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Abstract: A simple model based on the two-electron two-orbital textbook problem is presented and used to analyze pairwise 

interatomic interactions in metal-ligand bonding. In particular the two types of covalency discussed during the last decade for 

actinide-ligand interactions, overlap/interaction driven and energy-near-degeneracy driven covalency, as well as their influence 

on the bond strengths and interatomic charge build-up are discussed. The hydration complexes M(H!O)"#$ of selected tetravalent 

lanthanide and actinide ions are used to probe the performance of the model for an analysis of calculations as well as for 

predictions. 
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1. Introduction 
 
The involvement of actinide 5f orbitals in chemical bonding was 
already discussed as early as 1954 by Seaborg and coworkers [1] and 
has been a hotly debated topic of numerous research articles since 
then, which are summarized in several reviews [2-15]. Actinide-
ligand bonding is a very complicated topic, due to the influence of 
many factors such as relativistic and correlation effects, numerous 
low-lying electronic states on the actinide center in case of open 5f 
shells, the changing character of the 5f shell from initially diffuse 
Rydberg type in Fr and Ra, over valence-type to rather core-like 
along the actinide row, as well as a competitive participation in 
bonding of 5f, 6d, 7p and 7s orbitals with different abilities or 
preferences for ionic and covalent interactions. In so far it is 
somewhat surprising that simple ideas from molecular orbital theory 
still are able to offer some insight. 

Recently two concepts to explain reasons for covalent bonding 
in actinide complexes have been proposed [16] and extensively used 
[17-25], i.e., orbital overlap or interaction driven and energy 
(near-)degeneracy driven covalency. Following the original article 
of Neidig et al. [16] these types of covalency can be briefly explained 
as follows. The theoretical foundation is a perturbative approach of 
MO-LCAO (molecular orbitals by linear combination of atomic 
orbitals) theory to actinide-ligand bonding, starting with an ionic 

picture of a complex, i.e., M"$(L%&)' , as zeroth order. A metal 
orbital 𝜙(  with orbital energy 𝜖( , and a ligand orbital 𝜙)  with 
orbital energy 𝜖), can mix leading to an antibonding 

𝜑* =
1

&1 + 2𝜆𝑆() + 𝜆!
(𝜙( + 𝜆𝜙))										(1) 

and a bonding 

𝜑+ =
1

&1 − 2𝜆𝑆() + 𝜆!
(𝜙) − 𝜆𝜙()										(2) 

linear combination, with 𝑆)( being the overlap integral between 𝜙( 
and 𝜙). We note that, probably due to their intention to analyze, e.g., 
K-edge X-ray absorption spectroscopy (XAS) results, the authors 
focus on the antibonding, in the ground state unoccupied linear 
combination 𝜑*  with a leading metal contribution (𝜆 ≤ 0). In the 
core excited states probed by spectroscopy this orbital becomes 
occupied and its An 5f contributions are related to spectroscopic 
features. In a two-orbital model orthogonality then determines the 
bonding orbital 𝜑+ occupied in the ground state and thus allows to 
calculate An 5f contributions. Using these ideas An 5f covalency in 
the ground state can be experimentally ’measured’. However, some 
problems might arise since the unoccupied orbital probed by XAS is 
probably best described as a canonical orbital, whereas for bonding 
discussions localized occupied orbitals are more appropriate. 
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The mixing coefficient 𝜆 is given by first-order perturbation 
theory as 

𝜆 =
𝐻()

𝜖( − 𝜖)
										(3). 

Note that 𝜖( > 𝜖) and 𝐻() ≤ 0 leads to 𝜆 ≤ 0, i.e., the antibonding 
and bonding linear combinations in eqns. 1 and 2, respectively. 
According to the Wolfsberg-Helmholz model the Hamiltonian 
matrix element 𝐻() is proportional to the overlap integral 𝑆() [26]. 
A parameter 𝜆 = 0 results in the ionic case without orbital mixing, 
i.e., an unoccupied metal orbital 𝜑* = 𝜙( and an occupied ligand 
orbital 𝜑+ = 𝜙) , whereas 𝜆 = −1 corresponds to the antibonding 
𝜑* ∼ 𝜙( −𝜙) and bonding 𝜑+ ∼ 𝜙) +𝜙( linear combinations of 
a homonuclear diatomic such as H!. As noted by Neidig et al. [16] a 
corresponding two-electron covalent bond has still 50% ionic and 50% 
covalent contributions, as becomes obvious from expanding the 
delocalized orbital product for the bonding orbital 𝜑+ ∼ 𝜙( +𝜙) 
into two ionic and two covalent terms with localized orbitals 

𝜑+(1)𝜑+(2) ∼ 𝜙)(1)𝜙)(2) + 𝜙((1)𝜙((2) + 𝜙)(1)𝜙((2)

+ 𝜙((1)𝜙)(2)											(4). 

It was argued that according to eqn. 3 covalent interactions may be 
realized in two ways: 

• a large (absolute value of the) Hamiltonian matrix element 
𝐻() in the numerator, i.e., a large overlap matrix element 
𝑆(), which is thus refered to as overlap driven covalency, 
or 

• a vanishing denominator 𝜖( − 𝜖) , which is denoted as 
near degeneracy driven covalency. 

