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Abstract: We report the static and dynamical properties of liquid water at the level of second-order Møller-Plesset perturbation 

theory (MP2) with classical and quantum nuclear dynamics using a neural network potential. We examined the temperature- 

dependent radial distribution functions, diffusion, and vibrational dynamics. MP2 theory predicts over-structured liquid water as 

well as a lower diffusion coefficient at ambient conditions compared to experiments, which may be attributed to the incomplete 

basis set. A better agreement with experimental structural properties and the diffusion constant are observed at an elevated 

temperature of 340 K from our simulations. Although the high-level electronic structure calculations are expensive, training a 

neural network potential requires only a few thousand frames. This approach shows great potential, requiring modest human 

effort, and is straightforwardly extensible to other simple liquids.    

 

PACS: 82.20.-w, 82.60.Lf, 61.20.Gy, 47.11.- 
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1. Introduction 

Water, a prerequisite for our existence on this planet, plays a vital 
role in nearly all environmental, biochemical, physical processes, 
whether in bulk or at interfaces [1,2]. Water’s anomalous properties, 
such as high surface tension, elevated viscosity, and maximum 
density at a specific temperature, render this ubiquitous liquid a 
molecular mystery, driving sustained studies across scientific 
disciplines [2,3]. Despite the ability to characterize these 
macroscopic properties through the persistent advancements in 
scientific instruments and theoretical methods, resolving the 
atomistic picture—particularly the structure of water—remains a 
significant challenges and continues to spark considerable debate. 

The most fundamental question in gaining a microscopic 
comprehension of water is what are the structure and dynamics of 
the hydrogen bonding network. Experimental studies have primarily 
relied on characterization techniques including Raman spec- 
troscopies [4,5], X-ray diffraction [6,7], and nuclear magnetic 
resonance [8], but remain constrained by limitations in temporal and 
spatial resolution [5]. Hence, a close synergy between theoretical 
methods and experimental results is imperative for a concerted effort 
toward a unified picture of water. 

Computational science persists in developing a sufficiently 
accurate aqueous model, primarily carrying out molecular dynamics 
(MD) simulations with ab initio calculations or empirical force-field. 
[3, 9–20] It is thus not unexpected that numerous theoretical models 
of water have been reported in the literature, such as the TIPnP 
family [21–23], SPC [24, 25], q-AQUA [12–14] and MB-Pol [26]. 
Nevertheless, the density functional theory (DFT) holds its status as 
a cornerstone reference due to its exactness for ground-state 
properties in principle. A key point is that DFT in practice requires 
approximations to be made in the exchange-correlation energy, 
which critically governed the precision of calculations. The accuracy 
progressively improves along the Jacob’s ladder of electronic 
structure theory, ascending from the local density approximation 
(LDA) through generalized gradient approximations (GGAs), meta-
GGAs, and hybrid functionals, extending beyond to double hybrids, 
random phase approximation (RPA), and correlated wave function 
methods, such as second-order Møller-Plesset perturbation theory 
(MP2). 

The selection for exchange-correlation functional exhibits 
considerable sensitivity in describing aqueous structural properties, 
from gas phase to solid. LDA is deemed unacceptable due to its 
overbinding of the water dimer, leading to an overstructured liquid 
water and a very small diffusion constant [27, 28]. GGA performs 
better than LDA, but still shows systematic errors in characterizing 
intermolecular water interactions. MD simulations at the GGA level, 
without dispersion corrections, require a substantial increase in 
temperature above 300 K to keep water in the liquid state. For 
example, PBE, a widely adopted functional, can reproduce 
experimental radial distribution functions (RDFs) and density at T = 
440 K and P = 0.3 GPa, [29]. Even with the addition of Grimme’s 
dispersion correction (DFT-D3) to PBE, which fails to markedly 
improve the structure of water [30], elevated temperatures are still 
required to reproduce these properties [30, 31]. BLYP-D3, with its 
reasonable performance in describing water properties [27], also re- 
quires simulations at 360 K to reproduce the correct RDF [32]. As a 
modification of the PBE functional, revPBE-D3 tends to perform 
best for RDF, density, and diffusion coefficient at ambient 
conditions without increasing the temperature [27, 30]. However, the 

