific
time, while offline learning methods aim at finding the optimal control policy for a range
of time and depends on the mathematical models of brain dynamics [105,129]. From the
clinical treatment perspective, an ideal control policy should quickly response to the cur-
rent state of patient. Nevertheless, the online learning control methods, incurring solving
iterative optimization problem of high-dimensional neuronal system, have large compu-
tational complexity. Consequently, we focus on the offline learning methods that provide
closed-form control function of the state.

Concretely, we consider the Al-based RL method in the DBS problem studied in [56].
The environment of the neuronal populations in the DBS task is selected as the globally
coupled FHN oscillators

(5.2)
yi =0.1 (xz- —0.8%‘ —|—07) .

Here, we consider the Euler iteration with temporal sampling rate § of the continuous
dynamics as the realization of the environment, and focus on the mean field observable
variable X = (1/N)YN,x;and Y = (1/N)YN, ;. For the sub-threshold coupling, these
variables own a fixed point, approximately X* ~ —0.27 and Y* ~ 0.55. The difficulty in
realizing the optimal control for this system arises from the fact that the fixed point to be
stabilized is not in the origin and is priorly unknown. After we settle the environment, we
pre-define the current state-action set at time step t, =nA as {X;, , ., Yi, , /Ut 1 ,i\i’ol,
where A =14 for some integer [ > 1. This set is fed to the RL method to assess the reward
in the last m time steps. To proceed, we define the control policy as

u(t):ZAnPn(t)/ AminSAnSAmaXI
n

Py(t) = 1, t,<t<t,+7,
e 0, otherwise,

(5.3)

in which Amin, Amax are the constraints on the control value, and 0 < T <A are the prede-
fined time constants. To identify the specific control value A, given the current state X; ,
we use the neural network to parameterize the policy mg =P (X;,,A,) such that the con-
troller takes value A, with probability IP(X;,,A,). Then, by applying the control policy to
the environment and collect the obtained state-action set, we calculate the reward func-
tion as

1M 2 1M
r(tn):_<xtn_MZthk+l> _ZK Z’utn—kJrl”
k=1 k=1
N (5.4)

]n:lEn

n=1

’an(tn)] .
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Finally, we use a proximal policy optimization (PPO) [108] method to update the param-
eters 0 of the neural network.

5.2 Stabilization control

The suppression of synchronous neuron system in the DBS is also related to the stabiliza-
tion control by recasting the problem as stabilize the equilibrium representing the normal
brain state [125]. According to the different brain models considered in the DBS settings,
the specific stabilization control tasks take different formulations. Here, we review sev-
eral representative stabilization control of DBS and summarize their drawbacks in real-
istic scenarios. Firstly, in [93], the DBS is regarded as an effective therapy for systematic
treatment of symptoms of movement disorders such as essential tremor. To alleviate the
patients” tremor behavior, researchers utilize an oscillator for representation of the over-
all brain and muscle dynamics of a tremor-oriented disease for the simplicity of tremor
control. The tremor dynamics of the oscillator is described as follows:

x1=af(t,x7) —wlxy+ [u(t)—A],
Xy = X1 —be, (55)
]/:CX1,

where x; and x; are the states of the oscillator, y represents the tremor, the parameters
a and b represent the effects of nonlinear and stabilization terms, C and w are time-
varying parameters representing the strength of amplitude and the angular frequency
of the tremor, respectively, A is the nominal value of stimulation amplitude, f is the
nonlinear term differing from different patients, and u(t) is the control signal for ampli-
tude of the stimulus signal. The target in this task is to stabilize the tremor y to zero.
To achieve this task for general nonlinear function f, delicate feedback control and Lya-
punov function are constructed for f to guarantee the stability of y = 0 based on the
Lyapunov stability theory. Nevertheless, this method suffers from the cumbersome con-
struction for different specific function f and the obtained controlled dynamics may not
be stable facing the inevitable intrinsic noise in the tremor signal.

Secondly, the firing-rate model, which is inspired by the STN-GPe loop model orig-
inally proposed in [78], is extensively used to study the emergence of pathological beta
oscillations observed in the parkinsonian basal ganglia [30]. Hence, researchers derive
the self-tuning DBS control in this model as follows:

71X = —x1+S1[c11x1 (t—11) —c12x2(t—b12) +br1q (1)),

. (5.6)
TXy = —XZ—|—52 [C21X1 (t—(521) —szXz(t—(Szz) — szz(t)].