The ’traditional’ idea of covalent bonding in chemistry is that the 
interaction leads to orbital mixing and as a consequence to a buildup 
of charge between the atoms, at the same time leading to a 
stabilization of the bonding orbital, whereas in the physical 
community a mixing of atomic orbitals in canonical molecular 
orbitals is often considered as covalency. Neidig et al. [16] point out 
that the charge buildup between the metal atom and the ligand 
depends on the type of covalency. Near-degeneracy driven 
covalency may result in orbital delocalization and not necessarily a 
large charge redistribution. Moreover, orbital mixing termed as 
covalency by the physics community does not need to be 
accompanied by stronger bonds as expected for covalency in the 
chemistry community, since the energy associated with covalent 
mixing in second-order perturbation theory is given as 

𝛥𝐸 =
|𝐻()|!

𝜖( − 𝜖)
= 𝜆𝐻()											(5). 

Two bonds with the same mixing coefficient 𝜆 may have different 
covalent contributions to the bonding energy depending on the 
Hamiltonian matrix element 𝐻() . Finally, Neidig et al. [16] 
remarked that both types of covalency may be operative for different 
classes of complexes, depending on the ligand and the metal 
oxidation state. 

It has to be mentioned that recently Sergentu and Autschbach 
criticized the usage of the concept of energy-driven covalency, or 
orbital mixing without overlap, applied previously for the 
interpretation of K-edge X-ray absorption near edge structure 
(XANES) spectra of AnCl ,!&  (An=Th-Pu) complexes [23] in 
contrast to the conventional covalency based on overlap and orbital 
mixing as unnecessary [27]. Recent related work analyzes the 

covalency in CeX,
!&  complexes [28]. In an earlier article they in 

addition emphasized that, as shown by relativistic multi-
configurational ab initio calculations, actinide-ligand covalency in 
core excited states such as probed by XANES spectroscopy may be 
different from the covalency in the ground state [29]. 

In the following we use the ideas of Neidig et al. [16] as a 
starting point for a related minimalistic model, which is based on a 
variational rather than a perturbative approach for a two-electron 
two-orbital bond [30]. Schwarz and collaborators discussed the 
covalent binding energy contributions in lanthanide trihalides 
molecules in terms of such a model [31]. They emphasize that the 
covalent bond stabilization is limited by 2𝐻() , i.e., there is no 
covalency in the sense of a bond stabilization without a metal-ligand 
interaction 𝐻() ≠ 0 . In addition, a nonvanishing positive bond 
order can result for orbital mixing without interaction, i.e., for a 
vanishing bond stabilization. As for the model of Neidig et al. [16] 
the focus of the present work is only on metal-ligand bonding, i.e., 
bonding between two centers, a positively charged metal ion with 
(partially) unoccupied valence orbitals and a ligand atom able to 
donate electron density into these. By no means it is intended to 
establish an universally applicable approach to analyze other 
bonding situations, such as, e.g., multiple-center covalent bonding, 
metallic bonding, van der Waals bonding, etc.. 

Kaltsoyannis, Dognon, Kerridge and other experts in the field 
actually strongly advocate analytic approaches which do not rely on 
the sometimes not uniquely defined orbitals, but rather on 
observables as the electron density [10, 11, 13, 15], e.g., the quantum 
theory of atoms in molecules (QTAIM) by Bader [32]. In fact multi-
configurational treatments combined with subsequent orbital 
localization might result for many cases in orbital sets which are 
more useful for interpretation than commonly used single-reference 
based approaches such as density functional theory (DFT), and 
remove signs of ’interactions’ which are rather due to the restriction 
to one configuration than to physical interactions. For example, it is 
well known that treating H!  -𝛴.$  at large distance with both the 
𝜑+! = 𝜎.!  bonding and 𝜑*! = 𝜎/!  antibonding configurations allows 
to form a 𝜑+! −𝜑*! linear combination and thus to remove the ionic 
terms mentioned above from the wavefunction. After orbital 
localization one can write the resulting spatial wavefunction in terms 
of the contributing atomic orbitals 𝜙) = 1𝑠0  and 𝜙( = 1𝑠1 , i.e., 
𝜙)(1)𝜙((2) + 𝜙((1)𝜙)(2), which reflects much more correctly 
the picture of two noninteracting neutral H atoms in their 1s- !S 
ground states. We also note that it was found by Kaltsoyannis that 
(sometimes) different tools yield different conclusions [9], and 
probably for this reason Dognon recommended always to use 
various complementary tools for analysis of actinide-ligand bonding 
[10]. Nevertheless, sticking despite its limitations deliberately to a 
single configuration approach and to orbitals, which are familiar to 
and popular among chemists, it is hoped that results obtained with 
such a low-level model bring easily to remember insight in the terms 
overlap/interaction driven and energy (near-)degeneracy driven 
covalency. Finally we want to point out that when digging deeper 
even ordinary covalency for systems such as H! is by no means a 
simple topic [33]. 
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2. Theoretical method 
 
