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Abstract: Simulating non-Markovian quantum dissipative dynamics remains a major challenge in theoretical and computational 

chemistry. While traditional numerical methods such as hierarchical equations of motion are numerically exact, they suffer from 

prohibitive computational costs when modeling systems with complex environmental couplings or strong non-Markovian effects. 

To address this limitation, we propose a deep learning framework based on two-dimensional convolutional neural networks (2D-

CNN) for efficiently predicting long-time quantum dissipative dynamics using only short-time trajectory data. Our approach 

incorporates a 1D-to-2D feature reconstruction strategy, which transforms 1D time-series data into 2D images, and a multi-

timescale fusion network to resolve complex dynamical features. We validate the framework on two paradigmatic cases -- 

dissipative relaxation in a two-level system and Rabi oscillations in a dissipative spin system -- achieving prediction mean absolute 

errors of 10!" and 10!#, respectively. The results highlight the effectiveness of our 2D-CNN approach in capturing long-time 

temporal correlations, providing a computationally efficient pathway for simulating quantum dynamics in realistic open systems. 
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1. Introduction  

Non-Markovian quantum dissipative dynamics is widely observed 
in various fields ranging from photosynthesis to quantum computing 
[1-3]. Understanding these dynamics is essential to understand 
fundamental processes like quantum dissipation, decoherence and 
energy transfer [4-7]. Despite their universal significance, 
simulation of long-time open quantum dynamics remains an 
outstanding challenge, primarily due to the complex non-Markovian 
memory effects arising from strong system-environment correlations. 
This persistent theoretical bottleneck highlights the urgent need for 
developing accurate and computationally feasible methodologies 
that can simultaneously capture intricate memory effects while 
maintaining numerical tractability for practical applications. 

Over decades, significant progress has been made in developing 
theoretical methods for modeling non-Markovian quantum 
dissipative dynamics. Established approaches include: numerical 
renormalization group (NRG) method [8-12] and its time-dependent 
extension [13-17], quantum Monte Carlo (QMC) method [18-30], 
real-time path integral (PI) method [31-37], hierarchical equations 
of motion (HEOM) [38-46], multi-configuration time-dependent 
Hartree (MCTDH) [47, 48] and its multilayer extension (ML-
MCTDH) [49-53] and second-quantized version [54], density matrix 
renormalization group (DMRG) method [55-60] and its time-
dependent extension [55, 61-65], stochastic quantum dissipation 
theory methods [66-71], and steady-state density functional theory 
(i-DFT) method [72]. While these methods have advanced our 
understanding of open quantum systems, their computational 



Two-Dimensional Convolutional Neural Networks for Predicting Non-Markovian Quantum Dissipative Dynamics  135 

demands typically scale exponentially with both system size and 
complexity of environment. This inherent complexity barrier 
fundamentally restricts applications to large-scale, long-time 
quantum dynamics. To overcome these limitations, recent efforts 
have turned to data-driven methods to enhance the efficiency for 
simulating long-time quantum dissipative dynamics. For instance, 
the transfer tensor method (TTM) [73-75], pioneered by Cerillo and 
Cao in 2014, offers a dimensionality-reduction framework to capture 
the critical dynamics feature by encoding short-time historical 
evolution into non-Markovian transfer tensors, which can be used to 
propagate long-time dynamics. Building on this paradigm, machine 
learning techniques have emerged as promising alternatives for 
tackling similar challenges. 

Machine learning approaches for propagating long-time 
quantum dynamics can be conceptualized as time series prediction 
tasks [76], analogous to applications in weather forecasting or 
financial market modeling. However, quantum dissipative dynamics 
exhibits a critical distinction: its reduced system dynamics are 
governed by formally closed quantum dynamical equations rather 
than intricate real-world processes subjected to noise from countless 
external sources. The practical tractability stems from the fact that 
quantum memory effects arise from well-defined environmental 
interactions. For instance, within the HEOM framework, non-
Markovian memory is fully encoded in the environmental 
hybridization correlation functions.  

