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Abstract

Gout is a common chronic disease caused by the deposition of monosodium urate crystals. Previous

studies confirmed the anti-gout effects of sunflower receptacles. For example, eupatoriochromene may be

one of the most important compounds for reducing uric acid and relieving gout, which can be extracted

from the essential oil of sunflower receptacles (EOSR). However, the other active components in EOSR

and their anti-gout molecular mechanisms remain unclear. In this work, we employed widespread

methods such as network pharmacology, machine learning algorithm, molecular docking, and molecular

dynamics simulation, to investigate the anti-gout molecular mechanisms of the EOSR components. The

protein- protein interaction (PPI) network confirmed that the components of EOSR exert anti-gout

effects mainly by targeting inflammatory targets. GO and KEGG enrichment analyses revealed that

the components of EOSR play roles in several important biological pathways, potentially providing anti-

gout effects through various mechanisms. Additionally, since the target URAT1 plays a critical role in

the treatment of gout, we investigated the interactions between two components of EOSR, Linoleic acid

(La) and Kauren-19-oic acid (Koa), and target URAT1 using machine learning algorithm, molecular

docking and molecular dynamics simulation. It confirmed that La and Koa can stably bind to URAT1

and shift its conformation to the Inward-facing state. Similar to the positive control Benzbromarone

(Ben), both La and Koa induce secondary structural changes in URAT1, with Koa sharing key residues

with Ben. This research further indicates the molecular mechanisms of EOSR in treating gout and

expands the range of therapeutic agents for it.
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1. Introduction

Gout is an inflammatory disease that causes significant pain and

discomfort for patients [1,2]. In the United States, approximately

12 million adults have experienced gout [3]. It is primarily caused

by elevated serum uric acid levels, which lead to the deposition

of excess urate crystals in joints, soft tissues, and other organs,

causing inflammation and severe pain [4,5]. Current treatments for
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gout include drugs to relieve acute gout attacks. Medications such

as etoricoxib and colchicine help reduce joint redness, swelling,

and pain by inhibiting inflammation [6,7]. And for long-term

management, drugs that control serum uric acid levels are used.

This is primarily achieved through two mechanisms: inhibiting

uric acid production and promoting uric acid excretion [8–11]. For

example, allopurinol reduces uric acid production by inhibiting the

key enzyme xanthine oxidase (XO), while benzbromarone reduces

uric acid reabsorption in the renal tubules by inhibiting the urate

transporter protein (URAT1) and other related transporters. XO

and URAT1 are widely recognized in the academic literature and

clinical practice as critical targets for gout treatment [12–14].
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However, previous medications can cause side effects such as liver

and kidney damage and increase the risk of cardiovascular events

[15]. Th erefore, research into new therapies for gout is crucial and

of great importance.

As a member of the Asteraceae family, sunflower (Helianthus

annuus L.) is one of the traditional crops in China, primarily

cultivated for its edible seeds. In addition, the receptacles of the

sunflower are rich in chemical components with anti-inflammatory,

antioxidant, and hepatoprotective properties, which is of great

research significance [16–18]. Converting sunflower receptacles into

essential oil helps preserve their active compounds and extend their

shelf life. According to our preliminary research, the components of

sunflower receptacles exhibit promising anti-gout effects [19]. For

example, eupatoriochromene, a compound in sunflower receptacle

essential oil (EOSR), significantly reduces uric acid levels [20].

However, other active compounds in EOSR and their specific

anti-gout mechanisms have yet to be thoroughly studied.

Considering the significant role of natural plant components

in disease treatment and the widespread application of network

pharmacology, machine learning, molecular docking, and

molecular dynamics (MD) simulations, we employed these

methods to study the anti-gout mechanisms of EOSR components

[21–23]. We used network pharmacology to analyze the

comprehensive mechanisms of EOSR components within biological

systems. Then, machine learning algorithms and molecular

docking were used to indicate the interactions between proteins

and small molecules. Furthermore, MD simulations was used to

offer dynamic modeling and reveal conformation transitions. This

research not only revealed the bioactive components in EOSR

and their anti-gout mechanisms but also provided theoretical

foundations and references for developing new anti-gout drugs.

These findings will help enhance current gout treatments, improve

their effectiveness, and support the rational use of traditional

medicinal resources.

2. Theoretical method

2.1 Identification of gout-related targets

We screened for gout target genes from DisGeNET (https://www.

disgenet.org/) [24], GeneCards (https://www.genecards.org/)

[25], and PharmGKB (https://www.pharmgkb.org/) [26]. We

identified 196 potential targets in DisGeNET databases, 928

potential targets in GeneCards and 7 potential targets in

PharmGKB. After performing a union operation on the potential

targets from three databases, 996 unique potential targets were

obtained.

2.2 Prediction of targets of EOSR components

We screened SwissTargetPrediction (http://swisstargetprediction.

ch/) [27] for potential targets of EOSR components. We identified

551 potential targets in the 104 components.