We start, as in most textbooks, with two real, normalized and for 
reasons of simplicity orthogonal orbitals 𝜙) and 𝜙(, localized on a 
ligand atom (L) and a metal ion (M), respectively. Inclusion of a non-
zero overlap is possible, but it complicates the matter and does not 
lead to entirely different conclusions [30]. Unless otherwise noted 
we assume that two electrons with opposite spin occupy as a pair the 
energetically lowest orbital, e.g., for an ionic system M$L&  the 
ligand orbital, or for a polar system the bonding linear combination 
of metal and ligand orbitals. We further introduce the three 
parameters 𝛥 = 𝐹(( − 𝐹)) ≥ 0 , 𝛴 = 𝐹(( + 𝐹)) ≤ 0  and 𝑣 =
𝐹)( = 𝐹() ≤ 0 in terms of the elements of corresponding two-by-
two Fock matrix F. Note that 𝛥 is the energy gain when forming a 
pure ionic bond, whereas 2|𝑣| is the energy gain for a pure covalent 
bond. The associated matrix eigenvalue problem 

𝐅𝐜 = 	ε𝐜										(6) 

leads to the eigenvalues 

𝜖-,! =
𝛴 ∓√𝛥! + 4𝑣!

2 											(7) 

The splitting of the eigenvalues 𝜖- ≤ 𝜖! can be written as a sum of 
an ionic and a covalent contribution 

𝛥𝜖 = 𝜖! − 𝜖- = 𝛥𝜖34" 	+ 𝛥𝜖546 	

= 𝛥	 + I&𝛥! + 4𝑣! − 𝛥J										(8). 

 

 

Ionic limit: M+L- 

𝑣 = 0, 𝛥 ≠ 0 ⇒ 𝛥𝜖 = 𝛥 

Small covalency: 𝑣 ≠ 0 

|𝑣| << 𝛥 ⇒ 𝛥𝜖 ≈ 𝛥 + 2
𝑣!

𝛥  

 

Covalent limit: M L 

𝛥 = 0, 𝑣 ≠ 0 ⇒ 𝛥𝜖 = 2|𝑣| 

Small ionicity: 𝛥 ≠ 0 

𝛥 << |𝑣| ⇒ 𝛥𝜖 ≈ 2|𝑣| +
1
4
𝛥!

|𝑣| 

 

Figure 1. Limiting cases of ionic and covalent bonding. 

 

Binding energy: 

𝛥𝐸 = 𝛥𝐸!"# + 𝛥𝐸$"% = %𝛥& + 4𝑣& 

 

Ionic contribution: 

𝛥𝐸!"# = 𝛥 

 

Covalent contribution: 

𝛥𝐸$"% = %𝛥& + 4𝑣& − 𝛥 

 

Figure 2. Polar bonding. 
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The molecular orbital (MO) schemes corresponding to the well-
known limiting ionic (𝑣=0) and covalent (𝛥=0) cases, as well as the 
increases of the orbital energy splittings 𝛥𝜖  obtained by Taylor 
expansions for small covalency |𝑣| << 𝛥 and small ionicity 𝛥 <<
|𝑣| are given in Figure 1. It is obvious from eqn. 7 as well as eqn. 8 
that the absence of an interaction (𝑣 = 0) does not lead to any 
changes of the atomic energies 𝜖- = 𝐻))  and 𝜖! = 𝐻(( , i.e., 
covalency in the sense of a bonding contribution between two 
centers requires an interaction (|𝑣| > 0). In case of an additional 
vanishing splitting 𝛥  of the atomic levels the eigenvalues 𝜖-,! 
coincide and arbitrary linear combinations of 𝜙( and 𝜙) solve the 
Fock equation. Such an orbital mixing is not a covalency in the usual 
sense of chemistry. 

We now consider a polar bond formed by two electrons and 
calculate from the orbital energy changes the total binding energy 

𝛥𝐸 = &𝛥! + 4𝑣!											(9). 

Again, this quantity can be split into an ionic and a covalent term. 
The results are summarized in Figure 2. 

 
 

One can now form the ratio of covalent and ionic contributions to 
the binding energy, which is a function of the parameter ratio |𝑣|/𝛥, 

𝛥𝐸546
𝛥𝐸34"

= Q1 + 4
𝑣!

𝛥! − 1										(10). 

For a subsequent discussion of the influence of changes in metal or 
ligand contributions to the bond strength we write two alternative 
expressions and their corresponding Taylor expansions for the 
binding energy, 

𝛥𝐸 = 𝛥Q1 + 4
𝑣!

𝛥! ≈ 𝛥 + 2
𝑣!

𝛥  

for  |𝑣| << 𝛥  (case 1)          (11) 

and 

𝛥𝐸 = |𝑣|Q
𝛥!

𝑣! + 4 ≈ 2|𝑣| +
1
4
𝛥!

|𝑣|   

for  𝛥 << |𝑣|  (case 2)										(12). 

