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Abstract: Nonlinear optical (NLO) materials, with their unique wavelength conversion capabilities, play a crucial role in a wide 

range of scientific and industrial applications. Despite significant progress, the development of novel NLO materials, particularly 

those in the deep ultraviolet and mid-infrared regions, remains a challenge. Recent advancements in machine learning (ML) 

technologies have injected new momentum into materials science research. In this work, we present an integrated data platform 

incorporating advanced ML techniques, designed to drive the discovery and exploration of inorganic NLO materials. The platform 

currently includes about 1000 entries with their structures and key properties. Users can apply built-in ML models developed in 

our group for immediate predictions of NLO properties or train their own models based on specific research needs. Additionally, 

the platform provides access to the results of deep generative models, allowing users to retrieve newly generated virtual crystal 

structures, thus expanding the chemical space for NLO materials exploration. This platform not only provides reliable data support 

for researchers but also holds the potential to accelerate the discovery of novel NLO materials. 
  

Key words: nonlinear optical crystal, database, second harmonic generation, coefficient, birefringence, machine learning, 

generative artificial intelligence. 

 

1. Introduction 

With their unique capabilities of wavelength conversion, nonlinear 

optical (NLO) materials play a crucial role in a wide range of modern 

scientific and industrial applications [1-5]. In the past decades, 

significant breakthroughs have been made in the study of inorganic 

NLO crystals. Prominent examples such as KBe2BO3F2 (KBBF), 

Ba3P3O10X (X=Cl, Br), and NaNH4PO3F·H2O for deep ultraviolet 

(DUV) region, β-BaB2O4 (β-BBO), LiB3O5 (LBO), and CsPbCO3F 

for ultraviolet region, KH2PO4 (KDP), KTiOPO4 (KTP), and 

LiNbO3 (LN) for visible to near-infrared region, and AgGaQ2 (Q=S, 

Se), ZnGeP2 (ZGP), and A2BiI5O15 (A=K, Rb) for mid-infrared 

(MIR) region [6-19]. These materials have been synthesized, 

characterized, and reported, marking significant progress in NLO 

crystal research.  
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The performance of NLO materials is primarily determined by 

three key properties: bandgap (Eg), second harmonic generation 

(SHG) coefficient (dij) and birefringence (Δn). Among them, 

bandgap not only determines the absorption cut edge of material, 

which directly impacts its efficiency in light conversion, but also is 

positively correlated with the laser damage thresholde [20]. The 

SHG coefficient of a NLO crystal is directly related to its SHG 

conversion efficiency, with larger SHG coefficient enabling high 

conversion efficiency. In principle, all noncentrosymmetric (NCS) 

materials with finite electronic bandgaps can exhibit SHG effects. 

Birefringence is a critical property to attain effective phase-matching 

(PM) in NLO crystals, which is essential for generating coherent 

light through SHG. In noncubic materials, PM can be achieved 

through appropriate birefringence at a given wavelength. In practice, 

an applicable NLO crystal is expected to possess a large Eg, a large 

dij, and a moderate birefringence. Specifically, for applications in 

DUV region, Eg of a NLO crystal is supposed to exceed 6.2 eV to 

achieve ultraviolet absorption below 200 nm, dij should be at least 

greater than 1 times KDP (d36 = 0.39 pm/V), and Δn is ideally in the 

range of 0.07-0.10 [21]. A good MIR NLO crystal requires an Eg 

greater than 3.0 eV (ideally beyond 3.5 eV), a dij at least 10 times 

KDP (ideally over 20 times), and a Δn in the range of 0.04-0.10 [22]. 

Considering the above fundamental requirements, along with 

experimental limitations such as challenges in crystal 

synthesizability, growth properties, and toxicity of certain elements, 

the availability of suitable NLO materials particularly in DUV and 

MIR regions remains limited. Therefore, the exploration of novel 

NLO materials with high performance is still one of the most 

challenging and promising frontiers in materials science. 

As the demand for high-performance NLO materials grows, 

researchers are increasingly turning to data-driven approaches to 

accelerate the discovery of novel materials with optimal properties. 