2.3 Identification of common targets of gout and

EOSR components and construction of the PPI

Network

We utilized the online tool jvenn (https://jvenn.toulouse.inra.fr/a-

pp/example.html) [28] to assess the overlap of targets of gout and

EOSR components. The construction of the PPI network relied on

data sourced from the STRING database (http://string-db.org/)

[29] to evaluate potential interactions among the identified

targets. We used Cytoscape 3.9.1 [30] to visually represent these

interactions. Subsequently, using the cyto-Hubba plugin, we

analyzed the topological properties of the network through the

MCC method and identified the top 15 ranked targets.

2.4 GO and KEGG enrichment analysis

We employed several R packages-clusterProfiler, AnnotationHub,

org.Hs.eg, enrichplot, pathview, dplyr, and ggplot2-for conducting

enrichment analyses on GO biological processes and KEGG based

on common targets of gout and EOSR components. Utilizing a

significance threshold of p = 0.01 and q = 0.01, we retrieved

GO information from org.Hs.eg.Db and KEGG information from

clusterProfiler. The outcomes were presented through bar charts

and bubble charts to offer a comprehensive visualization of the

final results.

2.5 Molecular docking and machine learning

algorithms

Due to the lack of a resolved crystal structure for URAT1,

we utilized the URAT1 structure constructed by AlphaFold2.

Additionally, the small molecule structures of Ben, La, and Koa

were obtained from PubChem. The Flexible Docking module in

Discovery Studio 2019 was used for the docking process. For

selecting the docking site of URAT1, although its crystal structure

has not yet been resolved, several studies have identified key

residues. Yanyu Chen et al. verified that mutating the Ser35

and Phe241 residues to alanine significantly impairs the urate

transport function of URAT1, providing a theoretical basis for

the docking of URAT1 [31]. Based on the report, we selected

Ser35 and Phe241 as the approximate positions for the docking

box. The results of molecular docking were visualized using

PyMOL 2.5.7 [32] and Discovery Studio 2019. Additionally, in

this study, we applied the machine learning algorithm ConPLex

[33], which integrates pretrained protein language models (PLMs)

with contrastive learning techniques [34]. ConPLex predicted the

binding potential of the components to the target protein based

on their chemical structure, which were represented as SMILES

strings.

2.6 Construction of membrane protein system using

Charmm-GUI

Using Charmm-GUI (https://www.charmm-gui.org/?doc=input

/membrane.bilayer), we constructed the membrane protein system

for URAT1. In the Orientation Options, we selected PPM2.0 [35]

to determine the position of the phospholipid bilayer relative to

the protein. We set the water thickness to 15 Å (the minimum

distance between the protein and the edge is 15 Å), the lipid type

to POPC, and the lengths of X and Y to 110 Å, with NaCl as

the equilibrating ion. Other settings were kept as default. For the

Force Field Options, we selected the AMBER force field: FF14SB

[36] for the protein, Lipid21 for the phospholipids, TIP3P [37] for

water, and GAFF2 [38] for the small molecules [39].

2.7 Molecular dynamics simulations

Using AMBER 16’s PMEMD engine, we conducted MD

simulations on our systems, employing periodic boundary

conditions to prevent edge effects. Based on the mdin files

provided by Charmm-GUI, we conducted steps involving energy

minimization, equilibration and production.
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During the energy minimization phase, a total of 5000 steps

were performed. The first 2500 steps were carried out using the

steepest descent method, while the remaining steps used the

conjugate gradient method. A nonbonded interaction cutoff of 9.0

Å was applied, and positional restraints were applied to the protein

and membrane systems to maintain their stability.

According to the parameters set by CHARMM-GUI, the

equilibration phase consisted of six steps. The first two steps were

NVT simulations, during which the system was gradually heated

to 303.15 K and maintained at this temperature. The next four

steps were NPT simulations, in which the system was further

equilibrated at a constant temperature of 303.15 K and pressure

of 1.0 bar. In the first three stages, a time step of 0.001 ps was

used for 125 ps of equilibration. And in the next three stages, the

time step was increased to 0.002 ps, with each stage lasting 500 ps.

Throughout the equilibration process, positional restraints on the

protein and membrane were gradually reduced from initial values

of 10 kcal/mol/Å2 and 2.5 kcal/mol/Å2 to a fully unrestrained

state.

During the production phase, a total of 500 ns was simulated

under NPT conditions with a time step of 0.004 ps. The pressure

was maintained using the Berendsen barostat with semiisotropic

pressure scaling, where the pressure in the x/y directions (parallel

to the interface) and the z-direction were both set to 1 bar, with

a pressure coupling time constant of 1 ps. The temperature was

controlled using the Langevin thermostat at 303.15 K with a

collision frequency γ of 1 ps−1 [40].

The MD analyses were conducted using CPPTRAJ [41]. Due

to the high flexibility of the C-terminal structure of URAT1

(residues 521-553) and its lack of interaction with small molecule

compounds, substrates, or other parts of the protein, the tail

region of the protein was not considered in the analysis. Only

residues 1-520 were analyzed.