Recent advances in deep learning have driven a paradigm shift 
in simulating quantum dissipative dynamics [77-82]. Neural 
network approaches for time series prediction, including feed-
forward neural network (FFNN) [83, 84], recurrent neural networks 
(RNNs) such as gated recurrent units (GRUs) [85] and long short-
term memory networks (LSTMs) [86-88], convolutional neural 
networks (CNNs) [89-91], and hybrid CNN-LSTM (CNN-LSTM) 
[92], have demonstrated success in systems like spin-boson models 
[4, 93] and Fenna-Matthews-Olson (FMO) complexes [94-97]. For 
example, Lin et al. have applied LSTM to simulate excited-state 
energy-transfer dynamics, successfully predicting long-time 
behavior under strong coupling and non-Markovian conditions. By 
integrating bootstrap sampling with LSTM, they developed a 
statistical framework to quantify prediction uncertainty and assess 
model reliability in long-time quantum dynamics simulations [86]. 
Ullah and Dral have proposed the artificial intelligence quantum 
dynamics method [90], which uses machine learning to directly 
predict quantum dynamics trajectories, avoiding the high 
computational costs and error accumulation inherent to traditional 
recursive methods.  When validated on the FMO complex, the model 
captured long-time memory effects in quantum dynamics. They 
further developed a one-shot trajectory learning method [91] based 
on one-dimensional (1D) CNN, enabling single-step prediction of 
full trajectories while significantly reducing training time and 
memory usage. Wu et al. have proposed a 1D-CNN-LSTM based 
model with feature fusion network for predicting the long-time 

nonadiabatic quantum dynamics of spin-boson model, achieving 
high accuracy, robustness and transferability [92]. Furthermore, 
Zeng et al. have revealed the impact of memory time on the 
performance of TTM and deep learning approaches and proposed a 
practical method to estimate the effective memory time [98]. 
However, determining the appropriate length of short-time historical 
dynamics in machine learning remains an empirical process. The 
fundamental principle is to strike a balance between accuracy and 
efficiency: sufficiently long to encompass key characteristics while 
as short as possible to minimize resource consumption for training. 

By circumventing explicit treatment of system-environment 
interactions, these methods substantially reduce computational cost 
while demonstrating unique advantages in long-time dynamics 
prediction. However, existing methods face certain limitations. For 
example, their effectiveness in complex systems remains unverified 
[89-92], such as the Rabi oscillation of a local spin subject to Kondo 
exchange couplings with environmental spins -- a scenario 
experimentally demonstrated by Yang et al. [99] and Willke et al. 
[100] using scanning tunneling microscope-radio frequency (STM-
RF) protocols [100-102] to control coherent spin manipulation in 
hydrogenated Ti atoms and iron phthalocyanine molecules on 
surfaces. These Rabi oscillations exhibit multi-timescale 
characteristics, featuring low-frequency oscillations superimposed 
with high-frequency Larmor precession, and coherence times 
extending to several hundred nanoseconds (ns). For such complex, 
long-time quantum dissipative dynamics, RNN architectures risk 
substantial increases in training costs and complexity due to their 
inherently sequential nature, which precludes parallelization 
[103,104]. While 1D-CNNs avoid this issue [105], their long-time 
prediction accuracy diminishes significantly due to architectural 
constraints, as discussed in later sections. 

To address this challenge, we propose a deep learning 
framework based on two-dimensional (2D) CNN for accurate long-
time dynamics prediction in dissipative quantum systems, including 
the relaxation of a two-level system and the Rabi oscillations of a 
local spin. Our approach integrates a “1D-to-2D” temporal 
reconstruction strategy [106] coupled with multi-timescale feature 
fusion techniques [92], enhancing the model’s ability to capture 
complex quantum dissipative dynamics. 

The remainder of this paper is organized as follows: Section 2 
outlines the framework of the 2D-CNN model. Section 3 presents 
the results and discussion. Section 4 provides the conclusion. 

2. Theoretical method 

Our deep learning model focuses on long-time quantum dissipative 
dynamics exhibiting multi-timescale characteristics. The 
architecture of the proposed model is illustrated in Figure 1. The 
inputs consist of a series of reduced density matrix (RDM) elements 
of the system at discrete times (e.g., 𝑡$, 𝑡#, 𝑡", . . . , 𝑡%). First, the input 
undergoes preprocessing to construct datasets compatible with a 2D- 

Figure 1. Schematic of the quantum dissipative dynamics prediction framework. Reduced density matrix elements at discrete times 
(𝑡$, 𝑡#, 𝑡", . . . , 𝑡%) are input, preprocessed, and used to train the 2D-CNN model. The optimized model predicts the next discrete time point 𝑡%&$.
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CNN model. These datasets are then fed into the 2D-CNN model for 
training, resulting in an optimized model that is subsequently used 
to predict the next time point 𝑡%&$ . Implementation details are 
described below. 