results are highly sensitive to the particular choice of dispersion 
functional, as evidenced by the revPBE+DRSLL functional tending 
to overestimate the volume of ice VIII by 20%. [27] Recent 
developments in computational power and methodology have made 
it possible to climb higher rungs of the ladder beyond GGA, namely 
meta-GGA, hybrid functionals, and many-body correlated methods 
[33]. Perdew and co-workers proposed the non-empirical SCAN 
meta-GGA functional achieves remarkable accuracy for weak in- 
teraction systems [34]. SCAN functional yields the correct ordering 
of densities between liquid water and ice, at the same time predicting 
quantitative agreement with experiments at an elevated temperature 
of 330 K [35]. Despite its relatively higher accuracy, the bare SCAN 
functional still systematically overbinds water clusters [36]. 
Moreover, adding rVV10 to SCAN further exacerbates the 
overbinding, leading to a noticeable over- estimation of the density 
of liquid water [37]. Building on methods refinements, density- 
corrected SCAN calculation, presented by Paesani and co-workers, 
has improved accuracy to a level comparable to the “gold standard” 
coupled-cluster theory, which correctly describes water from the gas 
to the liquid phase through minimizing density-driven errors [36]. 
Simultaneously, some empirically parametrized meta-GGA 
functionals such as B97M with rVV10 correction also appear to 
perform quite well [38]. 

At hybrid functional level, the revPBE0-D3 functional is able 
to predict the correct experimental RDF and density at room 
temperature [39]. However, revPBE0-D3 still un- derestimates the 
temperature-dependent density of water by about 5% [40], which 
may be attributed to the choice of van der Waals interactions.The 
hybrid functional combined with rVV10 van der Waals interactions 
better reproduced the experimental equilibrium density of water 
through fine-tuning the empirical parameter [41]. Beyond hybrid 
functionals, including virtual orbitals allows for long-range van der 
Waals dispersion interactions from parameter-free ab-initio 
calculations. With tremendous computational cost, one can reach the 
fifth rung of the ladder with methods such as RPA and MP2. The 
MP2 theory, incorporating stronger dispersion interactions, provides 
excellent predictions of the density at room temperature and 
calculates radial distribution functions that are in reasonable 
agreement with experimental data [42]. Previous studies suggest that 
“MP2 water” is denser and cooler at ambient conditions compared 
both with experiment and with “DFT water” [43]. In addition to the 
underlying electronic structure theory, another issue is the accurate 
account of the quantum nature of the nuclei [44,45]. Due to the light 
mass of hydrogen nuclei, neglecting the pronounced nuclear 
quantum effects (NQEs) in aqueous systems [45]. The competition 
between intermolecular and intramolecular quantum effects, along 
with the challenge of accurately assessing these NQEs, could be one 
of the largest sources of errors [46,47]. For instance, the inclusion of 
NQEs induces subtle differences in RDFs, especially those that 
involve hydrogen atoms [44]. In a classical simulation, to produce a 
change in the RDF equivalent to that obtained by considering NQEs, 
the temperature has to be increased approximately 30 K [10,35]. 
Proton fluctuations along the covalent bond direction in quantum 
simulations also increase almost 10-fold. In addition, Voth et al. 
verified that higher temperatures do not accurately replicate NQEs 
at room temperature, which is evident in different three-body 
correlations as well as dynamics. [48] Regarding the reactivity of 
water, “classical” water is more basic than “quantum” water (i.e., 
water in nature) with a pH of 8.6, which is about a 30-fold change in 
the ionization constant [44]. Similar phenomena have also been 
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detected at metal-water interfaces [49] and for electron transfer in 
aqueous solutions [50]. Therefore, the inclusion of NQEs is often 
necessary to achieve high accuracy in molecular dynamics 
simulations. 