Assuming a polar bond with a relatively weak interaction (|𝛥| ≈
𝑐𝑜𝑛𝑠𝑡. >> |𝑣|, case 1) one can see that an increase of the interaction 
|𝑣|  leads to larger percentage of covalency (eqn. 10) and to a 
stronger bonding (eqn. 11), cf. Figure 3. In case of a polar bond with 
a relatively strong interaction (|𝑣| ≈ 𝑐𝑜𝑛𝑠𝑡. >> 𝛥, case 2) one finds 
for an increasing degeneracy 𝛥 also a larger percentage of covalency 
(eqn. 10), but a weaker bonding (eqn. 12), cf. Figure 4. 

One can now look at the orbital coefficients for the bonding 
orbital and express the one for the metal orbital 𝑐( as a function of 
the one on the ligand orbital 𝑐), 

𝑐( =
𝛥 − √𝛥! + 4𝑣!

2𝑣 𝑐)											(13). 

For an ionic bond (𝛥 → ∞) one obtains for 𝑐) = 1 a vanishing metal 
contribution 𝑐( = 0. For a covalent bond (𝛥 = 0) one gets 𝑐( = 𝑐), 
where it has to be considered that 𝑣 < 0 holds. For polar bonds one 
can write two Taylor expansions, i.e., for the case close to the ionic 
limit (large 𝛥) 

𝑐( ≈
|𝑣|
𝛥 𝑐)  for  |𝑣| << 𝛥  case 1          (14)	, 

and the case close to the covalent limit (small 𝛥) 

𝑐( ≈ Z1 −
𝛥
2|𝑣|[ 𝑐)  for  𝛥 << |𝑣|  case 2											(15). 

In all cases, as obvious from the formulas above, there is no 
covalency in the sense of a bonding interaction for 𝑣 = 0. Covalency 
requires an interaction between the two bonding partners, 
e.g., ’covalent bonding driven purely by energy degeneracy’ or ’non-
classical covalency’ [14] does not exist, unless one counts orbital 
mixing due to degeneracy between non-interacting centers as 
covalency. Although these terms are embedded in an otherwise 
correct description of the situation, they bear the danger to be 
misunderstood in the sense that there might be another mechanism 
of covalency stabilizing a bond but not requiring interaction. 

 

  

Figure 3. Case 1. Increasing the interaction increases the bond strength. 
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Figure 4. Case 2. Increasing the degeneracy decreases the bond strength. 
 
As one can see from the formulas above the parameter |𝑣|/𝛥 
determines the mixing of the orbitals as well as the energy gain upon 
bonding. An interatomic charge build-up can be related to the 
product 𝑐)𝑐( of the orbital coefficients. Monitoring the change of 
𝑐)𝑐( together with the one of the binding energy 𝛥𝐸 when going for 
a fixed value of the interaction |𝑣|  from an ionic (𝛥 → ∞) to a 
covalent (𝛥 = 0) bond one gets a monotonous increase of 𝑐)𝑐( 
together with a monotonous decrease of 𝛥𝐸  (energy 
(near-)degeneracy driven increase of covalency). Keeping the 
energy gap 𝛥  constant and increasing the interaction |𝑣| 
monotonously increases the binding energy 𝛥𝐸 as well as the charge 
build-up measured by 𝑐)𝑐(  (interaction driven increase of 
covalency). The dependence of the binding energy 𝛥𝐸  and the 
charge build-up 𝑐)𝑐(  on |𝑣| and 𝛥 is visualized in Figure 5. The 
cases 1 and 2 discussed above and depicted in Figures 3 and 4, 
respectively, are represented by the isolines for 𝛥  and |𝑣| . For 
example, substituting in a chelating ligand, e.g., ’hard’ O by ’soft’ S 
in order to increase the selectivity for ’soft’ An"$  ion extraction 
over ’hard’ Ln"$  extraction, decreases 𝛥  and reduces the 
thermodynamic stability of the complexes (follow a |𝑣|  isoline), 
unless the change also leads to a stronger metal-ligand interaction 
|𝑣|  (change the |𝑣|  isoline), e.g., due to spatially more extended 
ligand valence orbitals, for which the thermodynamic stability then 
in sum may be increased. 

One may now ask where the regions for energy 
(near-)degeneracy driven and overlap/interaction driven covalency 
are located. It should be clear from the above described monotonous 
changes of 𝛥𝐸 and 𝑐)𝑐( as functions of |𝑣| and 𝛥 and from Figure 
5 that one cannot discern regions of special types of covalency. The 
limiting cases of ionic bonding (𝛥 > |𝑣| = 0) and covalent bonding 
( |𝑣| > 𝛥 = 0 ) can easily be located on the lower and upper 
horizontal axis, respectively. They have no respectively a large 
interatomic charge build-up, and a binding energy depending on the 
energy gap 𝛥  and the interaction |𝑣| , respectively. Energy 
(near-)degeneracy driven covalency according to its inventors is 
associated with a small interatomic charge build-up and a low value 
of 𝛥, i.e., it should be located in the lower left corner of Figure 5. 
This region has no clear boundaries and is only accessible for small 
values of the interaction |𝑣|. The associated energy gain 𝛥𝐸 is quite 
small. Thus it is a weak ionic interaction (if any) with only small 
covalent contributions. The |𝑣|/𝛥 values are typically much smaller 
than 1, as can be easily seen for the crossing points of the isolines 