Similar to our previous work [22], we employed the molecular

mechanics/Poisson–Boltzmann surface area (MM/PBSA) method

to investigate the binding affinity between the compounds and

URAT1. The binding free energy is described by (∆Gbind) the

following equation:

∆Gbind = ∆H − T∆S, (1)

∆H = ∆EMM +∆Gsol, (2)

∆EMM = ∆Eele +∆EvdW +∆Eint, (3)

∆Gsol = ∆Gpb +∆Gnp. (4)

In these equations, ∆EMM refers to the gas-phase energy,

∆Gsol to the solvation free energy, ∆Eele to the electrostatic

energy, ∆EvdW to the van der Waals energy, ∆Eint to the internal

energy, ∆Gpb to the polar solvation energy, and ∆Gnp to the

non-polar solvation energy.

In our 500 ns MD simulation, MM/PBSA calculations were

performed on one frame every 5 ns, and the binding free energy was

averaged over 100 frames. The calculations used default atomic

radii and an ionic strength of 0.15 mol/L. The decomposition of

van der Waals, electrostatic, and solvation energies was carried

out at the residue level to identify key binding residues. Other

parameters were set to their default values.

2.8 PCA analysis and Caver analysis

Using CPPTRAJ, the trajectory was projected onto the first two

principal components, and the results were analyzed and plotted

using the converting dot distribution to probability distribution

(ddtpd) program. The minimum free energy corresponding

structure was analyzed using the CAVER 3.0.3 PyMOL Plugin.

Ser35, Phe241, Phe365, and Phe449 were selected as reference

coordinates for the channel starting point. For the Ben, La, and

Koa systems, the Minimum Probe Radius was set to 1.5 and the

Shell Radius to 6. Due to the large setting of Minimum Probe

Radius and Shell Radius, which resulted in no available channels,

the default values (Minimum Probe Radius of 0.9 and Shell Radius

of 3) were used for the Apo system. All other settings were kept

as default.

2.9 DSSP analysis

RMSF and DSSP data were calculated using CPPTRAJ. The

results were then visualized using Gnuplot 6.0.

2.10 Key residue analysis

The contribution of each residue to the binding free energy in each

system was analyzed using MM-PBSA. The top 10 residues were

then plotted. The hydrogen bond analysis was conducted using

CPPTRAJ. Representative conformations were obtained through

K-means clustering and PCA analysis.

2.11 Markov state models analysis

Following the methods outlined in the Amber tutorials, we

performed a Markov model analysis. Using the PyEMMA 2.5.7 [42]

package, we analyzed the 500 ns trajectory data for each system.

To avoid noise and reduce computational costs, we estimated the

channel size and used it as a feature using the MDAnalysis 2.2.0

[43] package. Additionally, the minimum RMSD was also used as

a feature. The trajectory feature matrix was constructed based on

the selected features, followed by dimension reduction using TICA

(Time-lagged Independent Component Analysis) and K-means

clustering. Subsequently, an appropriate lag time was selected.

From Figure S5, we observed that at a lag time of 2, the implied

timescales (ITS) stabilized with increasing lag time, indicating

that the system had converged to a steady state and was no longer

sensitive to further lag time increases. Such convergence confirmed

that the current state contained sufficient information to predict

future behavior, demonstrating true Markovian dynamics. Figure

S6 shows the identification of major conformational transitions

through ITS, which help determine the system’s main global

states. We test the validity of the estimated Markov State Models

(MSM) using the Chapman-Kolmogorov test. Simply put, this

test compares a quantity at lag time kτ predicted by the MSM

at lag time τ , with a MSM estimated directly at kτ . As shown

in Figure S7, the predicted curves and the estimate curves align

closely, indicating that the system’s dynamics are Markovian, and

the models are valid.

3. Results and discussion

Figure 1 illustrates the specific workflow of our study. First, we

identified gout-related targets and predicted the targets of EOSR

components using various databases. For the common targets,

we conducted a PPI network analysis and reviewed the relevant

literature to determine potential direct targets of EOSR for gout
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Figure 1. Workflow illustrating the integration of network

pharmacology, molecular docking, and molecular dynamics

(MD) simulations to investigate the anti-gout mechanisms of

the essential oil of sunflower receptacles (EOSR). The process

includes the identification of potential targets through network

pharmacology, binding affinity assessment via molecular docking,

and the evaluation of the stability and dynamics of the interactions

using MD simulation.

intervention, ultimately selecting URAT1 for further analysis.

Additionally, we performed GO and KEGG pathway enrichment

analyses to map individual targets to relevant pathways, thus

assessing the overall mechanisms by which EOSR might affect

gout. Following this, we conducted molecular docking and MD

simulations of URAT1 with two EOSR components. We analyzed

the MD trajectories using five different methods to evaluate the

specific binding mechanism of the small molecules with URAT1

and the resulting conformational changes.