Here, x; and x; respectively represent the instantaneous firing activities of the STN and
GPe, 11,2 >0 are time constants. The constant Cij >0 represents the synaptic connection
strength from population j to population i and §;; > 0 is a time delay that occurs due
to finite velocity of axonal and synaptic transmission from population j to population i.
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uq and uy represent the influence of cortical (into STN) and striatal (into GPe) inputs to the
system, respectively, modulated by the synaptic weights by >0 and b, > 0. The activation
functions S; and S, encode the response of the neuronal populations to their input. It was
revealed that under the constant cortical and striatal inputs (u1,u2), the firing-rate model
exists an equilibrium ¥= (%1,%;) [82], subject to the corresponding variational equation of
x<—x—% and u<—u—i under control y(t) acting on STN satisfies the following dynamics:

TX1 = —x1+S1[c11x1 (£ —d11) —c1ox2 (t—b12) + (1)),

] (5.7)
ToXp = —X2+Sa[co1 X1 (t—021) —con X2 (F—b22)].

Here, we shift the activation function S;,j=1,2 subject to S;(0) =0 for simplicity. The task
now is to stabilize the system from the oscillation state to the equilibrium. Although it
was shown that a proportional feedback acting only on STN is capable of achieving this
stabilization task [39,82], the difficult of choosing suitable strength depending on specific
form of activation function S; and the cumbersome theoretical analysis for the stability
certificate restrict the application of the proportional feedback.

Thirdly, since cluster synchronization underlies various functions in the brain, abnor-
mal patterns of cluster synchronization are often associated with neurological disorders.
Therefore, Yuzhen Qin et al. [89] regard DBS as a neurosurgical technique to treat sev-
eral brain diseases through regulating neuronal cluster synchrony patterns. Specifically,
consider the coupled neuronal oscillators governed by the following Kuramoto model:

N
Qi:wﬁ— Zai]-sin(()]-—(?i), (58)
j=1

where the 1 oscillators are coupled on an undirected network with node set V={v1,...,v, }
and weighted adjacency matrix A= AT = (a;j),x,. The cluster synchronization manifold
is defined as

M:{GZ‘:G]', Vi,jeCk, k:].,...,T} (59)

on partition of V: CiﬁC]- =©0,1<i#j<r,U;_,C=V. To guarantee the normal function
of brain with feasible regulation, the task here is to stabilize the coupled system to the
cluster synchronization manifold M via fine tuning the adjacency matrix as follows:

N
0;=w;+ Z[(lij —l—q(aij)uij(t)]sin(Gj —6;),
= (5.10)
1, a;>0,
q(aij) :{ !

0, otherwise.

Here, u(t) = u;;(t) is the corresponding control input representing the influence of the
DBS to the axons and dendrites of nerve cells. In [89], the vibrational control theory is
utilized to obtain the stability under specific periodic form controller u(t). Nonetheless,
the open-loop control cannot provide the adaptive stability under prevalent perturbation
and noise in brain system, and the specific control form is hard to achieve in practice.
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Lastly, K. Wang et al. [80,125] study the following low-dimensional behavior of net-
worked controlled Kuramoto dynamics considered in Eq. (2.18) under Ott-Antonsen
method

bc—i—g(mz—r*)—i—@ (r(t—7)a? —r(t—7)*) +iwa=0. (5.11)
In this reduced dynamics, the zero solution of & =r* corresponds to the desynchro-
nization state in the original coupled system. Therefore, the aim is to design control
strength L(#) = L(a(t)) to stabilize the desynchronization equilibrium. Despite the fact
that this method benefits from handling a scalar controlled dynamics instead of the high-
dimensional networked dynamics, the use of Ott-Antonsen method restrict the controller
in mean field control form u=L(t)Z in the original space.