for |𝑣| and 𝛥. Our conclusion that energy (near-)degeneracy driven 
covalency is just a variant of ordinary covalency is in line with recent 
work of Sergentu and Autschbach, who based their similar 
conclusion on high level relativistic multi-reference ab initio studies 
of the XANES spectra of some protoype systems for energy 
(near-)degeneracy driven covalency [23], i.e., AnCl,!&  complexes 
[27]. 

The perturbation theory based argument mentioned in the 
introduction that for a decreasing value of 𝛥 covalency is increased 
has to be viewed with some caution: decreasing 𝛥  increases the 
interatomic charge build-up and weakens the bonding (e.g. follow 
the |𝑣| = 0.01 curve in Figure 5), whereas energy (near-)degeneracy 
driven covalency is usually associated in literature with a small 
interatomic charge build-up. It also has to be noted that 𝑐)𝑐( is only 
useful as a relative measure of the interatomic charge build-up since 
it does not take into account the distance between the atoms. In the 
limit of a large interatomic distance, zero interaction and zero energy 
gap there is no energy gain and no interatomic charge build-up, 
although any value of 𝑐)𝑐( on the 𝛥𝐸 axis is possible since arbitrary 
linear combinations of ligand and metal orbitals solve the Fock 
equation. 

Figure 5. Charge build-up in the bonding region measured by the 
product of coefficients c7c8 vs. binding energy ΔE. 
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The usual type of covalency, the overlap/interaction driven 
covalency, is found at the top of Figure 5. Increasing the interaction 
|𝑣| increases the binding energy 𝛥𝐸. For a fixed interaction |𝑣| an 
increase of 𝛥 adds ionic bonding contributions and increases 𝛥𝐸 of 
the resulting polar covalent bond further. This is accompanied by a 
reduction of the interatomic charge build-up. 

In a combined experimental and theoretical study of the 
XANES spectra of actinyl ions AnO!

!$ (An=U-Pu) it was stated, e.g., 
that the overlap-driven covalent character of the An-O binding 
decreases within the series U-Pu, ’while the energy-driven covalent 
character increases without increasing the electron density of the 
binding’ and that ’energy-driven covalency might have a higher 
impact on chemical binding stability/strength than the overlap driven 
covalency’ [22]. In view of Figure 5 such statements are questionable, 
i.e., increasing the orbital degeneracy without increasing the 
interatomic charge build-up (i.e., moving parallel to the 𝛥𝐸  axis 
from right to left), decreases the interaction |𝑣| (cf. crossing of |𝑣| 
isolines) as correctly stated, but of course strongly reduces the bond 
strength 𝛥𝐸 and ultimately leads to a vanishing impact on chemical 
binding stability/strength. 

As will be shown below the pairwise interactions between the 
various metal and ligand orbitals may be associated with values for 
𝛥 and |𝑣| and each pair occupies a point in Figure 5. The ensemble 
of these interactions, which might have different ionic and covalent 
character, determines the overall complex stability. 

 
3. Application 
Finally it remains to be shown that the applied model is able to 
describe chemical bonding ranging between the limiting ionic and 
covalent cases for ’real’ molecules, including actinide complexes. 
The model can be used in two ways, i.e., an ’analytic’ mode trying 
to extract |𝑣|/𝛥  from actual quantum chemical calculations on 
complexes, or a ’predictive’ mode trying to get the parameters |𝑣| 
and 𝛥 from calculations of the fragments prior to performing the 
calculation of the complex. The ’predictive’ mode was already used 
in a previous publication [30]. 

Figure 6. Covalency of bonds of the acetic acid molecule and the 
sodium acetate molecule in terms of |v|/Δ. The dashed straight line 
is the limiting expression for an ionic bond (eqn. 14), whereas the 
dotted curve corresponds to the covalent limit (eqn. 15). 

 
For the analytic application we perform a Hartree-Fock (HF) or 
alternatively Kohn-Sham (KS) density functional theory (DFT) 
calculation using the TURBOMOLE program package [34, 35], 
apply a Foster-Boys localization of the orbitals and map those with 

predominant two-center contributions by means of the Mulliken 
populations to our two-electron two-orbital model. Core orbitals on 
the metal or ligand are excluded by means of a suitable orbital energy 
threshold. From the remaining valence orbitals only those are 
considered which have more of their electron density than a certain 
threshold, e.g. 1%, located on the metal atom, and a major 
contribution on the coordinating ligand atom. Small contributions on 
neighboring atoms are added to those of the coordinating ligand 
atom for simplicity. The normalized coefficient of the metal orbital 
𝑐(  can then be simply determined from the Mulliken orbital 
population on the metal 𝑞(  by 2𝑐(! = 𝑞( . We note again that the 
aim is to describe metal-ligand interactions which can be reduced to 
pairs of contributing atoms and not more complicated types of 
bonding. 

