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Abstract: Neural network quantum states represent a powerful approach for solving electronic structures in strongly correlated 

molecular and material systems. For a neural network ansatz to be accurate, it must effectively learn the phase of a complex wave 

function. In this work, we demonstrate several different network structures as the phase network for a Transformer-based neural 

network quantum state implementation. We compare the accuracy of ground state energies, the number of parameters, and 

computational time across several small molecules. Furthermore, we propose a phase network setup that combines cross attention 

and multilayer perceptron structures, with the number of parameters remaining constant across different systems. Such an 

architecture may help reduce computational costs and enable transfer learning to larger quantum chemical systems. 
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1. Introduction 

Solving the electronic structure of correlated molecular and material 
systems has long been an essential task in computational chemistry. 
In these systems, mean-field theories such as density functional 
theory (DFT) and the Hartree-Fock (HF) self-consistent field method 
fail to accurately describe the correlated electronic wave function, 
while the theoretically accurate full configuration interaction (FCI) 
method requires computational resources that scale exponentially 
with system size, making its application to large systems impractical. 

The past decade has faced an explosive growth of applications 
of neural networks in different fields, where it has demonstrated 
remarkable ability in representing complicated functions 
encountered in various situations. In the context of computational 
many-body problems, this expressive power has been leveraged to 
represent the highly correlated electronic wave function. This 
approach, introduced in 2017 by Carleo and Troyer, is known as 
neural network quantum states (NNQS) [1]. NNQS methods have 

been applied to both spin and Fermionic models, such as the J1-J2 
Heisenberg model and the Hubbard model [2–3]. In the context of 
computational chemistry, there have also been demonstrations in 
small molecular and material systems. Some of these works feature 
a real-space representation of the electronic wave function, in which 
a neural network takes the coordinates of electrons (𝒙!, 𝒙", 𝒙#, … ) 
as input, and outputs the wave function Ψ(𝒙!, 𝒙", 𝒙#, … ). Notable 
implementations of this method include FermiNet [4], PauliNet [5], 
LapNet [6], and DeepErwin [7]. Other works adopt a second-
quantization formulation of the electronic structure problem, 
expressing both the wave function and the Hamiltonian in the 
occupation number representation over a given set of single-particle 
orbitals [8–9]. These methods introduce a basis set that enables 
direct comparison with standard quantum chemistry approaches and 
allows for systematic accuracy improvements by selecting 
increasingly comprehensive basis sets. However, the basis set 
approximation introduces an error that is absent in the real-space 
representation of the wave function. 
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One essential difference between NNQS and other applications 
of neural networks is that the electronic wave function is complex-
valued, requiring a complex-valued network, whereas most deep 
learning applications focus on real-valued network outputs. This 
results in a lack of complex-valued network designs and limits the 
available choices for NNQS implementations. In many NNQS 
methods, this issue is circumvented by parameterizing the complex 
wave function using two separate real-valued networks: one for the 
amplitude and one for the phase. It has been shown in spin systems 
that learning the phase of the wave function is a challenging task for 
the network, and providing a reasonable initial guess based on the 
sign rule dramatically improves convergence behavior [2]. However, 
in quantum chemistry systems, no such simple rule exists for the 
phase, leaving it entirely up to the phase network to find the ground 
state. Therefore, choosing an appropriate structure for the phase 
network can improve both the energy landscape and the expressive 
ability of the NNQS wave function, leading to a faster convergence 
to the true wave function. 

In this work, we compare several different implementations of 
phase network in QiankunNet, a transformer based NNQS method 
[10]. We compare ground state energy results on 17 typical small 
molecules. We also compare the number of parameters and time 
costs for each of these structures, in searching for a phase network 
structure that is both numerically accurate and computationally 
efficient.  

 
2. Theoretical method 

2.1 Transformer-based neural network quantum states 

In computational chemistry, the wave function of a correlated 
system |Ψ⟩ can be expressed as a state vector consisting of 2$ 
complex coefficients, where 𝑛 is the number of spin orbitals used 
to define the system. NNQS method employs a neural network to 
represent such a state vector. The network takes the electron 
configuration on spin orbitals as input and returns the 
corresponding coefficients for each configuration. These 
coefficients are then used to calculate expectation values of 
operators, including the Hamiltonian. During a training process, 
one first sample a batch of configurations, then calculate the 
energy expectation values. The energy estimator serves as a loss 
function, whose gradient is calculated and used to update 
parameters in the network. Specifically, in our implementation, 
the wave function ansatz is of the following form: 

 
Ψ% = 𝐴%𝑒&'! 