3.1 Identification of common targets between EOSR

components and gout

Using the DisGeNET, GeneCards, and PharmGKB databases,

we identified 903 targets associated with gout. Based on our

previous research [20], we characterized 104 compounds in the

EOSR (see Table S1). Target prediction for these compounds by

the SwissTargetPrediction (STP) database revealed 551 targets

with a probability > 0. Among these, there are 93 common targets

between gout and EOSR (see Figure S1 and Table S2). These

targets are potential targets for EOSR components to intervene in

gout.

3.2 PPI network analysis on common targets in

gout and EOSR

The 93 common targets between gout and EOSR were input into

the STRING database to construct a protein-protein interaction

(PPI) network. The PPI network was visualized using Cytoscape,

as shown in Figure 2A. Using k-means clustering, the targets were

grouped into five clusters, with targets in the same cluster showing

closer interactions than those in different clusters. Detailed

network information is provided in Table 1. Additionally, the

CytoHubba plugin was employed to perform a topological analysis

of the network using the Maximal Clique Centrality (MCC)

method. The top 15 key targets and their relationships are

shown in Figure 2C. Notably, inflammatory factors such as

IL6 and TNF scored highly and ranked among the top. EOSR

showed potential for relieving acute gout attacks through its anti-

inflammatory properties. To further identify the key targets, we

reviewed the relevant literature and marked the most directly

gout-associated targets using red boxes in Figure 2A. Detailed

information about these targets is provided in Table 2 and the

relationships among these targets are illustrated in Figure 2B.

Based on the results, we propose that EOSR not only exerts

anti-inflammatory effects by targeting inflammatory factors such

as IL6, IL1B, and TNF, but also influences uric acid excretion

and reabsorption by targeting genes like ABCG2, SLC22A12, and

SLC22A6. Among these, SLC22A12 encodes URAT1, a key target

of the gout drug benzbromarone. Inhibiting URAT1 has been

shown to be an effective treatment for gout [12–14]. Therefore,

URAT1 was selected for our further docking studies.

Table 1. PPI network stats.

Property Value

number of nodes 93

number of edges 949

average node degree 20.4

avg. local clustering coefficient 0.64

expected number of edges 380

PPI enrichment p-value < 1.0e− 16

3.3 GO and KEGG enrichment analysis

Gene Ontology (GO) enrichment analysis is a popular method

for evaluating the enrichment of GO terms within a set of

genes [48]. It typically categorizes genes into three main levels:

Cellular Component (CC), Biological Process (BP), and Molecular

Function (MF). The Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis focuses on describing the

roles of genes within metabolic and signaling pathways. By

examining the enrichment of pathways within the genome, we

can gain a comprehensive understanding of the functions and

regulatory mechanisms of these genes in the organism.

Enrichment analysis of GO and KEGG pathways was

performed using the 93 common targets between gout and EOSR.

As shown in Figure 3, the calculated data was demonstrated as a

bubble chart and bar plot.

In the potential Biological Processes (BP) associated with

the common targets, components of EOSR exhibit responses

to xenobiotic stimulus, nutrient levels, steroid hormones,

lipopolysaccharide, molecules of bacterial origin, chemical stress,

and oxidative stress, which suggests that these components can

modulate responses to a diverse range of stressors and toxins.

Additionally, they play roles in the regulation of protein secretion

and the inflammatory response, highlighting their potential

usefulness in managing inflammation and infections. Furthermore,
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Table 2. Direct targets of EOSR intervention in gout.

Target Description

SLC22A6 encoding the urate reabsorption transporter OAT1 [44]

ABCG2 Responsible for a significant portion of extra-renal urate excretion [45]

SLC22A12 Encoding the URAT1 protein, the primary protein for renal tubular reabsorption of urate [5]

IL6 and TNF Pro-inflammatory mediators and markers of gouty arthritis [46]

IL-1β
A critical pro-inflammatory cytokine in acute gouty arthritis,

which initiates the production and secretion of other inflammatory mediators like IL-6 and IL-8 [47]

Figure 2. (A) Protein-protein interaction (PPI) network of

common targets. Different groups represented by different colors.

(B) PPI network of targets most directly related to gout. (C) PPI

network of the top 15 key targets.

the discovery of rhythmic processes indicates their involvement in

adjusting biological rhythms.

The enriched Cellular Components (CC) identified for the

common targets indicate that EOSR are most likely to act on

cell membranes. Their action is associated with membrane-related

sites such as membrane rafts, membrane microdomains, the

external side of the plasma membrane, caveolae, and plasma

membrane rafts. Additionally, lumens are also potential targets,

including the cytoplasmic vesicle lumen, vesicle lumen, and

secretory granule lumen. Furthermore, two unique results appear

in the top ten cellular components: the neuronal cell body and

the dopaminergic synapse, which are potential sites of action for

EOSR.