Path integral molecular dynamics (PIMD) is a method to 
incorporate quantum mechanics into molecular dynamics by 
mapping each quantum particle onto a classical representation [51]. 
Combining electronic structure theory with PI methods is 
exceedingly computationally expensive, as each particle is 
represented by several classical replicas and each replica requires a 
separate on-the-fly electronic structure calculation. For this reason, 
high-level electronic structure calculations coupled with quantum 
nuclear dynamics have been made possible in the last decade [39]. 
Thanks to the recent development of neural network potentials 
(NNPs) [52,53], an extensive study using a high-quality functional 
beyond local DFT is feasible even when combined with path-integral 
molec- ular dynamics. The densities of water as predicted by NNP 
trained on revPBE0-D3 data agree with the experiment to within 3% 
for both liquid water and ice Ih and Ic [40]. Accurate and efficient 
quantum vibrational spectra of water can also be obtained for bulk 
and interfacial systems through NNPs trained on ab initio data [54, 
55]. Quantum dynamics simulations through Behler-Parrinello 
Neural Network force field from a fifth-rung electronic structure 
level have provided an accurate determination of the structure, 
diffusion, and vibrational features of water and aqueous solvated 
electron [56,57]. 

In this work, the structural and dynamical properties of bulk 
water have been studied by means of classical MD and thermostatted 
ring polymer molecular dynamics (TRPMD) simulations via an NNP 
in terms of radial distribution functions, diffusion coefficient, and 
vibrational dynamics at different temperatures. At ambient 
conditions, MP2 theory predicts overstructured liquid water, which 
might be due to an incomplete basis set. Only quantum simulations 
conducted at 340 K produce structural properties and diffusion 
coefficients that are in better agreement with experimental results at 
room temperature. Our theoretical results provide a dialectical 
conclusion on the MP2 level, opening up new possibilities for the 
further refinement and enhancement of the theoretical framework. 

2. Computational details 

All MD simulations are performed using the i-PI code [58, 59] 
interfaced with LAMMPS [60], which implements the NNP 
potential using N2P2 [61]. The details of the simula- tion, including 
the static and dynamic properties as well as the training of the NNP, 
are provided below.  

To achieve efficient canonical sampling while minimally 
perturbing the dynamics, the temperature of classical MD 
simulations was controlled using a stochastic velocity rescaling 
(SVR) thermostat [62], with a time constant of 1000 fs. A timestep 
of 0.5 fs was used. In the frame of PIMD method, thermostatted ring 
polymer molecular dynamics (TRPMD) was developed to capture 
dynamical properties incorporating NQEs [63]. The use of 64 ring-
polymer beads was sufficient to converge the properties of interest, 
even at low temperatures [40,64]. The Parrinello-Rahman mass 
matrix was adjusted to shift all normal mode frequencies to to ωNM 
= 14000 cm−1. The temperature was controlled using the global path 
integral Langevin equation (PILE-G) thermostat attached to all the 
non-centroid normal modes [65], with a time constant of 1000 fs. 
TRPMD has been shown to predict accurate vibrational dynamics of 
liquid water [39,66]. 

The density of liquid water has been calculated from classical 
nuclei MD via an NNP based on MP2 theory. MD simulations were 
performed using a cubic cell containing 128 water molecules with 
the NPT ensemble at 1 atm for 12 different temperatures between 
240 and 350 K. For each temperature, the trajectory is about 1 ns 
long. 

