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Abstract: Density functional theory (DFT) calculations 

were performed to elucidate the reaction mechanism of the 

Pd-catalyzed carbonylation of propargylic alcohol (1), 

leading to the efficient synthesis of cyclohexyl α-

methylene-β-lactone (2). Our study revealed that the 

reaction proceeds through a four-step pathway: alkyne 

migration and insertion, CO insertion, HCl-assisted 

hydrogen transfer, and final C–O annulation. Notably, the 

final C–O annulation step was identified as the rate-determining step (RDS) of the overall catalysis, with a free energy barrier of 

25.7 kcal/mol (i.e., IM4→TS4). Additionally, we uncovered the critical role of the HCl during the reaction pathway, a 

demonstrating that it acts as a co-catalyst, proton shuttle, and hydrogen bond donor/acceptor. NBO, EDA-NOCV, and HIGM 

analyses further revealed that the remarkable stability of the transition state TS3 in the presence of HCl primarily arises from 

strong electrostatic attraction and orbital interaction energies between the two interacting fragments. These mechanistic insights 

provide valuable insight and guidance for the rational design of new Pd-catalyzed transformations. 
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1． Introduction 

α-Alkylidene-β-lactones are vital functional groups found in 
various biomolecules and pharmaceuticals, making them highly 
significant in medicinal chemistry [1,2].Their widespread 
occurrence in natural compounds and biologically active 
molecules has established them as key synthetic targets in 
organic synthesis [1-6], while their applications in materials 
science have also garnered considerable interest. Notably, α-
methylene-β-lactones are particularly valuable due to their 
potential in ring-opening polymerization, enabling the synthesis 

of copolymers with well-defined architectures, controlled 
molecular weights, and narrow polydispersity [7, 8] . In organic 
synthesis, the highly functionalized and compact structure of α-
alkylidene-β-lactones provides diverse synthetic opportunities, 
making them versatile intermediates for further chemical 
transformations [9-15]. Additionally, their four-membered ring 
system is inherently strained, facilitating ring-opening reactions 
with various nucleophiles via acyl C-O or alkyl C-O bond 
cleavage [9, 16]. Given their synthetic importance, extensive 
efforts have been devoted to developing efficient methodologies 
for their preparation [17-22]. Reported strategies include [2+2]-
cycloaddition of ketenes [23-26], lactonization of β-
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hydroxycarboxylic acids and their derivatives [11, 17, 20, 21], 
selenoxide elimination from α-methyl-substituted lactones [27], 
and deoxygenation of β-peroxylactones [22, 28].   

In 2020, Beller and co-workers reported the first general 
and highly selective Pd-catalyzed carbonylation of propargylic 
alcohols, leading to the efficient synthesis of α-methylene-β-
lactones (i.e., 2) [29]. This groundbreaking strategy highlights 
the pivotal role of Pd(II)-catalyst in achieving selective catalytic 
transformations. As shown in Scheme 1, the reaction proceeds 
under the catalytic influence of a phosphine palladium complex 
based on a 1-(2,6-diisopropylphenyl)-1H-imidazole ligand (L-
Pd), where propargylic alcohol (1) undergoes carbonylation 
with CO, delivering the target product with high yield and 
excellent regioselectivity.  

 
Scheme 1. Pd-catalyzed carbonylation of propargylic alcohols 
reported by Beller [29]. 

 
Although the authors proposed a plausible reaction pathway, 
several key aspects remain unresolved, including what the real 
active Pd-catalyst is, the role of HCl during the reaction pathway, 
and the identification of the rate-determining step (RDS) in the 
overall catalytic cycle. To bridge these gaps, we conducted a 
comprehensive density functional theory (DFT) study to 
elucidate the reaction mechanism of this transformation 
(Scheme 1). The mechanistic insight will not only enhance our 
understanding of the reaction but also provide a foundation for 
optimizing existing catalytic systems and guiding the 
development of new Pd-catalyzed strategies for α-alkylidene-β-
lactone synthesis.  
 