The molecular function (MF) analysis of the common targets

of EOSR and gout reveals that these natural components

may regulate gout through multiple mechanisms. Firstly,

they may participate in the regulation of gene transcription

by interacting with DNA-binding transcription factors and

RNA polymerase II-specific DNA-binding transcription factors,

thereby influencing transcriptional activity. The involvement in

transcription coregulator binding suggests that these compounds

may interact with coregulators during transcription, further

modulating gene expression. Moreover, the enrichment in nuclear

receptor activity and ligand-activated transcription factor activity

indicates that these natural products may influence nuclear

receptor-related signaling pathways, affecting cellular biological

responses. The enrichment in phosphatase binding suggests they

might regulate phosphorylation processes, while catecholamine

binding indicates potential effects on neurotransmitter activity.

Finally, the findings of carboxylic acid binding, organic acid

binding, and monocarboxylic acid binding suggest that these

natural components may play roles in metabolic processes.

As illustrated in Figure 3B, the KEGG enrichment analysis

of EOSR components reveals their involvement in several key

biological pathways.

Firstly, the enrichment results highlight the potential of

EOSR components to intervene in metabolism and cardiovascular

diseases. Relevant pathways include the AGE-RAGE signaling

pathway in diabetic complications, Lipid and atherosclerosis,

and Fluid shear stress and atherosclerosis. This suggests that

components of EOSR may reduce uric acid production in gout

patients by regulating lipid metabolism, decreasing oxidative

stress, and mitigating inflammatory responses, thereby alleviating

gout symptoms.

Additionally, these components are involved in multiple

immune and inflammatory pathways, such as Th17 cell

differentiation, TNF signaling pathway, and C-type lectin receptor

signaling pathway. EOSR might alleviate inflammation and pain

associated with gout by inhibiting Th17 cell differentiation and

some inflammatory signaling pathways, thus reducing the release

of inflammatory mediators.

The analysis also uncovers the potential roles of these

components in various infectious diseases (such as Human

cytomegalovirus infection, Kaposi sarcoma-associated herpesvirus

infection, and Leishmaniasis) and other physiological processes

(such as the Prolactin signaling pathway). The antimicrobial and

antiviral properties of EOSR may help mitigate gout symptoms

by reducing infections and inflammation.
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Table 3. Information on EOSR components and benzbromarone and their binding free energies with URAT1.

Name CAS
PubChem

CID
SMILES

Total binding energy
(kcal/mol)

ConPLex
predict

Linolic acid
(La)

60-33-3 5280450 CCCCCC=CCC=CCCCCCCCC(=O)O -115.82 0.171

Kauren-19-oic

acid (Koa)
6730-83-2 73062

CC12CCCC(C1CCC34C2CCC(C3)C

(=C)C4)(C)C(=O)O
-54.82 0.031

Benzbromarone

(Ben)
3562-84-3 2333

CCC1=C(C2=CC=CC=C2O1)C(=O)C

3=CC(=C(C(=C3)Br)O)Br
-103.07 0.107

Figure 3. (A) Results of GO pathway enrichment analysis.

GeneRatio represents the proportion of genes associated with each

GO term. The circle size indicates the gene count, and the color

reflects the adjusted p-value (p.adjust), with red indicating higher

significance. (B) Results of KEGG pathway enrichment analysis.

The bar length represents the gene count, and the color reflects

the adjusted p-value, with red indicating higher significance.

3.4 Molecular docking and machine learning

algorithms of EOSR components

To further explore the key components of EOSR and their

mechanisms of influencing uric acid reabsorption, we focused on

the SLC22A12 gene, which encodes the URAT1 protein. Among

the 104 components of EOSR, two were predicted by STP to target

SLC22A12: Linoleic acid (La) and Kauren-19-oic acid (Koa). We

then performed molecular docking and applied machine learning

algorithms (ConPLex) to these two components, as well as to the

positive control, benzbromarone (Ben), with the target protein

URAT1.

Figure 4 illustrates the binding positions and modes of the

compounds. La formed conventional hydrogen bonds with the

Lys393 residue and established van der Waals interactions with

surrounding residues. Koa formed conventional hydrogen bonds

with Ser35 and engaged in Pi-Alkyl interactions with Cys32,

Met36, His245, Phe364, Phe365, and Phe449. Ben formed

a halogen bond with Gln473, Pi-Pi interactions with Phe241,

Phe364, and Phe449, as well as other pi interactions with Leu31,

Cys32, Met214, Phe241, Phe360, and Ala476. Table 3 presents

the information, docking energies, and ConPLex prediction results

of the compounds. The results from both molecular docking

and ConPLex showed a consistent trend, with La demonstrating

better total binding energy and predicted scores. Additionally,

literature suggests that La inhibits URAT1 in vitro, although

its exact inhibitory mechanism remains unclear [49]. In contrast,

Koa showed relatively poorer binding energy and predicted scores.