 
Where 𝐴% is the network representing amplitude of the wave function. 
We use GPT-style decoder-like layers for the amplitude network. 
Such a structure not only shows ability to capture long-range 
dependencies, but also enables the adoption of autoregressive 
sampling. Compared to classical Malkov Chain Monte Carlo 
(MCMC) sampling, the BAS algorithm has been shown to accelerate 
the sampling process significantly, thereby facilitating application of 
NNQS methods to larger systems [11-12]. The 𝜙% part of the wave 
function ansatz is a network specifically designed to represent the 
phase of the wave function, which is the primary focus in this work. 

It is worth noting that for systems with open boundary 
conditions, such as molecules, the electronic wave function can be 
treated as a real-valued function. In this case, the phase term 𝑒&'! 
reduces to a simple ±1 sign before each amplitude coefficient. This 

raises the question of whether it is possible to directly represent the 
sign instead of the full phase, or even absorb the sign into the 
amplitude using a single real-valued network. However, directly 
optimizing the sign is challenging due to its inherently combinatorial 
nature. Moreover, absorbing the sign into the amplitude network 
leads to a rugged energy landscape, as the network must pass through 
zero to switch signs—potentially creating energy barriers that hinder 
optimization. Maintaining a separate phase network also enables 
extension to systems with periodic boundary conditions, where the 
wave function must remain genuinely complex-valued. 

 
2.2 Phase network structures 

In previous work, we used a simple multilayer perceptron (MLP) as 
the phase network. Such a structure consists only of fully-connected 
layers (FC) and can be expressed as 

 
logϕ = 𝐴$(⋯ (𝐴"(A!𝑥 + b!) + 𝑏")⋯ ) + 𝑏$ 

in which 𝐴& , 𝑏&  are learnable parameters, and 𝑥  is the input 
configuration. 4 hidden layers and a hidden layer dimension of 512 is 
used, thus the total number of trainable parameters is approximately 
789k + 512 × 𝑛 , where 𝑛  is the number of spin orbitals. This 
network structure is depicted in Figure 1(a). 

Since the decoder-like amplitude network has only about 50,000 
parameters, it raises the question of whether such a large number of 
parameters in the phase network is truly necessary. To address this, 
we test three alternative approaches that replace the MLP with 
networks containing fewer parameters. The first approach is directly 
inspired by the amplitude network. We use several encoder layers to 
represent the phase, as illustrated in Figure 1(b). In an encoder layer, 
the learnable parameters are located in the position-wise fully 
connected layers of dimension 𝑛()*(++,-. × 𝑛()*(++,-., as well as 
the position-wise feed forward network (FFN) [13]. By choosing 
embedding dimensions and FFN hidden dimensions smaller than the 
MLP hidden dimension (512), this structure can have significantly 
fewer parameters than an MLP. In our amplitude network 
implementation, the attention embedding dimensions are taken to be 
32 or 48, while the FFN hidden dimension is 128. This suggests that 
similar hyperparameters may be also applicable in the case of phase 
dimensions. 

Another approach is to use decoder layers as the phase ansatz. A 
typical decoder layer in the Transformer architecture consists of a 
self-attention layer, a cross attention layer, and a position-wise fully 
connected network. Since our task does not involve “transforming” 
one sequence into another, there are no encoder outputs available to 
serve as queries for the cross attention layer. Therefore, we use an 
array of zeros, with the same length as the input sequence, as the 
query for the cross attention layer. This structure is implemented 
directly using torch.nn.TransformerDecoderLayer, and a depiction 
can be found in Figure 1(c). It is important to note that this phase 
network—referred to as “decoder” layers below and in the figures—
is not the same as the decoder-like amplitude network. The amplitude 
network consists of GPT-style decoder-like Transformer layers, 
which, although commonly referred to as “decoder layers” in many 
contexts, are essentially encoder layers with masked self-attention 
modules. 

The third method is inspired by applications in multimodal 
learning. In a cross attention mechanism, the length of the output 
sequence matches that of the query sequence, which does not 
necessarily have to be the same as the key and value sequences. In the 
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original MLP phase network, the number of parameters in the first 
fully connected layer increases with the number of spin orbitals. To 
address this, we use a fixed-length sequence of learnable parameters 
as the query and perform cross attention with the configuration 
sequence. This approach limits the length of the output sequence to a 
fixed value, except for the embedding layer, which contains only a 
few thousand parameters. Using this fixed-length sequence as input 
to the MLP eliminates the dependency of the number of parameters 
on system size. A depiction of this structure is shown in Figure 1(d). 