Figure 2. Schematic overview of the three core components in our 
proposed deep learning workflow. (a) Data preprocessing: The 
original 1D sequential data is first sliced into fixed-length 𝑊 
segments, then vertically stacked with 𝐻 consecutive segments to 
form a 2D 𝐻 ×𝑊 image representation. (b) 2D-CNN model: The 
2D image is processed through two convolutional layers for feature 
extraction, followed by flattening and transformation via fully-
connected layers to generate preliminary predictions. (c) Multi-
timescale feature fusion network: Multi-scale inputs are 
independently processed through parallel networks, with their 
outputs aggregated through weighted averaging. The fusion weights 
are automatically learned during model training. 
 
Data preprocessing. As the raw 1D time series data cannot 
explicitly present two distinct types of variations simultaneously 
[106], inspired by Wu et al. in Ref. [106], we transform it into 2D 
images to tackle this limitation. The raw 1D time series data is first 
partitioned into training and validation sets at a 9: 1  ratio. To 
construct 2D image features, we introduce a sliding-window-based 
sequence reconstruction method, as illustrated in Figure 2a. 
Specifically, the 1D training sequences are segmented into equal-
length fragments using a fixed size of sliding window, which are 
subsequently stacked vertically along the temporal axis. For example, 

given the size of sliding window 𝑊 = 4 and the stacking height 𝐻 =
4 , the resulting image dimensions become 4 × 4  (𝐻 ×𝑊 ). The 
spatial dimensions of input features can be flexibly controlled by 
adjusting 𝐻 and 𝑊. Notably, the preprocessing reverts to raw 1D 
data when 𝐻 = 1. Each 2D image is labeled with the next time point 
data from the original sequence. This 1D-to-2D transformation 
enables the model to effectively capture quantum dissipative 
dynamics across distinct timescales. 

2D-CNN model. The structure of our proposed 2D-CNN model 
is presented in Figure 2b, consisting of: 

(1) Convolutional layers: Similar to other CNN-based models 
[89-92], our model also applies two convolutional layers. The first 
convolutional layer utilizes large-sized kernels with stride matching 
the kernel dimensions to extract long-time temporal correlations and 
local spatial patterns. The second convolutional layer employs 1 × 1 
kernels for feature dimensionality reduction and nonlinear channel-
wise interactions while suppressing overfitting through output 
channel reduction [107]. 

(2) Flatten layer: To bridge convolutional layers with fully 
connected layers, a flatten layer is employed to transform 2D feature 
maps into 1D vectors. While pooling layer that may cause 
information loss, the flatten layer can preserve the integrity of the 
original feature dimensions. 

(3) Fully connected Layers: Two fully connected layers are 
implemented. The first integrates high-order features via ReLU 
activation, and the final layer outputs single-step predictions. 
Dropout regularization is applied between layers to mitigate 
overfitting [108, 109]. 

(4) Multi-timescale feature fusion network: For complex 
dynamics, the given short-time historical data is often not sufficient 
to encompass all the necessary information for dynamic evolution, 
which may lead to significant prediction errors. To address this 
limitation, we enhance feature extraction and expressiveness by 
integrating a multi-timescale feature fusion network. As shown in 
Figure 2c, the raw 1D data is transformed into 2D images of varying 
dimensions. These are processed through parallel submodels for 
independent training and optimization, with final predictions 
generated via weighted averaging of all submodel outputs. Critically, 
the weights are learnable parameters during model training. 

Training optimization. The AdamW optimizer is employed to 
enhance model generalizability during parameter updates [110]. 
Neural network parameters are optimized by minimizing the mean 
squared error (MSE) loss function. Learning rates are adaptively 
adjusted based on validation MSE performance. Hyperparameter 
optimization is conducted using Bayesian algorithms [111], where 
the search space includes image dimensions, kernel sizes of the first 
convolutional layer, channel numbers of both convolutional layers, 
and other key parameters, with validation MSE serving as the 
objective function. 