With the advancement of data science and high-performance 

computing, researchers have successively developed a series of open 

general materials databases, such as Automatic FLOW (AFLOW) 

[23], Materials Project (MP) [24], and Open Quantum Materials 

Database (OQMD) [25]. These databases contain vast number of 

material entries, spanning a wide range of chemical systems and 

material types, with fundamental material properties including 

electronic structure, thermodynamics, magnetism, and elasticity 

provided. The availability of such data has played a crucial role in 

supporting and inspiring the design and discovery of novel materials. 

Focusing on the domain of NLO materials, Zhang and co-workers 

[26,27] established a screening pipeline based on first-principles 

high-throughput calculations and then conducted theoretical 

research on a large number of crystalline compounds mainly 

composed of borates and germanates. They subsequently released an 

open NLO materials database, which provides users access to DFT-

calculated properties including Eg, dij, and Δn, thus supported the 

study of structure-property relationships in NLO materials. More 

recently, Yang, Pan, and co-workers [28] developed a prediction-

driven database that includes thousands of NCS materials, along 

with theoretical values for their Eg and dij. This database not only 

encompasses NCS materials retrieved from existing general material 

databases but also includes numerous new thermodynamically stable 

and metastable structures obtained using evolutionary algorithms, 

thereby opening up opportunities for discovery of novel NLO 

materials with promising properties. 

In recent years, the introduction of artificial intelligence (AI) 

technologies has provided researchers in the field of materials 

science with new perspectives and methodologies. By leveraging 

large data support and advanced algorithms, researchers can more 

efficiently predict material properties, identify novel materials and 

uncover complex relationships between structures and properties. 

Impressively, machine learning (ML) models trained on general 

datasets have made significant strides in predicting fundamental 

material properties [29-32]. For NLO materials, ML models has 

demonstrated reliable accuracy and efficiency in predicting key 

properties including Eg, dij, Δn, formation energy, and thermal 

conductivity [33-41]. At the same time, the application of generative 

AI in material design is leading a new paradigm. Deep generative 

models, such as crystal diffusion variational autoencoder (CDVAE) 

and MatterGen [42,43], enables researchers to probe uncharted 

chemical spaces by generating entirely new virtual crystal structures. 

These models work by learning patterns from existing material data 

and using obtained knowledge to create new materials with tailored 

properties and promising stability, which opens up new avenues for 

material discovery and design. Despite significant progress in 

reverse design of materials such as metal-organic frameworks, two-

dimensional materials, superconductors, and perovskites [44-49], 

the application of deep generative models to NLO materials remains 

an underexplored frontier, offering new opportunities for research in 

this field.  

Given the pressing need for more efficient discovery and design 

of NLO materials, coupled with the rapid development of AI 

technologies, there is an increasing demand for an integrated data 

platform of NLO materials that leverages ML-driven approaches. In 

this work, integrating data management solutions with advanced ML 

technologies, we develop the AI4NLO, an inorganic NLO materials 

genome data platform (www.bnucrystal.cn) which aims at 

facilitating the ML-driven exploration of novel inorganic NLO 

materials. The database currently contains about 1000 entries with 
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plans for continuous updates. The majority of these entries have been 

synthesized, characterized and reported in the literature. The 

platform includes data on key NLO-related properties, i.e., Eg, dij, 

and Δn for each entry, with detailed annotations on computational or 

experimental methods used to obtain these values. As an integrated 

platform, we have deployed one-click ML solutions for the rapid and 

accurate prediction of dij, and Δn. Users can either apply the built-in 

models developed in our group for immediate predictions or train 

their own ML models online based on specific research needs. 

Furthermore, the platform provides an interface to access results 

from deep generative models, enabling users to retrieve newly 

generated virtual crystal structures. This platform not only provides 

reliable data support for researchers in the field of NLO materials 

but also fosters a streamlined approach to material discovery, thereby 

contributing to the advancement of this rapidly evolving field. 