As an example not limited to actinide-ligand bonding we look 
at the acetic acid molecule and the sodium acetate molecule, where 
the full range of bonding from ionic to covalent is covered (Figures 
6 and 7). It can be seen that the parameters |𝑣|/𝛥 as well as 𝛥/|𝑣| 
can well distinguish between bonds with different degrees of 
covalent and ionic interactions, completely in line with the 
expectations of a chemist. The proximity to the limiting curves 
allows to distinguish quantitatively between ionic, covalent, and 
polar bonding. When looking as in the following, at largely ionic 
metal-ligand interactions the representation using the parameter 
|𝑣|/𝛥 is more appropriate. 

Figure 7. Covalency of bonds of the acetic acid molecule and the 
sodium acetate molecule in terms of Δ/|v|. The dashed curve is the 
limiting expression for an ionic bond (eqn. 14), whereas the dotted 
straight line corresponds to the covalent limit (eqn. 15). 
 
From f-element chemistry we first look at the simple model systems 
M(H!X)#$ (M = Ce, Th; X = O, S), where the two lone pairs on X 
can donate electron density to the metal ion. HF calculations using 
relativistic pseudopotentials for the metals [36, 37] and basis sets of 
quadruple-zeta quality [38, 39] were performed. For the planar 
M(H ! O) #$  systems there are two equal M-OH !  interactions 
yielding |𝑣|/𝛥 values of 0.42 for Ce and 0.33 for Th. The higher 
covalency of the Th system is confirmed, e.g., by the Wiberg bond 
orders [40] of 0.84 for Ce and 0.61 for Th. If the Wiberg bond order 
is derived from the model calculations instead of the full HF 
calculation values of 0.88 for Ce and 0.63 for Th are obtained, 
supporting that the description by the model is reasonable. In case of 
the pyramidal M(H!S)#$ systems there are two M-SH! interactions 
of different size yielding |𝑣|/𝛥 values of 0.27 and 6.60 for Ce and 
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0.28 and 1.19 for Th. Again, the higher covalency of the Ce system 
is confirmed by the Wiberg bond orders of 1.22 for Ce and 1.09 for 
Th. The corresponding values obtained from the model are 1.27 for 
Ce and 1.15 for Th, again in reasonable agreement with the results 

obtained from the full calculation. The higher covalency of 
M(H ! S) #$  compared to M(H ! O) #$  is reflected by the strong 
increase of the highest |𝑣|/𝛥 values. 
 

 
Table 1. Mulliken charges and orbital populations for s, p, d, f and g symmetries on the metal center of M(H!O)"#$ (𝑛 = 8,9) complexes. The 
populations of the closed shell M#$ cations have been subtracted from the orbital populations. Contributions of the nf, (n+1)f and (n+2)f 
orbitals (Ce n=4, Th n=5) to the f population (%). All values in a.u.. 

Mulliken 

 Q(M) s p D f g nf (n+1)f (n+2)f 

Ce(H!O)9#$ 2.474 0.199 0.117 0.823 0.332 0.053 48% 33% 18% 

Ce(H!O):#$ 2.501 0.214 0.093 0.811 0.325 0.056 47% 34% 16% 

Th(H!O)9#$ 2.668 0.210 0.077 0.624 0.412 0.009 68% 29% 1% 

Th(H!O):#$ 2.664 0.225 0.064 0.638 0.399 0.009 67% 29% 1% 

 
Table 2. Ahlrichs shared electron number SEN, Wiberg bond order, |v|/Δ and electron density at the Bader bond critical point ρ(r⃗;) for M-O 
interactions of M(H!O)"#$ (𝑛 = 8,9) complexes. All values in a.u.. 

 Ahlrichs  
SEN 

Wiberg  
BO 

This work 
|𝑣|/𝛥 

Bader 
 𝜌(𝑟⃗5) 

Bader 
∇!𝜌(𝑟⃗5) 

Ce(H!O)9#$ 0.322 0.305 0.432 0.0601 0.022 

Ce(H!O):#$ 0.270,0.315 0.270,0.278 0.402,0.414 0.0555,0.0537 0.020,0.021 

Th(H!O)9#$ 0.303 0.300 0.426 0.0535 0.019 

Th(H!O):#$ 0.237,0.315 0.282,0.289 0.407,0.422 0.0478,0.0493 0.017,0.018 

 
 
As a more realistic example we chose the hydration complexes 
M(H!O)"#$ (𝑛 = 8,9) of tetravalent Ce and Th ions with eight- and 
nine-fold coordination of water molecules as test systems. The 
underlying electronic structure calculations [41] were performed at 
the HF level using relativistic pseudopotentials for the metals [36, 
37]. Basis sets of quadruple-zeta quality were applied [38, 39]. 
Selected parameters characterizing the bonding were calculated and 
are summarized in Tables 1 and 2. These descriptors are useful to 
determine the type of bonding, but none of them can be related in a 
strict way to the overall strength of bonding. Coupled-cluster 
calculations with singles, doubles and perturbative triples (CCSD(T)) 
using AVTZ basis sets find in gasphase for both eight- and nine-fold 
coordination the Ce complexes (D<  3506, 3673 kJ/mol) to be by 
about 9-10% more stable than the Th ones (D< 3183, 3361 kJ/mol) 
[41]. The Gibbs energies of hydration derived from these results 
agree very well with experimental data. 