All the mentioned examples illustrate how to recast designing the DBS strategies into
stabilization control tasks. To finding the stabilization control policies, amounts of effi-
cient control methods are proposed in the last several decades. For stabilizing linear or
polynomial dynamical systems, the linear quadratic regulator (LQR) [54] and the sum-
of-squares (SOS) polynomials through the semi-definite planning (SDP) [81] have been
extensively developed using the standard Lyapunov stability theory. For more general
and nonlinear dynamical systems, linearization technique around the equilibria is often
utilized and thus the previous control policies are effective in the vicinity of the equilib-
ria [107] but likely lose efficacy in the region far away from those states. However, all the
previous methods are limited to specific scenarios, ensuing from the difficulty of analyt-
ically constructing specific control functions and stability certificate functions to ensure
the stability of the controlled system. To address this issue, designing the stabilization
controllers using neural networks (NNs) becomes one of the mainstream approaches in
the interdisciplinary community of control and biomedicine [17, 69, 83, 124]. One of the
representative methods is using NNs to construct the Lyapunov function and the control
function simultaneously [11,131]. In this way, the controller is applied with confidence
because the NN-based Lyapunov function provides the stability certificate.

Specifically, we consider the general controlled system described by the following
ordinary differential equations (ODEs):

£(0)= £ (x(0)u(x)) £ fulx), *() R, 512)

which represents a general form for reduced-order dynamical systems, such as Eq. (5.11).
As we discussed in the last paragraph of Section 2.3.2, x =0 signifies the desynchroniza-
tion state. This further indicates that the unstable zero solution of the original system
corresponds to an abnormal brain state. The aim of deep brain stimulation is to stabilize
this unstable equilibrium using a non-invasive control input such that #(0) =0. In this
review, we consider the classic Lyapunov stability for the controlled system.

Theorem 5.1 ([2], Lyapunov Stability). For the controlled system (5.12), suppose there exists
a continuously differentiable function V : D — R that satisfies the following conditions:



124 L. Yang et al. / CSIAM Trans. Life. Sci., 1 (2025), pp. 93-133

(i) V(0)=0,
(i) V(x)>0 forall x0,
(iii) L7, VEVV(x)-f(x,u)<0.

Then, the system is asymptotically stable at the origin, that is, for all € >0, there exists 6 >0 such
that, if || xo |2 <0, then ||x(t)[|2 <eand lim; ,cox(t) =0. Here, V is called a Lyapunov function.

To find the NN-based controller satisfying the stability conditions in Theorem 5.1,
we parameterize the controller and the Lyapunov function as ugp, Vo, where ¢ and 6 are
trainable parameter vectors. Then, we define the supervised stabilization loss function
as follows.

Definition 5.1 (Stabilization Loss). Consider a candidate potential function Vg and a controller
ug for the controlled system (5.12). The Lyapunov stabilization loss is defined as

N

Lig0)2 < 3 (Mg () TRug (x5) + A2 (£, Vo(x:))) "

+2a(—=Va(x)) " +IV(0), (5.13)

where Ay 3> 0 are hyper-parameters representing the weight factors of different conditions, R is
a positive definitely matrix measures the importance of different control components, (-)" denotes
the operation max (0,-), and {(x;) } ., is the dataset sampled from the state space.

Then, we train the parameters ¢, 0 with the stabilization loss function to obtain the
stabilization controller u#4, and the learned Vj plays a role of stability certificate when
applying the learned control policy to the patients.

Although the previous learning-based control methods perform well in the determin-
istic system, the practicability for stabilizing ODEs is limited to the real-world scenarios
where stochasticity and randomness are of ubiquitous presence. This naturally calls for
developing stabilization control policies for stochastic differential equations (SDEs) as
well. Here, we consider the general controlled system described by the following Ito
SDEs:

dx(t)=f(x(t),us(x))dt+g(x(t),ug(x))dB;, x€R?, (5.14)

where f € R? is the drift function, gc R?*" is the diffusion function with R?*",B; ¢ R" is
a r-dimensional standard Brownian motion, and the controller is comprised of determin-
istic control u¢ and stochastic control ug. Still, we aim at stabilizing the unstable zero
solution related to the normal brain state in the DBS task. We consider the stochastic
exponential stability in this case.