Iterative multi-step prediction. For long-time forecasting 
tasks, a sliding window algorithm is applied: First, input the 2D 
image generated from the end of the training set into the trained 
model to obtain the predicted time point 𝑦.$. Next, remove the initial 
time point from the original image, append 𝑦.$ as a new data to the 
image's trailing edge, and form the input features for the next time 
point. This process is iteratively repeated until the desired prediction 
sequence length is achieved. Model performance is evaluated using 
the mean absolute error (MAE): 

MAE =
1
𝑛0

|𝑦' − 𝑦.'|,
%

'($

(1) 
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Figure 3. Time evolution of RDM elements 𝜌)) and 𝜌)$ for three spin-boson models using 2D-CNN networks. (a) and (b) correspond to 𝜌)) 
and 𝜌)$  of the system with 𝛾 = 1.0, 𝛽 = 0.5. (c) and (d) correspond to 𝜌))  and 𝜌)$  of the system with 𝛾 = 1.0, 𝛽 = 0.25. (e) and (f) 
correspond to 𝜌)) and 𝜌)$ of the system with 𝛾 = 1.0, 𝛽 = 0.25. All parameters are in units of Δ. Validation and test MAEs are provided in 
each subplot. 
 
where 𝑦'  denote reference values computed via HEOM, 𝑦.' 
represents the model-predicted values, and 𝑛 is the total number of 
samples (i.e., time points). 

The 2D-CNN models were implemented using the PyTorch 
framework [112], with computations accelerated via an NVIDIA 
GeForce RTX 4090 24GB graphics processing unit (GPU). All 
reference data were generated by HEOM-QUICK2 [113], a program 
for general-purpose simulations of open quantum systems. The 
predictive performance of the proposed 2D-CNN models is 
exemplified by two numerical examples: (1) dissipative relaxation 
in a two-level system, exhibiting relatively simple dynamics 
characterized by low-frequency oscillatory decay; (2) Rabi 
oscillations in local spins coupled to environmental spins via Kondo 
exchange, featuring complex dynamics that include both low-
frequency oscillatory decay and high-frequency Larmor precession. 

3. Results and discussion 

3.1 Dissipative relaxation in a two-level system 

The spin-boson model describes the interaction of a two-level 
quantum system (such as an atom, molecule, or qubit) with a thermal 
bath of harmonic oscillators through linear coupling, serving as a 
theoretical benchmark for studying decoherence, energy relaxation, 
and non-adiabatic dynamics (e.g., electron transfer) in quantum 
dissipative systems [93, 114-117]. The Hamiltonian of the system-
plus-bath composite is given by [4]: 

𝐻;* = 𝐻;+ +𝐻;, +𝐻;+,, (2) 

where 𝐻;+ =
-
#
σ>. +

/
#
𝜎@0 , 𝐻;B = ∑ ω1𝑎@1

2𝑎@11  and 𝐻;SB =
σ>. ∑ 𝑔1E𝑎@1

2 + 𝑎@1F1 . Here, ϵ  is the energy gap between the two 
system levels (|0⟩ and |1⟩). Δ is the tunneling matrix element. 𝜎@. =
|0⟩⟨0| − |1⟩⟨1|  and 𝜎@0 = |0⟩⟨1| + |1⟩⟨0|  are the Pauli operators, 
𝑎@1
2(𝑎@1) represents the creation (annihilation) operator for the 𝑘th 

bath mode with frequency 𝜔1, and 𝑔1 are the system-bath coupling 
coefficients. 

The influence of a Gaussian bath on the reduced system 
dynamics is fully determined by the bath spectral density function. 
Here, we adopt the Drude spectral density [4]: 

𝐽(𝜔) ≡ π0𝑔1#
1

 𝛿(𝜔1 −𝜔) =
2𝜆𝜔𝛾
𝜔# + γ# ,

(3) 

where 𝜆  is the bath reorganization energy, which governs the 
system-bath coupling strength. 