However, molecular docking revealed that Koa forms a hydrogen

bond with the key residue Ser35 [31], and its interacting residues

significantly overlap with those of Ben. This suggests that Koa

may bind to URAT1 in a similar way to Ben, making it a

potential alternative to Ben as a uric acid reabsorption inhibitor.

Based on these findings, we performed further molecular dynamics

simulations of La and Koa with URAT1 to investigate their specific

inhibitory mechanisms.

Figure 4. Molecular docking indicated the possible binding sites

and key residues between URAT1 and (A) La, (B) Koa, and (C)

Ben.

3.5 Molecular dynamics simulation system

To further observe the dynamic behavior and structural changes

of URAT1 upon binding with compounds, we performed 500 ns

MD simulations on the La-URAT1 and Koa-URAT1 complexes.
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Figure 5. MD simulation system setup: yellow spheres represent

the phospholipid bilayer headgroups, blue chains represent the

tails; green spheres represent Cl− ions, and orange spheres

represent Na+ ions. The intracellular domain (ICD) and

extracellular domain (ECD) are indicated in the figure.

Since URAT1 is a transmembrane channel protein, we employed

Charmm-GUI to incorporate phospholipids of the cell membrane

for a more accurate simulation of URAT1’s dynamic behavior.

Na+ and Cl− ions were used to equilibrate the system in

water boxes on both sides of the phospholipid bilayer membrane.

The system setup is illustrated in Figure 5. Additionally, the

simulations included the apo form of URAT1 (Apo) and the

Ben-URAT1 complex as controls.

3.6 System stability and dynamic properties analysis

To evaluate the stability of the systems, we performed the root

mean square deviation (RMSD) analysis, as shown in Figure 6A.

During the first 0-100 ns, the RMSD of all four systems increased;

after 100 ns, the RMSD fluctuated within approximately 1 Å,

indicating that the systems had reached equilibrium and were

suitable for subsequent analysis. The solvent-accessible surface

area (SASA) analysis indicated the contact area between the

protein and the aqueous solution; the larger the contact area,

the more relaxed the protein structure. As shown in Figure 6B,

the SASA fluctuations of the four systems were similar, ranging

approximately between 240 and 264 nm2. Further radius of

gyration (Rg) analysis reflects the compactness of the protein

structure, representing the degree of chain looseness during the

simulation. As shown in Figure 6C, the Ben system exhibited the

largest Rg, while the Apo system showed the smallest Rg. The Rg

values of the La and Koa systems fell between those of the Apo

and Ben systems, with this trend being particularly noticeable

during the 250-500 ns interval. This indicates that benzbromarone

binding loosens the URAT1 structure, while the components La

and Koa from EOSR also contribute to a slight loosening of

URAT1, similar to the effect of benzbromarone.

Using MM-PBSA analysis, we obtained the binding free

energies of the compounds with the protein, as shown in Table

4. The binding free energies of La and Koa were lower than

Figure 6. MD simulation analysis of EOSR components and Ben

binding to URAT1. (A) RMSD. (B) SASA. (C) Rg.

that of Ben, with values of -31.50 ± 0.95 kcal/mol and -26.16

± 0.94 kcal/mol. Compared to Ben, La and Koa may form a

more stable complex with URAT1. The time-dependent variation

of binding free energies for all three compounds with URAT1 can

be seen in Figure S2. Notably, Koa’s performance in the MM-

PBSA analysis is better than its total binding energy observed

in molecular docking. This discrepancy may be attributed to

the compact structure of Koa, which results in an excessively

high intramolecular energy, consequently leading to a higher total

binding energy in the docking. In contrast, during MM-PBSA

analysis, MD simulations allow Koa to interact with both the

protein and the solvent environment, enabling it to stabilize

in a lower-energy conformation, leading to a more favorable

performance in MM-PBSA.

3.7 Analysis of channel changes during simulation

According to the cryo-EM study by Tongyi Dou et al. on the rat

OAT1 (also known as SLC22A6) from the SLC22 family, OAT1

exhibits three states: Inward-facing, Occluded, and Outward-

facing. When the channel is Inward-facing, the central channel

is open to the intracellular side, while the N-terminal and

C-terminal domains near the extracellular side form a ”thick

gate”, preventing substrates or inhibitors from entering or exiting

through extracellular domain (ECD) [50]. We hypothesize that

URAT1 (SLC22A12), a member of the same family, undergoes

similar structural changes.
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Table 4. MM-PBSA analysis of Ben, La, and Koa systems. Data are presented as mean value ± standard error of the mean (SEM). All

units are reported in kcal/mol.

Ben La Koa

∆EvdW -39.12 ± 0.28 -39.72 ± 0.62 -35.80 ± 0.39

∆Eele -9.74 ± 0.51 -175.61 ± 2.95 -154.68 ± 3.88

∆Ggas -48.87 ± 0.54 -215.34 ± 2.81 -190.47 ± 3.91

∆Gsolv 31.01 ± 0.60 183.84 ± 2.10 164.31 ± 3.32

∆Gtotal -17.86 ± 0.51 -31.50 ± 0.95 -26.1 ± 0.94

To evaluate the changes in the channel during MD

simulations, we performed principal component analysis (PCA)

and constructed free energy landscape diagrams to identify the

structures corresponding to the minimum energy in each system.