The HF gasphase binding energies (Ce 3505, 3722 kJ/mol, Th 
3208, 3424 kJ/mol) follow the same trend as the CCSD(T) results. A 
Mulliken population analysis of the HF density matrices yields about 
7% higher charges on Th than on Ce, i.e., the Ce complexes are more 
covalent, cf. Table 1. The largest contributions in accepting density 
from the water ligands stem from the d (Ce 54%, Th 47%) and f (Ce 
22%, Th 30%) orbitals. Further contributions arise from the s (Ce 
13%, Th (16%), p (Ce 7%, Th 5%) and g (Ce 4%, Th 1%) orbitals. 
Since generalized contracted atomic natural orbital (ANO) basis sets  
were applied the contributions of individual shells can be identified. 
Whereas for the s, p and d symmetries the contributions arise almost 
completely from the lowest unoccupied orbitals of the M#$  ions, 
higher virtual f orbitals contribute to about 50% for Ce and 30% for 

Th, implying that quite flexible basis sets have to be used in order to 
capture f covalency. 

 

 

 
 

Figure 8. Bonding analysis for tetravalent Ce and Th hydration 
complexes M(H!O)"#$ (𝑛 = 8,9). Top: |v|/Δ. Bottom: Wiberg bond 
order. The solid bars correspond to values extracted for the full 
calculation, whereas the dashed bars to those calculated with the 
model. For both plots the number of O atoms for each value is 
denoted at the bars. 
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The shared electron number proposed by Ahlrichs and coworkers [42] 
as well as the density at the bond critical point advocated by Bader 
[32] also indicate that the Ce complexes are slightly more covalent 
than the Th ones. Both schemes also suggest that the covalency is 
somewhat higher for the eight-fold coordination than the nine-fold 
one, probably due to the ≈0.03-0.05Å longer M-O distances and the 
associated smaller overlap and interaction for the latter systems. The 
low values of 𝜌(𝑟5) as well as the positive values of ∇!𝜌(𝑟5) indicate 
a dominant ionic bonding. 

The analysis using the two-electron two-orbital model 
described above does not yield a completely agreeing picture. 
Typically one localized orbital per free electron pair of the water 
molecules is found to contribute, i.e., one has 2𝑛  interactions to 
analyze in a M(H!O)"#$ (𝑛 = 8,9) complex. Since it is not necessary 
to provide the full picture with the limiting curves, only the |𝑣|/𝛥 
values, summed over pairs of atoms, are reported in Figure 8, top. 
By comparing the magnitude of the |𝑣|/𝛥 values for the Ce and Th 
hydration complexes with, e.g., Figure 6, it is obvious that the 
bonding is essentially ionic with only small covalent contributions. 
Such small contributions, however, are important, e.g., they play a 
role for the selectivity of chelating agents used in the separation of 
lanthanide and actinide ions [43]. The Ce and Th hydration 
complexes belong to case 1 discussed above, i.e., when the weak 
interaction |𝑣| << 𝛥 is increased, the covalency and the stability 
increase, as can be seen for the change from nine- to eightfold 
coordination (shorter M-O distances, larger overlap, larger 
interaction) and the binding energies per H!O molecule. Case 2 
systems were subject of a previous publication [30]. The M-O 
covalency estimated using eqn. 10 is almost identical for Ce 8.2% 
and Th 8.0% for the M(H!O)9#$ complexes (O9 quadratic antiprisma), 
as well as for Ce 7.6%, 7.2% and Th 7.9%, 7.4% for the M(H!O):#$ 
complexes (O: tricapped trigonal prisma), i.e., the differences are 
quite small. In agreement with other methods for a given metal ion 
the nine-fold coordination is less covalent than the eight-fold one, 

and the Ce complex is more covalent than the one with Th, however 
this order is reversed for the nine-fold coordination. 

That the findings for |𝑣|/𝛥 are not unreasonable can be shown, 
e.g., by a comparison to the Wiberg bond orders [40], depicted in 
Figure 8, bottom (solid bars), which essentially give the same results 
as |𝑣|/𝛥. Note that for a single bond |𝑣|/𝛥 ranges from zero to 
infinity, whereas the Wiberg bond order is bounded by zero and one. 
When extracting as a check the Wiberg indices from the two-electron 
two-orbital model (dashed bars) these typically agree within 5% or 
better with those resulting from the full calculation, unless the 
mapping is poor due to orbitals not well localized between the metal 
center and the coordinating ligand atoms. 