Dynamical properties are calculated based on a 300 ps 
trajectory at each temperature for additional vibrational density of 
states (VDOS) calculations. The dynamical properties of liquid 
water can be measured by the diffusion coefficient (D) which can be 
estimated by Einstein’s relation:  

D = 16𝑡 |r(t)−r(0)|2 .             (2.1) 

 
Where r(t) are the atomic positions at time t, and r(0) is the atomic 
positions at 0. Due to the finite-size effect on diffusion, the 
extrapolated self-diffusion coefficient D(∞) can be expressed as the 
finte system diffusion D(L) plus a correction: 
 

 

 
where L is the length of the simulation cell, kb is Boltzmann constant, 
T is temperature, ξ= 2.83729 for cubic box and η is the experimental 
shear viscosity as taken from Ref. [67]. 

The VDOS from classical MD or TRPMD is calculated using 
the Fourier transform of the velocity autocorrelation  

with the quantum autocorrelation function computed using the 
centroid velocity v. 

The quality of training sets plays a pivotal role in constructing 
reliable machine learning potentials for MD simulations. The 
starting point for our NNP is that of Ref. 57, at the MP2 level, which 
contains 14085 datasets from classical nuclei molecular dynamics 
[68], 100 datasets from path-integral molecular dynamics 
simulations [57] under NVT ensemble at 300K. The reference data 
obtained at room temperature may be highly correlated, leading to 
incorrect dynamics at temperatures other than 300 K. The potential 
was re- trained by generating a large set of configurations of 64 
molecules at temperatures from 240 K to 350 K using replica 
exchange molecular dynamics [69] in the NPT ensemble. An 
additional 1000 structures were selected using CUR decomposition 
based on their atomic fingerprints [70]. MP2 calculations [71,72] 
with triple-zeta quality correlation-consistent basis sets [73] were 
carried out using CP2K [74,75]. The performance of the NNP shown 
in the Supporting Information, was evaluated based on root mean 
square error for both energies and forces, yielding 1.35 meV/H2O in 
energies and 92.84 meV/Å. 
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Figure 1. The density of liquid water predicted by MP2 simulations 
in NPT ensemble with comparison to the experimental data [77], and 
the result from the revPBE0-D3 [40].  
 

3. Results 

3.1 Structure of MP2 water at different temperatures 

Accurately describing the density of water at the DFT level has been 
challenging, and only a few potential energy surfaces, such as q-
AQUA-pol [13] and MB-pol [76] have demonstrated consistency 
with experimental results at finite temperatures. The density of liquid 
water predicted by classical simulations at the MP2 level is shown 

in Fig. 1, with water at room temperature having a density of 1.058 
g/cm3. Both MP2 and revPBE0-D3 calculations with classical nuclei 
exhibit deviations of approximately 5% from the experimental 
density at room temperature. Specifically, MP2 calculation tends to 
overestimate the density, while revPBE0-D3 tends to underestimate 
it. In order to better compare with the experiment, we used 128 water 
molecules at experimental density (0.997 g/mL) to perform 
following simulations. 

In general, MP2 is more likely to overbind noncovalent 
complexes. To shed light on the structure of water at different 
temperatures, the radial distribution functions (RDFs) of oxygen-
oxygen, oxygen-hydrogen, and hydrogen-hydrogen pairs have been 
calculated, as shown in Fig.2. The imperfect agreement between 
MP2 simulations and the experimental structure may be attributed to 
an insufficient basis set. Calculations are carried out using a triple-ζ 
basis set. MP2 is known to overestimate dispersion when a relatively 
small basis set is applied. [80–83] Previous studies indicate that as 
the basis set increases from double-ζ to triple-ζ to quadruple-ζ, the 
mean absolute error in the binding energies relative to the complete 
basis set (CBS) values decreases from 2.18 to 1.74 to 0.99 kcal/mol 
for the water clusters (n=2–10). The relatively small basis set 
overestimates the binding energies compared to  the  CBS [83].  The  
global minima  of  water  clusters  (n=2–6) at the MP2 level agree 
with the CCSD(T) level of theory [84]. However, MP2 systemat- 
ically contracts the nearest-neighbor O–O separation in water 
clusters by 0.005–0.022 Å with the average of 0.016 Å. In this 
respect, MP2 tends to overestimate binding energies compared to 
CCSD(T) results at the same quality of basis set (aug-cc-pVDZ) [84]. 
When the binding energies are extrapolated to the CBS limit, both  