The reduced system dynamics is described by the time 
evolution of the RDM,  

𝜌(𝑡) = TrB[𝜌T(𝑡)]																																										 (4)		 

where 𝜌T  is the density matrix of the total system. Initially, the 
composite system is assumed to be in a factorized state, 𝜌!(0) =
𝜌(0)𝜌B

eq, with 𝜌(0) = |0⟩⟨0| and 

 𝜌B
eq = 3"#$%&

TrB43"#$
%&5
		  where     𝛽 = $

1B6
.  

Here, 𝑇 is the temperature and 𝑘B is the Boltzmann constant. 
We selected four trajectories of the RDM dynamics for the spin-

boson system from the QD3SET-1 database [118], simulated using 
the HEOM method. These trajectories cover parameter values of 𝜖 =
0.0, 𝜆 = 0.1, 𝛾 = 1.0 or 10.0, 𝛽 = 0.1, 0.25, 0.5 or 1.0, all given 
in units of Δ. Each trajectory has a step size of 𝑑𝑡	 = 	0.05/Δ and a 
total length of 𝑡max = 20/Δ . The training, validation, and test 
datasets cover intervals of 𝑡 = 4.5/Δ , 𝑡 = 0.5/Δ  and 𝑡 = 15/Δ , 
respectively. For each trajectory, we trained on either the diagonal or 
off-diagonal RDM elements for 1000 epochs and saved the model 
with the lowest validation MSE for long-time dynamics prediction. 

Predicting off-diagonal element dynamics proved more 
challenging than diagonal elements, likely due to their dependence 
on longer historical dynamic ranges, while the available training data 
were relatively short. To address this, we implemented a multi-
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timescale feature fusion network with two models: Model_2 
processes a 2D image input with twice the width 𝑊 of that used by 
Model_1.  

As shown in Figure 3, the model-predicted dynamics 
trajectories for both diagonal and off-diagonal elements of the RDM 
exhibit excellent agreement with the HEOM reference results, 
achieving validation and test MAEs on the order of 10!". The test 

MAEs of our model are on the same order of magnitude as those of 
the artificial neural network-based models in prior work by 
Rodríguez et al. [76]. These results confirm that the 2D-CNN 
architecture is capable of capturing the non-Markovian memory 
effects inherent to the dissipative dynamics of open quantum systems. 
 

Figure 4. Time evolution of 𝜌))  for an extended AIM predicted by the 2D-CNN model. (a) Results with 𝑉RF = 0.20	mV and different 
bandwidths for the two electron reservoirs. (d) Dynamics under a different initial state compared to (a), with all other parameters unchanged. 
(g) Results with 𝑉RF = 0.20	mV and identical bandwidths for the two electron reservoirs. (j) Results with 𝑉RF = 0.25	mV and different 
bandwidths for the two electron reservoirs. (b, c), (e, f), (h, i), and (k, l) show zoom-in views of panels (a), (d), (g) and (j), respectively. (b, e, 
h, k) display the model predictions for the final 5,000 validation data points. (c, f, i, l) display the model predictions for the first 5,000 test data 
points. 

3.2 Rabi oscillation of dissipative local spins 

Recent advancements in STM-RF technology [99, 100, 119-122] 
have enabled real-time coherent control of local spin states of surface 
atoms and molecules through time-varying RF voltage (𝑉RF) pulses. 
Motivated by these experimental breakthroughs, several theoretical 

studies have emerged [123-125]. For instance, an extended Anderson 
impurity model (AIM) [123, 125-128] has been employed to 
describe Rabi oscillations of local spins coupled to environmental 
spins through Kondo exchange interactions. The total Hamiltonian 
consists of three parts: 𝐻;789 = 𝐻;:;< +𝐻;=>? +𝐻;@AB<, where  
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𝐻;AIM = 0 𝜖C(𝑛@C↑ + 𝑛@E↓)
C($,#

+𝑈C𝑛@C↑𝑛@C↓	

+𝑔$𝜇,E𝑩=HI +𝑩J:<K:LF ⋅ 𝑆a$ + 𝑔#𝜇,𝑩=HJ ⋅ 𝑆a#	

+𝐽𝑆a$ ⋅ 𝑆a# +𝐷E3𝑆a$.𝑆a#. − 𝑆a$ ⋅ 𝑆a#F. (5) 