2.   Method 

2.1. Data sources 

We conducted a systematic literature survey to collect as much data 

as possible on the chemical compositions, properties and crystal 

structures of inorganic NLO materials. The key terms used for 

literature retrieval included nonlinear optical, second harmonic 

generation, birefringence, ultraviolet, infrared, noncentrosymmetry, 

and so on. The search was significantly expanded through cross-

referencing within the literature. Additionally, relevant monographs 

on NLO materials also served as an important data source [27,50]. 

For each material entry, chemical composition was recorded 

including both the chemical formula and cation and anion group 

information. The three key NLO properties documented are Eg, dij 

and Δn. The source and type of each property are also indicated to 

differentiate between experimental measurements and calculations 

at different levels. Crystal structure data includes space group, lattice 

constants, and atomic positions. These data were sourced not only 

from supplementary information provided in the articles but also 

from well-established general material databases such as Inorganic 

Crystal Structure Database (ICSD) [51], Cambridge 

Crystallographic Data Centre (CCDC), MP [24,52], and SNU 

MATerial data center (SNUMAT) [53]. The structural data extracted 

from public databases were cross-verified with the original literature 

reports to ensure accuracy and reliability. All data entries are clearly 

referenced with their respective sources. 

Given the continuous progress in the field of inorganic NLO 

materials, our database will be periodically updated to include new 

research findings and experimental results. Additionally, the 

database encourages collaborative contributions from users, who are 

granted certain rights to upload and edit entries, fostering an 

interactive and dynamic data-sharing environment. 

2.2. Machine learning for predicting NLO properties 

The ML functionalities for predicting NLO properties of dij and Δn 

based on the multilevel descriptors [35] is a core feature of the data 

platform. These descriptors consist of three parts, where the first 

level captures the fundamental properties of the constituent elements 

of the crystals, such as atomic mass, van der Waals radius, and 

Pauling electronegativity. These atomic properties are gathered from 

the PubChem database [54]. According to anionic group theory, the 

macroscopic NLO properties of a crystal are strongly influenced by 

the microscopic geometric arrangement of its anionic groups [55]. 

Inspired by this, focusing on the electronic structure properties of 

functional groups, the second level of descriptors was constructed to 

simulate this effect. Acid radicals (ARs) and metallic oxides (MOs) 

are extracted from the composition of crystals in the dataset. After 

structural optimization and calculations of polarizability and energy, 

properties including charge, multiplicity, HOMO-LUMO gap, 

dipole moment, and polarizability are collected for each group. For 

each crystal, based on chemical element and functional group 

composition, statistics such as the maximum, minimum, average, 

and summarization of these properties are calculated to form the 

first- and second-level features, respectively. The third level involves 

a few global crystallographic features including space group number, 

lattice parameters, and Wyckoff positions. Given that some crystal 

structure data may be unavailable or inaccurate, and previous work  

[35]has demonstrated that the crystallographic features at the third 

level do not significantly enhance the model performances, only the 

first two levels of descriptors are adopted in this work for crystal-

structure-free representations of crystal entries. Detailed definitions 

of all features at the first and second level in multilevel descriptors 

are provided in the Tables S1 and S2, respectively. 

For a specified property-criterion pair, a random forest (RF) 

binary classification model [56] is employed to identify and label 

positive samples that exceed the given criterion for the property. For 

example, when using a well-constructed RF model of dij-3.90 pm/V 

for prediction, crystal samples with large SHG coefficients greater 

than 3.90 pm/V are classified as positive (i.e., SHG-active for 

applications in the MIR region), otherwise they are classified as 

negative. The dataset for model training is composed of features 

generated from crystal entries from the database, which are then 

randomly split into a training set (90%) and a test set (10%). To 

enhance the efficiency and generalizability of the model, feature 
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selection is performed based on feature discreteness and correlation 

within the training set, reducing the original 81 features to 15. 