Applying the model in a predictive fashion is more involved, 
especially the determination of ’reasonable’ orbital energies or 
matrix elements 𝐹(( and 𝐹)) of the fragments is not straightforward. 
We performed HF calculations using the MOLPRO program system 
[44, 45] for the separated M#$  ions and the surrounding 𝑛 H!O 
molecules. Note that at the HF level the lowest unoccupied orbitals 
of M#$ are at a lower energy than the highest occupied orbitals of 
H!O, so that 𝛥 values with a wrong sign would result. Since the 
metal-ligand interaction involves primarily a donation of electron 
density from lone-pairs of the ligand to the empty orbitals on the 
metal, we determined 𝛥 as follows. By adding an electron pair to 
specific frozen virtual orbitals (M nf, (n+1)f, (n+1)d, (n+2)d, (n+2)p, 
(n+3)p, (n+2)s, (n+3)s, Ce n=4, Th n=5) of the M#$ ions (electron 
pair acceptors), and dividing the difference of the total energies of 
M!$ and M#$ by two, it is possible to derive effective one-electron 
energies corresponding to 𝐹((. Removing an electron pair from the 
4𝑛 localized valence orbitals of the 𝑛 H!O molecules (electron pair 
donors), and dividing the difference of the total energies of (H!O)" 
and (H!O ) "!$  by two, leads to effective one-electron energies 
corresponding to 𝐹)) . When using this prescription 𝛥  has the 
expected sign and a reasonable magnitude.  

Figure 9. Estimated |v|/Δ values from separate calculations of M#$  and H!O to predict Ce and Th orbital participation in bonding in 
M(H!O)=#$ (n = 8,9) complexes. 
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Overlap integals 𝑆)(  between the (H!O)"  ligand and the M#$ 
central ions were calculated with the Multiwfn code [46]. By 
applying the Wolfsberg-Helmholz formula [26] one can derive the 
parameter |𝑣| , i.e., 𝑣 = 𝐹)( = 1.75 ∗ (𝐹)) + 𝐹(() ∗ 𝑆)( . The 
energetic stabilisation 𝛥𝐸  for pairwise interactions between metal 
and ligand orbitals was estimated with eqn. 9. The sum of 𝑚 
pairwise interactions was then maximized under the condition that 
each orbital occurs only in one interacting pair, by applying an 
algorithm to solve a modified maximum-weighted matching 
problem. Hereby 𝑚 is the minimum of the numbers of contributing 
fragment orbitals, i.e., usually the number of virtual orbitals on M#$ 
considered. For the selected pairs the |𝑣|/𝛥 values were calculated 
and plotted in Figure 9. It is seen that the Ln 5d and An 6d orbitals 
by far are most likely to undergo covalent interactions with the 
ligand orbitals. The Ce complexes are expected to have more 
covalent contributions than the Th complexes. The Ce 6s, 6p and Th 
7s, 7p orbitals should also contribute to the covalency. Interestingly, 
for the f symmetry the Ce 5f and Th 6f orbitals are more suitable for 
covalent interactions than the actual Ce 4f and Th 5f valence orbitals, 
implying that in actual calculations flexible f basis sets have to be 
applied in order to capture f orbital covalency. This is mainly due to 
the larger overlap integrals of the (n+1)f shells compared to the nf 
ones, which is not compensated by a larger energy gap 𝛥, leading 
ultimately to a larger interactions |𝑣|. For the s and p symmetries the 
(n+3)s and (n+3)p orbitals have both smaller overlap and a larger 
energy gap than (n+2)s and (n+2)p, so that only the latter play a role. 
The overlap integrals of (n+2)d are also somewhat larger than those 
of (n+1)d, but a much larger energy gap for (n+2)d results in the 
dominant role of the (n+1)d shells. Due to symmetry reasons four of 
the five d orbitals contribute much more than the fifth one. 
Quantitatively these ’predictions’ based on fragment calculations are 
in line with the ’analysis’ of the full calculations of the complexes 
outlined above, except for one aspect, i.e., Ce(H!O):#$ is expected to 
have more covalency than Th(H!O ):#$  from calculations of the 
fragments, whereas it has less on the basis of calculations of the 
complexes. Nevertheless, a qualitatively correct picture showing 
which orbitals are likey to contribute to covalent interactions is 
provided. In summary the model appears to describe bonding in 
mainly ionic metal complexes sufficiently correct to support the 
findings at the beginning of the article concerning the two types of 
covalency discussed in literature. 

 
4. Conclusion 
 
A simple two-electron two-orbital textbook model for chemical 
bonding was summarized and used to analyze ionic and covalent 
bonding contributions in metal complexes. The model works with 
parameters familiar from simple molecular orbital diagrams. It can 
explain, e.g., both the increase and the decrease of bond strength 
upon strengthening the covalent character of the bond. In particular, 
the region of the often postulated energy (near-)degeneracy driven 
covalency in actinide-ligand bonds is associated with the case of 
ordinary weak covalent bonding with small ionic contributions. It 
was shown that the model can be used to analyze metal-ligand 
interactions by extracting information from HF or KS calculations 
as well as to predict the contribution of metal orbitals in such 
interactions on the basis of calculations for the fragments. 
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