In each system, we observed one or two minimum energy states,

as shown in Figure 7. We then analyzed the intracellular-facing

channel using the Caver 3.0.3 PyMOL Plugin [51], and the

results are summarized in Figure 7 and Table 5. The data

reveal that, compared to the Apo system, the intracellular-facing

channels of URAT1 when bound with compounds became wider.

Specifically, the Koa and La systems demonstrated a significant

increase in the average bottleneck radius, while the average tunnel

throughput also exhibited an increase. The Ben system also

showed moderate increases in these metrics. These changes suggest

that the binding of compounds to URAT1 results in alterations

to the channel dimensions, potentially influencing its functional

state. Additionally, as shown in Figure 8, the channel analysis of

State 2 in the Apo system revealed an extracellular-facing channel,

indicating that URAT1 was approaching the Occluded state at

that moment.

Overall, the binding of the compounds stabilizes URAT1 in

the Inward-facing state, potentially inhibiting the process of

URAT1 opening to the extracellular side and transporting urate

ions. Interestingly, Shen et al. observed a similar inward-facing

conformation in the binding of the compound apigenin to another

urate transporter, GLUT9 [52]. We believe this could be the

mechanism by which benzbromarone and the components of EOSR

intervene in gout.

3.8 Analysis of secondary structure changes during

simulation

To further investigate the structural changes of URAT1 during

the simulation, we conducted a detailed dictionary of secondary

structure of proteins (DSSP) analysis on the four systems. The

analysis results are shown in Figure S3. Based on RMSF, we

further analyzed the regions with significant differences between

the Apo system and the other systems. The results are presented

in Figure 9.

Between residues 270-320, the Ben and Koa systems exhibit

a higher probability of forming a Bend structure compared to

the Apo system. In the representative conformations, the Alpha

helix from residues 309-314 completely disappears in the Ben

system, while it shortens in the Koa system. There is no significant

difference in the secondary structure between the La and Apo

systems for residues 309-314. In URAT1, residues 300-320 are

located on the intracellular domain (ICD). Upon compound

Figure 7. Analysis of PCA and the lowest energy conformation

of the intracellular-facing channel in the four systems. PCA1 and

PCA2 represent the first two principal components. The value

represents the relative free energy. (A) Apo. (B) Ben. (C) La. (D)

Koa.

binding, the transition from an Alpha helix to a Bend structure

makes the conformation more flexible. This finding is consistent

with the Caver analysis, where the URAT1 structure bound to the

compounds is closer to the Inward-facing state.

Between residues 410-440, the Apo systems are more likely

to form a small 3-10 he-lix structure (residues 431-435) at

the connection between two alpha helices between residues

410-440. In contrast, Ben, La, and Koa maintain an alpha-

helical structure throughout residues 431-440, suggesting differing

structural stability in this region compared to the Apo systems.

Residues 410-440 are located near the ECD. Compound binding

may stabilize the alpha-helix structure, potentially making the

overall structure more compact and preventing compounds and

urate ions from entering or exiting through the ECD.

3.9 Key residues analysis

Figure 10 shows the top 10 residues that contribute most

to the binding free energy in the Ben, La, and Koa

systems. Table S3 shows the alanine scanning results for

representative conformations of the three systems, which support

and complement the identification of key residues. The key
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Table 5. Caver analysis data.

System State
Avg. Bottleneck

Radius (Å)

Avg. Tunnel

Length (Å)

Avg. Tunnel

Curvature (Å)

Avg. Tunnel

Throughput

Apo
1

2

1.783

1.465

19.144

26.824

1.442

1.194

0.72280

0.54864

Ben
1

2

2.037

2.191

24.008

19.188

1.280

1.136

0.72624

0.78606

La 1 2.330 26.626 1.381 0.74755

Koa
1

2

2.088

2.474

20.890

13.599

1.286

1.097

0.74917

0.84925

Figure 8. Channel analysis of State 2 in the Apo system. Gray

represents channels facing the ICD, while blue represents those

facing the ECD.

Figure 9. Top 10 key residues of (A)Ben, (B)La, and (C)Koa

system.

residues for Koa show significant overlap with those for Ben.

Notably, residues such as Leu31, Met214, Phe241, Phe360, and

Phe365 contribute substantially to the binding interactions in both

systems. The binding mode of Koa also shares similarities with

that of La. For instance, Arg477 and Met214 play a crucial role in

the binding interactions in both systems. This suggests that Koa

and Ben may share a similar binding mode with URAT1, while La

exhibits a different binding mechanism.