Additionally, the synthetic minority oversampling technique 

(SMOTE) [57] is applied when the majority class exceeds 60% in 

the training set to alleviate the potential impact of class imbalance 

on the prediction performance at certain classification criteria. Two 

hyperparameters of RF model, the number of trees and the minimum 

number of samples required for a split are optimized using 5-fold 

cross-validation grid search. The Fβ score, as a combination of 

precision and recall, is used as the main evaluation metric during 

optimization, where β is set to 2.0 in order to retain as many true 

positive samples as possible during the preliminary screening. A 

detailed description of feature selection, model training, and 

evaluation is provided in the Supporting Information. 

The platform offers two types of ML models: (1) built-in 

models, which have been trained on all the collected data and ready 

for use, allowing users to make immediate predictions, and (2) 

custom models, where users can customize datasets and property-

criterion pairs to train their own models. For built-in models, 

different criteria are applied to assess birefringence and SHG activity, 

that is, Δn = 0.02, 0.04, or 0.08, and dij = 0.39, 1.00, or 3.90 pm/V. 

In total, six models have been trained and preloaded onto the 

platform, with their parameters optimized and fixed during 

development. For custom models feature selection and 

hyperparameters are optimized during each training process. The 

classification results for crystal activity enable these models to serve 

as preliminary filters to identify promising candidates prior to first-

principles calculations and time-consuming experiments in NLO 

materials discovery. 

2.3. Deep generative models 

As an advanced deep generative model specifically designed for 

periodic material structures, CDVAE is capable of generating novel 

structures with promising thermodynamic stability and unique 

material properties by learning large datasets of existing materials 

[42]. Through its integration of variational autoencoders and 

diffusion models, CDVAE facilitates the generation of diverse 

crystal structures by sampling from latent spaces, and refining them 

through optimization processes. An overview of CDVAE model is 

provided in the Supporting Information.  

A series of well-constructed CDVAE models have been 

deployed on the data platform, enabling users to acquire generated 

material structures without the need for additional computational 

resources. These models have been trained on general datasets of 

inorganic materials collected from the MP database [24]. The 

training sets were constrained and designed based on elemental 

composition, thermodynamic stability, and the maximum number of 

atomic sites per structure to ensure that these models learn structural 

patterns from stable materials, thereby generating novel materials 

with promising properties and representativeness. 

3. Results and discussion 

3.1. Data format and permissions 

As of the submission, a total of 937 NLO crystal entries have been 

included in this database. For each recorded entry, the database 

contains detailed information on its chemical composition, 

properties, and data sources. Table 1 provides a brief description of 

the recorded content and specific examples. 

Each entry in the database is associated with two IDs, the 

internal Database ID and the External ID, which are crucial for 

uniquely identifying and cross-referencing it with different data 

sources. The Database ID serves as the unique index for each entry 

within the database. Public and private entries are distinguished by 

their Database IDs, with the former labeled NLOP- (where P stands 

for public) and the latter labeled NLOS- (where S stands for secret). 

Public entries are assigned a unique Database ID, while private 

entries have distinct IDs under the respective user accounts. The 

database encourages collaborative contributions, allowing users to 

upload new crystal data. When uploading, users can choose whether 

the data should be made public or kept private. Public entries 

undergo a verification process by administrators with advanced 

permissions, ensuring the authenticity, uniqueness, and validity of 

the data before being made accessible to all users for viewing and 

downloading. On the other hand, private entries require minimal 

information and no manual verification and are only visible and 

editable by the uploader. This system ensures the traceability of each 

entry, as well as the independence and confidentiality of the data 

uploaded by different users. The External ID refers to the identifier 

assigned to each entry in widely recognized external databases 

including ICSD, CCDC, and MP. Each External ID is prefixed with 

the corresponding database abbreviation indicating its source. Each 

structure is linked to a single External ID that serves as a reference 

for checking and validating the data. The database also records 

detailed chemical composition and structural information for each 

entry, along with the corresponding crystallographic information 

files (CIF) available for download. Isolated AR and MO species 

extracted from the chemical formula are additionally labeled to 

support ML functionalities. 
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Table 1. Descriptions and examples of the database entry attributes. 
Attribute Description Example 

Database ID 
Unique identifier for the entry in this database 
with the prefix NLOP- for public entries and 
NLOS- for private entries. 