2. Theoretical method 

Geometry optimizations were carried out with the Gaussian 16 
program [30] and the structures were illustrated by CYLview [31]. 
Specifically, geometry optimizations without symmetry restriction 
were firstly optimized at the BP86 [32, 33]/def2-SVP [34, 35] level 
augmented with Grimme’s D3 [36] dispersion corrections. Previous 
studies also calibrated the good performance of the BP86 functional 
for the Pd catalyzed reactions [37-39]. The solvation effects of the 
experimentally used solvent (i.e., toluene) were taken into 
consideration by using the integral equation formalism variant of 
polarizable continuum model IEFPCM [40]. Vibrational frequency 
calculations were performed at the same level of theory to 
characterize the stationary points as either local minima (no 
imaginary frequencies) or transition structures (one imaginary 
frequency) on the potential energy surface, and to obtain the 
thermochemical corrections for the Gibbs free energies. Intrinsic 
reaction coordinate (IRC)[41] calculations were conducted to verify 
the critical reaction steps involved in our proposed mechanisms. The 
energetic results were further improved by the single-point 

calculations at the BP86-D3/def2-TZVPP [42] level with the 
solvation effects included. For comparison, the performance of 
several popular DFT functionals (e.g., B3LYP [43-45] , M06[46-48], 
B97D [49] and M06-L [50]) was studied on intermediate IM4 (see 
Table S1), implying that the BP86 functional used in this study is 
reliable. Unless otherwise statement, the BP86-D3/def2-TZVPP 
(IEFPCM, solvent=toluene)//BP86-D3/def2-SVP (IEFPCM, 
solvent=toluene) Gibbs free energies (in kcal/mol) are used in the 
following discussion, while the electronic energies are also given in 
the related figures for reference. Spin natural orbital (SNO) analysis 
is given by Multiwfn 3.8 software [51]. NBO [52] calculations have 
been performed using NBO 3.1 program [53] implemented in the 
Gaussian 16 package at the same level of theory , The independent 
gradient model based on Hirshfeld partition (IGMH) [54] was 
employed to investigate the weak interactions of the transition state 
TS3,TS3' and TS3'', Using the AMS2024 program at the 
BP86/def2-SVP level,the nature of the bond in the transition state 
TS3,TS3' and TS3'' was analyzed by combining the energy 
decomposition analysis (EDA) [55] with the natural orbital for 
chemical valence (NOCV) [56, 57]. 

 
3.  Results and discussion  

In this study, we first optimized two possible conformations of the 
cationic active palladium species. As shown in Scheme 2, [L-Pd-H]+ 
is 2.5 kcal/mol more stable than its isomer [H-L-Pd]+, implying that 
[L-Pd-H]+ is the more favorable species and should be selected as 
the reference state for subsequent mechanistic investigations. The 
energetics results for the formation of the active [L-Pd-H]⁺ species 
starting from the pre-catalyst Pd(MeCN)₂Cl₂ are provided in Figure 
S2. Notably, similar cationic active palladium species has been 
widely used in in previous studies [58, 59].  

 
Scheme 2. Gibbs free energy difference for the [L1-Pd-H]+ and [H-
L1-Pd]+ isomer. 
 
Figure 1 presents the calculated free energy profiles for the 
formation of the α-methylene-β-lactone product (2a). Due to the 
coordination unsaturation of the cationic palladium hydride species 
[L-Pd-H]⁺, which renders it structurally unstable, this species readily 
coordinates with carbon monoxide (CO) to form a more stable 
intermediate [L-Pd(CO)H]⁺. Subsequently, the CO ligand in [L-
Pd(CO)H]⁺ is replaced via a ligand exchange process with the alkyne 
substrate (1), leading to the formation of the weakly coordinated 
palladium–alkyne complex IM1. In IM1, the H-atom in [L-Pd-H]+ 

readily migrates to the terminal carbon of the alkyne (1) with a very 
low free energy barrier of 1.7 kcal/mol (i.e., IM1→TS1), yielding 
the slightly more stable intermediate IM2. In addition, we examined 
an alternative migratory insertion pathway involving a 1,2-insertion 
mode. However, the free energy barrier for the 1,2-insertion is 3.8 
kcal/mol higher than that of the 2,1-insertion pathway (see Figure 
S3), implying that the 2,1-insertion pathway is kinetically more 
favorable, which agree well with experimentally observed selectivity.  
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Figure 1. Computed Gibbs free energy profiles (in kcal/mol) for the target reaction.   
 