 
Here, 𝑛@C = ∑ 𝑎@CM

2
M 𝑎@CM is the electron number operator for the 𝜈th 

impurity orbital, where 𝑎@CM
2 (𝑎@CM)  is the creation (annihilation) 

operator for a spin-𝜎  (𝜎 =↑, ↓) electron. 𝜖C  represents the orbital 
energy, and 𝑈C  is the intra-orbital Coulomb repulsion energy. 𝑆aC 
denotes the spin operator associated with 𝜈th orbital, with 𝑔C being 
the gyromagnetic ratio and 𝜇B the Bohr magneton. 𝐽 and 𝐷 represent 
the exchange and dipolar coupling strengths between the two local 
spins, respectively. 𝑩=HJ is an external static magnetic field and 𝑩J:<K:L 
is the static magnetic field generated by the permanent spin moment 
of Fe atoms at the apex of the STM tip. The environment consists of 
the surface substrate and the STM tip, which are treated as two 
electron reservoirs with identical or different bandwidths. 

Numerical simulations have revealed that when the frequency 
of the 𝑉RF  matches an impurity’s Zeeman splitting, electron 
population on the impurity orbital and its associated local spin 
exhibit periodic Rabi oscillations with a decaying magnitude [128], 
as characterized by  

𝑃(𝑡) ≈ 𝑃)𝑒!I/6
'()*sin(𝛺𝑡 + 𝜙))	

× [1 + 𝐴𝑠𝑖𝑛(𝜔O𝑡 + 𝜙$)] + 𝑃$. (6) 
Here, 𝑃) , 𝑃$ , 𝛺 , 𝜙)  and 𝑇PQR:  are the amplitude, offset, 

frequency, phase, and coherence time of the Rabi oscillation, 
respectively. 𝜔O, 𝜙$ and 𝐴 are the frequency, phase and amplitude 
of the Larmor precession, respectively. Although HEOM 
calculations nicely reproduce the experimental observations, the 
computations for producing the long-time quantum dissipative 
dynamics are rather intensive. For instance, simulating a 200 ns Rabi 
oscillation trajectory, containing 2,000,000 data points, requires a 
total CPU runtime of 2,974 s with 48 CPU cores running in parallel 
mode. 

To overcome the limitations in computational efficiency, the 
aforementioned 2D-CNN model is applied to predict the long-time 
spin dynamics driven by 𝑉RF. We selected four representative Rabi 
oscillation trajectories, encompassing typical features such as high-
frequency Larmor precession and low-frequency oscillation decay, 
with evolution durations ranging from 200 to 320 ns. When 
generating dynamical trajectories, different 𝑉RF  (0.20 mV or 0.25 
mV), various initial states, and either identical or different 
bandwidths of electron reservoirs [113] were employed to verify the 
universality of our model. The first 60 ns of time evolution data were 
chosen and divided into training and validation sets at a 9: 1 ratio. A 
multi-timescale fusion method with three models is employed, with 
the input image widths 𝑊  for Model_1, Model_2 and Model_3 
being 𝑥, 2𝑥 and 3𝑥, respectively. 

The results are shown in Figure 4. The validation and test 
MAEs are on the order of 10!" and 10!#, respectively. While the 
test MAE exceeds that of the spin-boson system, the Rabi oscillation 
dynamics are inherently more complex than the dissipative 
relaxation of a two-level system, owing to their multi-timescale 
features and substantially prolonged coherence times. Our 2D-CNN 
model demonstrates robust capability in capturing these intricate 

dynamics. Remarkably, the model generates predictions in a GPU 
runtime of 715 s, compared to the total CPU runtime of 142,758 s 
required by the HEOM method. Moreover, it is important to 
emphasize that, HEOM computational costs grow exponentially 
with system size, whereas those of the 2D-CNN model scale linearly. 
 

 
Figure 5. Variation of test MAE with respect to the final time 𝑡 under 
prediction for various dynamics trajectories. Panels (a), (b), (c) and 
(d) correspond to the trajectories from Figure 4(a), (d), (g) and (j), 
respectively. 

Figure 6. Parameter sensitivity analysis with the size of sliding 
window 𝑊 as the key parameter, using the trajectory from Figure 
4(a) as an example. 
 