NLOP-256 

External ID Identifier of the entry in external databases 
(currently supports ICSD, CCDC and MP). ICSD-238029 

Formula Chemical formula of the crystal entry. RbPbCO3F 

Space Group 
Number 

Space group number corresponding to the 
crystal structure of the entry. 187 

Metallic Oxides 
Metallic oxide species (charges omitted) 
extracted from the chemical formula, separated 
by semicolons. 

Rb2O; PbO 

Acid Radical 
Ions 

Acid radical ion species (charges omitted) 
extracted from the chemical formula, separated 
by semicolons. 

CO3; F 

CIF Availability of the CIF of the entry in the 
database (True or False). True 

Eg (eV) Band gaps of the entry and the corresponding 
acquisition methods. 

EXP: 4.1 
GGA/PBEsol: 3.18 
GGA/PBE: 3.343 

Δn Birefringence of the entry and the corresponding 
acquisition methods and wavelengths. 

GGA/PBE: 0.165 
GGA/PBE@1064nm: 0.171 
GGA/PBE@600nm: 0.186 

dij (pm/V) 
Second-order nonlinear coefficients of the entry 
and the corresponding acquisition methods and 
wavelengths. 

GGA/PBE: 5.48 

References Relevant references of the entry, such as DOI 
numbers, books or virtual crystal sources. 

https://dx.doi.org/10.1021/ic500778n; 
https://dx.doi.org/10.1039/c6dt04196e 

Submission 
Time 

The time when the entry was reviewed and 
included in the database. 2025-01-06 

For the three NLO-related properties, i.e., Eg, dij, and Δn recorded 

in the database, the entries present not only the collected data but 

also the corresponding source and acquisition method and 

wavelength (for dij and Δn). Experimental measurements and 

computational results from different methods are labeled accordingly, 

such as EXP, PBE, and HSE06, providing comprehensive sources of 

information and showcasing the potential of multi-fidelity ML 

applications. For consistency, dij reported as multiples of standard 

substances in some references have been converted to pm/V units, 

where representative standards are KDP (0.39 pm/V) and AGS (13.4 

pm/V) [58]. Moreover, only the maximum value of dij in the tensor 

is presented in reported calculations for simplicity. 
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Figure 1. Data statistics from the database with pie chart (a) showing the distribution of compound types, pie chart (b) showing the distribution 

of crystal structures across the crystal systems and histogram (c) illustrating the distribution of the top-10 most prevalent space groups. 
 

3.2. Data statistics 

A comprehensive statistical summary of the chemical compositions 

and structures of the entries currently included in the database is 

provided in Figure 1. As shown in Figure 1a, the compounds in the 

database contain between two and seven elements. Among them, 

quaternary compounds are the most abundant, followed by ternary 

and quinary compounds, while compounds with very few or many 

elements are relatively scarce. Regarding crystal structures, as 

illustrated in Figure 1b, the entries span all seven crystal systems, 

with the orthorhombic system being the most represented, followed 

by the monoclinic system. In contrast, cubic and triclinic structures 

are less common. Specifically, the bar chart in Figure 1c lists the 10 

most frequently occurring space groups and their respective counts. 

Among all crystal structures, the orthorhombic space group Pna21 

(No.33) appears most frequently, followed by the monoclinic space 

group Cc (No.9). 

Further analysis of the elemental composition of the crystals is 

presented in the form of element distribution heatmaps in Figures 2a 

and 2b. To distinguish between different categories, compounds 

containing oxygen and those without oxygen are analyzed separately. 

Of the 937 entries in the database, 680 are oxygenated compounds, 

representing a significant majority. As shown in Figure 2a, among 

all oxygenated compounds, 45.1% are borates, making them the 

most prevalent type. They are followed by phosphates and 

germanates, which account for 17.9% and 17.4%, respectively. 