 
2.3 Computational details 

In all calculations, we use the STO-3G basis set. All structures are 
downloaded from Pubchem database [14]. The 1- and 2-electron 
integrals are calculated using PySCF package [15], and openfermion  

Figure 1. Different phase network structures used in this work. (a) 
Simple MLP consisting of 4 hidden layers of dimension 512. (b) Pure 
encoder layers with embedding size 128 and FFN hidden dimension 
256. (c) Pure decoder layers, with two self-attention of embedding 
size 128 and one FFN with hidden dimension 256. (d) Cross attention 
+ MLP structure, with a learnable sequence of length 16 as query for 
the cross attention. Output of the attention part is passed through an 
FFN with 3 hidden layers of dimension 512. 

is used to parse the integrals to a qubit operator [16], which is read by 
QiankunNet. The network is set up using PyTorch [17], and the 
training is performed using AdamW optimizer at learning rate 
0.0001-0.005, which is tuned according to convergence behavior for 
each network. The number of unique samples is regulated in a 
recursive manner to be less than 50000 and more than 6000. All 
networks are randomly initialized and trained for 30000 epochs. The 
resulting energy is taken to be the lowest 100-step averaged energy 
achieved during the training process. The calculation is carried out 
using 2 Intel Xeon Scale 8358 CPU and one NVIDIA A100 GPU, 
with 200GB memory specified. The restricted Hartree-Fock (RHF), 
restricted coupled cluster with single and double excitations (RCCSD) 
and FCI calculations used for benchmark is carried out using PySCF. 
 
3. Results and discussion 

3.1 Numerical accuracy of different methods 

To compare accuracy of different network structures, we carried 
out ground state energy calculations on 17 small molecules. This 
test set spans a range of chemical complexities, from simple 
diatomic molecules to heavier systems of up to 30 spin orbitals, 
and includes molecules with diverse bonding types and electronic 
structures. Information for these test systems are found in Table 
1.  The results are  compared with  FCI  values,  and  errors  are  

 
Table 1. Details of the 17 molecules tested in this work. The energy 
reference is computed using FCI. 

Formula 
Number of 
spin orbitals 

Number of 
electrons 

Energy reference [Hartree] 

BeH2 14 6 -14.47294742 

C2 20 12 -74.69078192 

CH2 14 8 -37.50443472 

CH4 18 10 -39.80625925 

F2 20 18 -195.6610863 

H2 4 2 -1.10115033 

H2O 14 10 -75.01553019 

H2S 22 18 -394.3546235 

HCl 20 18 -455.1561885 

Li2O 30 14 -87.89269325 

LiCl 28 20 -460.8496182 

LiF 20 12 -105.1661721 

LiH 12 4 -7.78446028 

N2 20 14 -107.6602064 

NH3 16 10 -55.52114983 

O2 20 16 -147.7502346 

PH3 24 18 -338.6983999 

plotted in Figure 2. Among all methods, the original MLP phase 
network shows the most consistent results, achieving chemical 
accuracy across all 17 test systems. The cross attention + MLP 
network also reaches chemical accuracy on all except one test 
molecules. Given that such a phase network structure has fixed 
parameter count regardless of system size, it is promising that 
this method may be applied to large system with partly 
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transferable parameters. The other two methods, the encoder-
only and decoder-only network, fails to converge within 
chemical accuracy for some of the system. This indicates that, 
though thought to possess stronger expressive ability, attention 
mechanism is not necessarily better than simple MLP in such a 
scenario. 

In order to demonstrate the capability of different methods in 
describing systems of different levels of correlation, we also 

computed the potential energy curve for C2 and N2 molecule. The 
result is shown in Figure 3. It can be seen that both RHF and RCCSD 
produce growing error with extending bond length, while the NNQS 
methods, especially the ones with MLP and cross attention + MLP 
phase network,  behave consistently across all  bond length.  This  

 

Figure 2. Error in ground state energy calculated using different phase network. Error below 10/0 Hartree is not shown. The horizontal line 
indicates chemical accuracy (1.6 × 10/#Hartree). 

 
Figure 3. Potential energy curve for (a) C2 and (b) N2 calculated using various methods, including different NNQS architectures, RHF, RCCSD 
and FCI. The horizontal axis represents the bond length, given in units of the equilibrium bond length, which is obtained from the PubChem 
database. 

 
demonstrates the ability of NNQS methods to be applied in both 
weakly and strongly correlated situations. 
 