To explore how key residues contribute to binding, we analyzed

the frequency of hydrogen bond formation between the three

compounds and URAT1 residues during the MD simulations,

considering only interactions that occurred in more than 20

frames. The results are summarized in Table S4. Additionally,

representative conformations were analyzed to observe other

interactions, as shown in Figure S4.

Throughout the simulation, in the Ben system, Gln473 formed

a hydrogen bond with Ben in approximately 19likely to form Pi-

Pi interactions with Ben. These Pi-Pi interactions are the primary

contributors to the binding free energy between Ben and URAT1.

Similarly, in the La system, Arg477 formed a hydrogen bond

with La in approximately 94 of the frames. According to the

representative conformation, other residues primarily contribute

through van der Waals interactions. Hydrogen bonds and van der

Waals forces are the major contributors to the binding free energy

between La and URAT1.

In the Koa system, Arg477 formed a hydrogen bond with

Koa in approximately 72Phe365 are likely to engage in Pi-

Alkyl interactions with Koa. Both hydrogen bonds and Pi-Alkyl

interactions are the main contributors to the binding free energy

between Koa and URAT1.

In the study on OAT1, Tongyi Dou et al. proposed that

phenylalanine(Phe) and tryptophan(Trp) with benzene rings form

the conserved aromatic cage for substrate/inhibitor binding [50].

Based on the analysis of key residues, we similarly hypothesize

that Phe241, Phe449, Phe365, and Phe360 are the constituent

residues of the conserved aromatic cage in URAT1.

3.10 Markov state models analysis

To further investigate the relative stable states of each system

and the changes in the helices forming the channels within the

simulations, we conducted a Markov state model analysis of the

trajectories.
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Figure 10. Top 10 key residues of (A)Ben, (B)La, and (C)Koa

system.

Figure 11. Transitions in Markov state models across the four

systems. Highlighted in color are the helical regions near the

channel with notable changes. (A)Apo. (B)Ben. (C)La. (D)Koa.

In the Apo system, as shown in Figure 11A, State 2 represents

the stable state. Compared to State 1, helices 7 and 8 extend

towards the ICD, while helix 11 moves closer to the channel center,

and helix 7 moves away from the channel center. In the Ben system,

as illustrated in Figure 11B, State 2 is the stable state. Compared

to State 1, helices 7 and 11 extend towards the ICD, and helices

8 and 11 move away from the channel center. For the La system,

as depicted in Figure 11C, State 3 is the stable state, State 1 is

the unstable state, and State 2 is the intermediate state. During

the transition from the unstable state to the stable state, helices

7 and 11 extend towards the ICD, and helices 7, 8, 10, and 11

move away from the channel center. In the Koa system, as shown

in Figure 11D, State 2 represents the stable state. Compared to

State 1, helices 4 and 7 shorten towards the ICD, and helices 7

and 8 move away from the channel center.

In summary, during the transition to a relatively stable state

in the URAT1 system with compound binding, different helices

forming the channel tend to move away from the channel center.

This further confirms that binding of the compound induces

URAT1 to adopt an inward-facing state.

4. Conclusion

In this study, we conducted a comprehensive investigation into the

mechanisms of EOSR’s anti-gout effects, including both direct and

indirect mechanisms.

Network pharmacology explored the multi-target and multi-

pathway actions of EOSR components on gout. PPI network

analysis indicated that inflammatory targets, such as IL6, could

be potential targets for EOSR in the treatment of acute gout

attacks. Additionally, EOSR may influence uric acid excretion

and reabsorption by targeting URAT1, among others. GO

and KEGG enrichment pathway analyses demonstrated the

regulation of inflammatory responses and multiple inflammation-

related signaling pathways. EOSR may alleviate gout-induced

inflammation and pain by inhibiting relevant targets and signaling

pathways, thereby reducing the release of inflammatory mediators.

Through machine learning algorithms, molecular docking and

MD simulation, we investigated the interactions between the

important gout-related target URAT1 and two EOSR components

(La and Koa). The results indicated that URAT1 undergoes a

conformational change resembling an inward-facing state upon

binding with the compounds. Concurrently, the secondary

structure undergoes slight alterations. Certain regions of the

ICD become more relaxed, while regions near the ECD become

denser. These conformational changes in URAT1 may represent

the molecular mechanism by which the compounds inhibit uric

acid reabsorption, thereby exerting anti-gout effects. Additionally,

the binding free energies of La and Koa to URAT1 are better than

that of Ben. Koa shares similar key residues with Ben, and both

Koa and La induce comparable conformational changes in URAT1.

Based on the high similarity between these two components and

Ben, we consider them potential inhibitors of URAT1.

To summarize, this study provides a comprehensive

understanding of the pharmacological mechanisms and potential

therapeutic impact of EOSR components in gout intervention.

The identification of crucial components, targets, and signaling

pathways holds promise for the development of novel treatments

for gout. However, further experimental validation and clinical

trials are imperative to confirm the efficacy and safety of EOSR,

potentially paving the way for its utilization as a preventive and

therapeutic agent for gout and associated conditions.
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