It is worth pointing out that the test MAE defined by Equation (1) 
may vary with the final time 𝑡 for prediction, particularly when the 
system under study is far away from a steady state. To explicitly 
illustrate this phenomenon, we analyzed the relationship between 
test MAE and 𝑡 for each system in Figure 4, with the results shown 
in Figure 5. In Figure 5(d), test MAE exhibits a convergent trend as 
𝑡  increases, i.e., test MAE tends to approach a constant with 
increasing 𝑡, whereas no such convergence is observed in Figure 
5(a-c). This discrepancy possibly results from the dynamic evolution 
having reached a steady state in (d), while the systems in (a-c) have 
not yet reached such a state.  

Furthermore, a parameter sensitivity analysis was carried out to 
validate the robustness of our model. The size of sliding window 𝑊 
was employed as the key parameter due to its length directly 
influencing the richness of dynamical information. The result is 
shown in Figure 6. When 𝑊 varies within a wide range from 0.05 
to 0.08 ns, test MAE changes only slightly, indicating that our model 
exhibits strong robustness. This result also implies that when an 
optimized model is obtained, its hyperparameters require only minor  
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Figure 7. Time evolution of 𝜌)) for an extended AIM predicted by various models. The trajectory from Figure 4(a) is using as an example. (a) 
Dynamics predicted by 1D-CNN model. (d) Dynamics predicted by single model without multi-timescale feature fusion network. (g) Dynamics 
predicted by 2D-CNN-LSTM model. (j) Dynamics predicted by LSTM model. (b, c), (e, f), (h, i), and (k, l) show zoom-in views of panels (a), 
(d), (g) and (j), respectively. (b, e, h, k) display the model predictions for the final 5,000 validation data points. (c, f, i, l) display the model 
predictions for the first 5,000 test data points. 
 
adjustments to be applied to new dynamic trajectories, thereby 
significantly reducing the cost of hyperparameter optimization. 

To evaluate the performance improvement enabled by the “1D-
to-2D” feature reconstruction strategy and the multi-timescale 
feature fusion techniques, we retrained the model using the trajectory 
from Figure 4(a). The results reveal that validation and test MAEs 
increase to 10!" and 10!$, respectively, when the 1D-CNN model 
is employed; see Figure 7(a-c). This improvement arises because 2D 
images, unlike 1D sequential data, better capture multi-timescale 

features. Specifically, high- and low-frequency oscillations and 
temporal decay are encoded along the horizontal and vertical 
dimensions of the 2D matrix. When only a single model is used, 
validation and test MAEs also rise to 10!" and 10!$, respectively, 
as shown in Figure 7(d-f). This result confirms the technique's 
effectiveness, which may contribute to higher model complexity and 
stronger multi-timescale representation capability of the feature 
fusion network. Furthermore, we compared our model to 2D-CNN-
LSTM model and LSTM model using the trajectory from Figure 4(a) 
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as an example. To save the computational cost of LSTM, the length 
of the trajectory is truncated at 100 ns. Both 2D-CNN-LSTM and 
LSTM models exhibit significantly higher validation and test MAEs 
compared to our proposed model, as presented in Figure 7(g-l). 
Additionally, they require much more computational resources, with 
GPU runtime of 4,913 s and 13,196 s, respectively, compared to just 
143 s of our model. These comparative results highlight the 
remarkable advantages of our 2D-CNN model in achieving superior 
accuracy and computational efficiency when handling long-time 
quantum dissipative dynamics with multi-timescale features. 

4. Conclusion 

To summarize, we have developed a deep learning framework based 
on a 2D-CNN to efficiently predict the long-time evolution of 
quantum dissipative systems using only short-time historical 
dynamics data. By reconstructing 1D time-series data into 
interpretable 2D images, the framework successfully resolves 
dynamical patterns across multiple timescales. This approach 
achieves low test MAEs in simulating both dissipative relaxation in 
a two-level system and Rabi oscillations in a dissipative spin system, 
demonstrating its versatility in modeling complex open quantum 
systems. Compared to traditional numerically rigorous methods such 
as HEOM, our framework reduces computational costs by orders of 
magnitude while maintaining accuracy, offering a practical tool for 
large-scale, long-time quantum dynamics simulations. 

A current limitation is the need for hyperparameter re-
optimization when applied to systems with differing initial states. 
Future research will focus on enhancing the model’s representational 
capacity, generalization across diverse initial conditions, and 
robustness in extreme parameter regimes. 
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