3.2 Number of parameters and computational efficiency 

Another important aspect of evaluating an NNQS method is its 
computational efficiency. Currently, NNQS methods are limited to 
around 30 spin orbitals on standalone workstations, and may be 
extended to 50–60 orbitals in high-performance computing (HPC) 
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Figure 4. Time consumed for backward propagation and updating the network in each epoch. The data is averaged over the 100th to 200th epoch 
of each training, during which period the numbers of unique samples remain similar among all training processes. 

 

Figure 5. Total parameter counts for QiankunNet with different phase network, when used on different systems. The count is the sum of the 
amplitude and phase network, and it is seen that phase network structure has a large impact on total number of parameters. 

 

environments. The bottlenecks mainly lie in poor scaling of Monte 
Carlo sampling, as well as the increasingly demanding gradient 
evaluation and backward propagation with growing number of 
trainable parameters. In a typical NNQS iteration, the time cost can 
be divided into three parts: the sampling part, in which samples of 
configurations are generated; the local energy part, in which the 
samples are used to calculate local energies and the energy 
expectation; and the gradient part, in which gradient of the energy 
with respect to parameters in the network is calculated and used to 
update the network. Since the amplitude network and the local energy 
calculation module remain unchanged, modifying the phase network 
does not affect the time cost of the first two parts. Therefore, we focus 
on the third part, and the corresponding time cost is plotted in Figure 
4 for comparison. It is observed that the original MLP implementation 

takes the least time, while other implementations incorporating 
attention mechanisms require more time. This can be understood as 
follows: in an MLP, each layer only requires simple matrix-vector 
multiplications. However, in an attention mechanism, for each word 
in a sequence, matrix-vector multiplications must be performed to 
compute keys, values, and queries. Additionally, a dot product must 
be computed for each pair of words to construct the attention map. 
This map is then used to generate the output sequence via matrix-
vector multiplications, and the total complexity is of order 𝑁12*,345" . 
The number of trainable parameters for each structure is depicted in 
Figure 5. The cross attention + MLP architecture has significantly 
fewer parameters than the original MLP phase network, while 
achieving similar results. Fewer parameters result in lower GPU 
memory load, faster checkpoint saving and reading, as well as 
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possibility in applying higher order optimizer such as stochastic 
reconfiguration (SR), whose computational cost scales with third 
order of number of parameters. Furthermore, the number of 
parameters in the cross attention + MLP phase network remains 
constant across different system sizes. This not only facilitates scaling 
the architecture to larger systems, but also enables transfer learning 
across systems with varying numbers of orbitals. Nevertheless, for the 
17 small molecules studied in this work, it is also possible to tune the 
hyperparameters such that a pure MLP phase network contains a 
similar number of parameters—for example, by extracting the MLP 
part from the cross attention + MLP architecture. This smaller MLP 
network has been tested and found to achieve comparable results (see 
Supporting Information). However, unlike the cross attention + MLP 
structure, the number of parameters in a pure MLP phase network 
scale with system size, making it increasingly demanding for larger 
systems. 
 
4. Conclusion 

In this work, we implemented several different phase network 
architectures in QiankunNet and computed the ground-state 
energies of 17 molecules. The results indicate that the simple 
MLP structure performs well across all test systems. Meanwhile, 
the cross attention-restricted MLP presents a potential approach 
for maintaining a constant number of trainable parameters across 
systems with varying numbers of spin orbitals. This could 
facilitate the extension of the network architecture beyond small 
molecules. Furthermore, a fixed parameter structure enables 
transfer learning across different systems, paving the way for the 
development of a universal model for various quantum chemistry 
problems.  

The phase of the wave function becomes particularly 
important in solid-state systems, where periodic boundary 
conditions necessitate a complex-valued wave function to 
correctly capture translational symmetry. Recent developments 
such as DeepSolid have demonstrated the potential of NNQS in 
representing solid-state wave functions, highlighting the critical 
role of phase modeling in accurately describing band structures 
and correlated electron behavior [18]. Incorporating a robust 
phase network into QiankunNet may thus be a key step toward 
more efficient and accurate calculation modeling of realistic 
materials [19]. 

Another interesting outlook is the combination of NNQS 
with projection-based quantum Monte Carlo methods under the 
fixed-node approximation, such as fixed-node diffusion Monte 
Carlo (DMC), where the NNQS wave functions can be used as 
trail wave functions to define nodal structures [20]. In this 
context, different phase network architectures in QiankunNet 
may induce distinct nodal structures and thus lead to varying 
performance. This suggests that developing an expressive yet 
efficient phase networks may offer advantages not only in 
variational training but also as components in hybrid NNQS–
DMC frameworks. 
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