Theorem 5.2 ([67], Stochastic Exponential Stability). Suppose that there exist a function
V €C*(R%;R ) with V(0) =0, constants p>0,e>0, and c € R such that
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(i) VeC*(RY,R.),V(0)=0,
(i) el|x[|? <V(x),
(iii) LV (x)<cV(x) forall x#0 and t > 0.

Then,
1
limsup?long(t;to,xo) | < % a.s. (5.15)

t—o0

Here, the Lie operator for SDEs is defined as

LV(x)=VV(x)Tf(xu(x))+ %Tr (87 (x,u(x)) V2V (x)g (x,u(x))]. (5.16)

In particular, if ¢ <0, the zero solution of Eq. (5.14) is exponentially stable almost surely.

Similarly, to find the NN-based controller satisfying the sufficient conditions in Theo-
rem 5.2, we parameterize the controller and the V function as u, Vp. Since the conditions
in Theorem 5.2 are much complicated, we design suitable NN structure such that some
conditions of V are satisfied in advance. Specifically, we construct the neural potential
function Vjp by using the convex functions [1] such that it satisfies the positive definite
condition, i.e. Vy(x) >0 and Vp(0) =0. Second-order differentiable activation functions
are used to guarantee Vp € C*(IR;R ). We add L regularization term ¢||x||” with e<1 to
Vp such that Vp(x) >¢||x||”. Then, we train the parameters according to the exponential
stabilization loss function as follows.

Definition 5.2 (Exponential Stabilization Loss). Consider a candidate function Vi and a con-
troller ug for the controlled system (5.14). The exponential stabilization loss is defined as

N
L(¢,0)= % Y [mo(xi)TRug(x;) +A1max (0,LVp(x:) —cVo(x:)) ], (5.17)
i=1

where Ay >0 and R are the same as those in Definition 5.1, ¢ <0 is the exponential decay rate,
and {(x;) } ., is the dataset.

As indicated in [22,33], the biological systems of networked oscillators incur individ-
ual variability. Generally, there are two ways of modeling the individual variability in
the literature. The first way is to sample the core parameters determining the property of
the biological systems from a distribution for each individual, and then fix the sampled
parameters. The other way is to use the stochastic process driven by different noises to
perturb such parameters, where the degree of the variability is determined by the corre-
lation of the perturbed noises and the diffusion matrix of the stochastic process. Actually,
these two kinds of individual variability can be integrated into the Al framework: Train-
ing Al controllers based on the sampled dynamics for the former way, and designing
Al controllers in the setting of stochastic system according to Theorem 5.2 for the latter.
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6 Concluding remarks and perspective

In the realm of deep brain stimulation, several promising avenues for further exploration
emerge from our comprehensive review. Firstly, as real-world environmental condi-
tions often feature cyclical variations, understanding the dynamics of oscillators within
cyclic network topology and fluctuating natural frequency distributions holds substantial
promise. By delving into the intricacies of these systems, we can uncover novel insights
into how DBS interventions may be optimized to account for periodic disturbances, po-
tentially leading to more effective treatment strategies for neurological disorders.

Secondly, a notable gap exists in the realm of rigorously theoretical validations for
advancing event-triggered control and Al-optimal control methodologies in DBS. While
these approaches show great potential for enhancing the precision and efficiency of stim-
ulation protocols, their theoretical underpinnings require further elucidation. Address-
ing this gap is imperative to ensure the robustness and reliability of future DBS technolo-
gies, underscoring the critical necessity for advancements in this area.

Furthermore, the integration of our findings into a framework of dynamic modeling
alongside real closed-looped DBS techniques holds significant promise for augmenting
the clinical management of neurodegenerative disorders. By combining mathematical in-
sights with real-time feedback mechanisms, clinicians can tailor DBS interventions more
precisely to individual patient needs, leading to improved therapeutic outcomes and re-
duced side effects. This interdisciplinary approach represents a promising direction for
future research and clinical translation in the field of DBS.

In conclusion, the avenues highlighted in our review underscore the importance of
continued interdisciplinary collaboration and innovation in advancing mathematical ap-
proaches for DBS. By further exploring the dynamics of oscillators, addressing theoret-
ical gaps in control methodologies, and integrating dynamic modeling with real-time
feedback, we can enhance the efficacy and precision of DBS treatments for neurological
disorders, ultimately improving patient outcomes and quality of life.
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