Subsequent CO coordination leads to the thermodynamically more 
stable intermediate IM3, with an exergonic free energy release of 
24.6 kcal/mol. After overcoming a small barrier of 4.5 kcal/mol via 
transition state TS2, the CO inserts into the Pd–C bond, yielding the 
more stable intermediate IM4.  
The next step involves the addition of HCl, generating IM5, which 
is slightly less stable due to the inevitable entropy overestimated[60]. 
Upon crossing a barrier of 14.2 kcal/mol via transition state TS3, the 
proton from HCl is readily transferred to the Pd center, while Cl 
attaches to the carbonyl carbon, forming the acyl chloride 
intermediate IM6. The key bond distances in the optimized TS3, 
1.588 Å, 1.758 Å, and 2.213 Å for the Pd—H, H—Cl and Cl—C 
bonds (see Figure 1), respectively, suggest the simultaneous 
formation of Pd–H and Cl–C bonds, along with H–Cl bond cleavage. 
The overall barrier, measured from the more stable IM4, is predicted 
to be 20.3 kcal/mol, which is experimentally accessible under mild 
conditions. The final C–O annulation occurs via transition state TS4 
with a free energy barrier of 11.7 kcal/mol (i.e., IM6→TS4), 
regenerating HCl for the next catalytic cycle. The key bond distances 
in TS4 indicate that C–O cyclization and HCl liberation proceed in 
a concerted manner. With the addition of another equivalents of 

reactant 1, the final product 2 is liberated, and regenerating IM1 for 
the next catalytic cycle. The final annulation step, with a free energy 
barrier of 25.7 kcal/mol, measured from the more stable intermediate 
IM4, is identified as the rate-determining step (RDS) during the 
entire catalytic cycle. The overall process is highly exergonic (ΔG = 
–32.5 kcal/mol), providing a strong thermodynamic driving force for 
the reaction to proceed efficiently. 

 

 
 
Figure 2. The optimized structures of the transition states TS3 and 
TS4. 
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Table 1. The calculated NPA charge(q) f the optimized structures of TS3, TS3' and TS3'' at the BP86/def-2TZVPP level. 

  
 

TS3 TS3' TS3'' 
NBO Analysis 

Species  Charges(q) derieved from Natural Population 

 TS3 

Pd 0.480 C1 -0.313 

H 0.197 C2 -0.516 

P 0.893 C3 0.677 

N -0.476 O -0.377 

TS3' 
Pd 0.321 C1 -0.205 

H 0.272 C2 -0.498 

P 1.012 C3 0.674 

TS3'' 

N -0.487 O -0.428 

Pd 0.307 C1 -0.141 

H 0.341 C2 -0.305 

P 0.893 C3 0.539 

N -0.495 O -0.45 

Additionally, we investigated alternative reaction pathways 
involving transition states TS3' and TS3'', where the annulation 
process proceeds without HCl. However, these pathways exhibit 
significantly higher free energy barriers of 33.6 kcal/mol (IM4 → 
TS3') and 50.3 kcal/mol (IM4 → TS3''), respectively. These values 
are much greater than the 20.3 kcal/mol barrier observed for TS3 
(IM4 → TS3) and thus can be readily ruled out. This aligns well 
with experimental observations, where the reaction failed to proceed 
in the absence of HCl [29]. To address the role of HCl concentration, 
we performed additional calculations by introducing two and three 
HCl molecules into the TS3 model. However, the introduce of 
multiple HCl molecules caused significant deviations from the 
original optimized reaction pathway, ultimately preventing the 
successful convergence of a corresponding transition states. It 
suggests that excess HCl disrupts the delicate balance of interactions 
at the active site, likely hindering rather than promoting the catalytic 
process. This outcome is consistent with experimental practice, 
where only a trace amount of HCl (2 mol%) is employed to achieve 
optimal reactivity without overwhelming the catalytic system.  

To elucidate the critical role of HCl in stabilizing the key 
transition state TS3 in the presence of HCl, we did Natural Bond 
Orbital (NBO) analysis. As detailed in Table 1, the Natural 
Population Analysis (NPA) charges on Pd in TS3, TS3', and TS3'' 
are 0.480, 0.321, and 0.307, respectively. These results suggest that 
the presence of HCl reduces the electron density around Pd in TS3, 

enhancing its interaction with the substrate. The lower electron 
density also indicates a more uniform electron cloud distribution, 
which further contributes to stabilization. Consequently, the free 
energy barrier for TS3 is significantly lower than those of TS3' and 
TS3'', underscoring the indispensable role of HCl in facilitating the 
reaction. 