Although the database includes compounds containing nearly all 

main group elements, carbonates, nitrates, silicates, and sulfates are 

relatively underrepresented. Meanwhile, the distribution of elements 

in oxygenated compounds reveals a balanced representation of alkali 

and alkaline earth metals. This reflects a common strategy in the 

design and synthesis of NLO materials: substituting metal cations in 

crystals with elements from the same group to tune properties such 

as bandgap. On the other hand, as shown in Figure 2b, the element 

distribution in non-oxygenated compounds exhibits similar patterns, 

with sulfides, selenides, and halides well-represented among these 

entries. 

The scatter plots in Figures 2c-2e illustrate the distribution of 

three key properties for entries in the database. Specifically, dij and 

Δn prioritize experimental values measured at 1064 nm, selecting the 

maximum value if multiple measurements under the same conditions 

exist. On the other hand, Eg is derived from calculations based on the 

GGA method. The plots reveal that the entries span a broad range of 

values for these properties. Notably, oxygenated and non-

oxygenated compounds, distinguishing by yellow and blue dots, 

exhibit distinctly different clustering patterns. Oxygenated 

compounds in the database generally exhibit smaller dij and larger 

Eg, forming a distribution trend that is entirely opposite to that of 

non-oxygenated compounds. In contrast, the distribution of Δn does 

not display a clear correlation with any specific element. 

The above analysis results demonstrate the richness and 

diversity of the included entries, while also highlighting some extent 

the concentration and bias in the current NLO materials field. 

Therefore, this data platform not only provides comprehensive data 

of structures and properties for NLO materials but also offers 

researchers an insightful overview to guide further exploration in the 

field.  
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Figure 2. Elemental composition heatmaps of oxygenated (a) and non-oxygenated (b) compounds and distributions of NLO properties (c)-(e) 

of crystals in the database. Color intensity in (a)(b) represents the frequency of occurrence of each element, while elements that are not included 

in any entries are shown in white and unlabeled. Colors in (c)-(e) represent the data of oxygenated (in yellow) and non-oxygenated (in blue) 

compounds. 

Table 2. Performances of built-in models for dij and Δn prediction. 

Property Criterion 
Training set Test set 

Accuracy Precision Recall F2 score Accuracy Precision Recall F2 score 

dij [pm/V] 

0.39 0.881 0.969 0.787 0.818 0.816 0.962 0.781 0.812 

1.00 0.855 0.904 0.794 0.814 0.793 0.854 0.788 0.801 

3.90 0.944 0.941 0.946 0.945 0.931 0.857 0.968 0.943 

Δn 

0.02 0.880 0.854 0.917 0.904 0.809 0.800 0.930 0.901 

0.04 0.850 0.812 0.947 0.916 0.809 0.765 0.839 0.823 

0.08 0.893 0.888 0.898 0.896 0.765 0.500 0.875 0.761 

3.3. ML-driven exploration of NLO materials 

There are two ways users can access and leverage ML 

functionalities available on the platform. The first is that users can 

directly apply the built-in models, which have been trained on all 

collected entries in the database during platform development, to 

obtain predictions of dij and Δn of crystals. The performances of 

these models are summarized in Table 2. The influence of random 
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splits on the datasets was analyzed by training five different 

models for each criterion, which was confirmed to be small (listed 

in Tables S3 and S4). The optimized hyperparameters and selected 

features of these models are listed in Tables S5 and S6. This 

method enables rapid screening of promising NLO materials 

without any additional model training or data processing.  

Alternatively, users can choose to train and deploy custom 

ML models online with more flexibility. During this procedure, 

users only need to specify dataset range and classification criteria 

for specific research scenarios, and feature generation, 

hyperparameter optimization, and model training will be 

automatically performed on the platform. If the number of valid 

entries for model training is fewer than 150, the platform will 

prompt users to supplement the training samples to avoid potential 

issues caused by insufficient data. Once trained, these custom 

models are stored independently under individual accounts and 

can be applied to make predictions for entries of interest 

subsequently, providing a more comprehensive NLO property 

assessment. These solutions are designed to be user-friendly, 

ensuring that even those without an extensive ML background can 

easily navigate the platform and make full use of its capabilities. 