To further validate these findings, we performed Energy 
Decomposition Analysis coupled with Natural Orbital for Chemical 
Valence (EDA-NOCV) analysis to gain deeper insight into the 
critical role of HCl during the reaction pathway. As shown in Table 
2, the transition state TS3, with HCl present, exhibits the lowest 
interaction energy (−172.6 kcal/mol) compared to TS3' and TS3'', 
explaining its enhanced stability. Specifically, although TS3 has a 
relatively high Pauli repulsion energy (ΔEpauli = 287.4 kcal/mol), this 
repulsion can be effectively compensated by the strong electrostatic 
attraction (ΔEelstat = −221.5 kcal/mol) and orbital interaction energy 
(ΔEorb = −222.9 kcal/mol), which is in good agreement with the 
larger NPA charge on Pd of TS3 via NBO analysis. These two 
stabilizing factors, which contribute the 96.6% of the total attractive 
interactions, highlight the origin of TS3's superior stability, 
reinforcing the crucial role of HCl in facilitating the annulation 
process. It is worthy of mentioning that the non-negligible dispersion 
forces in these three transition states are comparable (ca. 15 
kcal/mol), which aligns with the Interaction Region Indicator (IRI) 
analysis (Figure 3).  It means that the employment of the L1 ligand  
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Table 2. EDA-NOCV results of [L1-Pd-sub] at the BP86/ def-2TZVPP level of theory. Fragments are given on table in singlet (S), Doublet(D) 
and Triplet(T) electronic states. Energy values are given in kcal/mol. 

Species TS3 TS3' TS3'' 

Fragments 

   

∆Eint -172.6 -141.3 -101.6 

∆EPauli 287.4 226.1 129.4 

∆Eelstat -221.5 (48.1%) [a] -174.1 (47.4%) -79.9 (34.6%) 

∆Edisp -15.6 (3.4%) [a] -14.5 (4.0%) -15.6 (6.8%) 

∆Eorb -222.9 (48.5%) [a] -178.8 (48.7%) -135.5 (58.7%) 

aThe values in parentheses give the percentage contribution to the total attractive interactions ΔEelstat + ΔEorb+ ΔEdisp. 
 

 also play important role in stabilizing the transitions state TS3, as 
shown by favorable C-H ---π, C-H---O interactions.  

 

Figure 3. the Independent Gradient Model based on Hirshfeld 
Partition (HIGM) analysis of TS3,TS3' and TS3''. 
 
4. Conclusion 

In summary, DFT calculations were conducted to elucidate the 
reaction mechanism for the formation of cyclohexyl α-methylene-β-
lactone (2) via the Pd-catalyzed carbonylation of alkynols (1). Our 
study revealed that the overall catalytic cycle consists of four key 
steps: alkyne migration and insertion, CO insertion, HCl-assisted 
proton transfer, and final C–O annulation. Each step is both 
thermodynamically and kinetically feasible. Remarkably, the C–O 
annulation step, with a free energy barrier of 25.7 kcal/mol (i.e., 
IM4→TS4), was identified as the rate-determining step (RDS) of 
the entire catalytic cycle. Structural analysis of key transition states 
(TS3, TS4) and intermediates (IM6, IM7) demonstrated that HCl 
plays three critical roles: acting as a co-catalyst, proton shuttle, and 
hydrogen bond donor/acceptor. To gain deeper insight into the 
stabilizing effect of HCl on the key transition state TS3, we 
performed NBO, EDA-NOCV, and HIGM analyses. The results 
revealed that the strong electrostatic attraction (ΔEelstat = −221.5 
kcal/mol) and orbital interaction energy (ΔEorb = −222.9 kcal/mol), 
are key factors contributing to the superior stability of TS3, 
reinforcing the crucial role of HCl in facilitating the annulation 
process. These mechanistic insights provide valuable guidance for 

the rational design of new Pd-catalyzed transformations and the 
development of more efficient synthetic strategies. 
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