For training these models, multilevel descriptors are utilized 

as the representations of the crystal entries. For entries with 

properly labeled ARs and MOs, the platform can immediately 

generate multilevel descriptors online. However, due to the 

optimization and convergence issues associated with certain 

isolated groups, entries involving any AR or MO outside the 

supported ranges (listed in Tables S7 and S8) will not generate 

valid features. The multilevel descriptor datasets for selected 

entries can be exported directly for use in external ML models, 

feature analysis or other data-driven research applications, or users 

can take advantage of the built-in ML tools for further 

investigation. 

3.4. Preliminary results of deep generative models 

The platform also provides an interface dedicated to showcasing 

virtual crystal structures generated by deep generative models. 

Considering that running generative models often requires 

substantial computational time, the generated structures available 

on the platform are not produced in real-time on the website server. 

Instead, these structures are pre-generated in a development 

environment and uploaded to the platform for users to access. 

Currently, up to 2000 newly generated valid structures can be 

retrieved daily. A note on the evaluation of structures generated by 

CDVAE models is provided in the Supporting Information. 

Figure 3 illustrates several example crystal structures generated 

by these models, encompassing a variety of inorganic compounds 

including carbonates, borates, phosphates and compounds with 

mixed anions. The employed CDVAE model tends to generate 

structures of high complexity and low symmetry that are often 

beyond the original distribution of existing materials, making it a 

powerful tool for exploring unknown structural landscapes [42,47]. 

On the platform, users can search for these virtual crystal 

structures based on chemical composition and leverage built-in 

ML tools for rapid property prediction. Combined with first-

principles calculations, promising candidates for novel NLO 

materials can be efficiently identified. These results can serve as 

starting points for further studies, including the exploration of 

additional material properties and potential applications. 

 

 

Figure 3. Example crystal structures generated by deep generative 

models. 

 

Notably, the platform also allows for customization of 

generative models according to user preferences. For researchers 

focused on NLO materials containing certain specific elements, 
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we can curate a specialized dataset consisting primarily of 

compounds containing the desired elements. New generative 

models can then be trained on this dataset to generate a vast array 

of virtual inorganic compounds containing the target elements, 

contributing to the improvement of user-friendliness and the 

discovery of novel materials with targeted compositions. The 

current results of deep generative models are preliminary, and the 

development of models specifically designed for NLO materials is 

ongoing, with further improvements targeted at enhancing their 

reliability and applicability. 

4. Conclusions 

In this work, we have developed a ML-driven open data platform 

dedicated to exploring inorganic NLO materials. The database 

currently includes approximately 1000 entries of inorganic NLO 

crystals reported in the literature, along with their structural data 

and NLO properties. Notably, it is the first online platform to 

integrate ML functionalities for NLO materials discovery. On this 

platform, users can access publicly available data and are 

encouraged to contribute to the database through public or private 

data submissions. There are two types of ML models integrated 

into the platform: built-in models, trained on the entire dataset, and 

custom models, allowing users to define their dataset and 

classification criteria. By leveraging these models, users can 

achieve rapid and accurate predictions of NLO properties for 

selected entries, enabling high-throughput screening of potential 

candidates. Additionally, the platform provides access to results of 

deep generative models, offering a wealth of virtually generated 

inorganic crystal structures, which hold great potential for further 

exploration, significantly accelerating the discovery of novel NLO 

materials. These functionalities can be accessed and executed 

seamlessly on the website server of the platform, offering one-

click solutions for all users, including those without a strong ML 

background, making it a powerful tool for accelerating discovery 

and exploration of inorganic NLO materials. 

Supporting Information 

The following supporting information can be downloaded at: 

https://global-sci.com/storage/self-storage/cicc-2025-61-1-r1-

si.pdf 

Definitions of multilevel descriptors, details of feature 

selection, model training and evaluation for the RF classification 

model, overview of CDVAE model, supplementary results of 

built-in ML models, supported AR and MO species, and evaluation 

of CDVAE-generated structures. 
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