 

 

Figure 2. Radial distribution function gOO(r) (a,c), gHH(r) (b,d) and gOH(r) (c,e) as obtained from classical (a–c) and quantum (c–e) 
simulations at 300 K (red) and 340 K (blue) from 128 water models, in comparison to the experimental values at room temperature (black 
dashed line). [78, 79] Subplots show the heights at different temperatures of gOO(r) at the first peak, gHH(r) and gOH(r) at second peak. The 
light blue lines in subplots represent RDF heights of the experimental value at room temperature. 
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MP2 and CCSD(T) predict very similar values. The differences 
between the two methods are generally lower than 0.5 kcal/mol [84]. 

Given the fact MP2 with triple-ζ overbinds and overestimates 
the dispersion, it is not surprising that MP2 water at room 
temperature over-structures and behaves like ice. The temperature 
dependence of the RDFs from 240 to 350 K was also examined in 
Fig. 2. The RDFs are strongly affected by the temperature with a 
negative correlation at each peak. Temperature effects are more 
pronounced at the first peaks of gOO(r) which concerns the structure 
of the first solvation shell. As the temperature increases, the water 
becomes less ordered with a relatively lower intensity of gOO(r) at 
the first peak. NQEs broaden and weaken the intensity of the first 

peaks in gOO(r) and these effects are more pronounced at a lower 
temperature. A temperature difference of 30 K in classical 
simulations is required to give the same height of gOO(r) as in 
quantum simulations, indicating that the quantum simulation 
is ”hotter” [10,35]. Classical MD simulations of water are often 
carried out at an elevated temperature to mimic the quantum effect 
of oxygen and yield an improved description of the local structure of 
water [10]. 

Indeed, NQEs are particularly pronounced in systems involving 
light atoms. The classical simulation, conducted at an elevated 
temperature of 330 K, may fail dramatically to replace the quantum 
simulation at 300 K, especially for describing the gHH(r) and  

 

  
Figure 3. The oxygen–oxygen–oxygen triplet angular distribution as obtained from classical and quantum dynamics at multiple temperatures. 
The resulting tetrahedral order parameter of liquid water is shown as a function of temperature. The experimental data at 298 K are marked in 
black dashed line as comparison [79]. 

 
gOH(r) [10]. As shown in Fig.2(b,d), NQEs significantly broaden 
the first and second peaks of gHH(r) and gOH(r). Similarly, we also 
plot the temperature dependence of the height of the second peaks of 
gHH(r) and gOH(r). It is evident that the temperature difference may 
be more than 70 K for gHH(r) (See subplots in Fig.2(b,d)) and 50 K 
for gOH (See subplots in Fig.2(c,e)) at the second peak of the RDFs. 
More importantly, the broadening of the first peaks of gHH(r) and 
gOH(r) cannot be reproduced with an elevated temperature even up 
to 70 K. Classical MD simulations only sample within the range of 
the thermal energy kT, which is far below the zero-point energy of 
an O–H stretch. Accurate RDFs can be achieved from MP2 theory 
with a higher temperature of 340 K, as shown by our classical and 
quantum dynamics. The experimental RDFs at room temperature are 
given in the dashed black lines in Fig. 2. The calculated gOO(r), 
gHH(r) and gOH(r) at 340 K match with the experimental value at 
room temperature. 

To further understand the local structure of the water molecules, 
we calculate the distribution oxygen-oxygen-oxygen triplet angles 

within the first solvation shell and the tetrahedral order parameter q, 
defined as where θij is the angle formed by the central water 
molecules and its two neighboring water molecules i and j. To 
calculate the distribution of oxygen-oxygen-oxygen triplet angles 
within the first solvation shell, we take the cutoff distance of two 

oxygen atoms of 3.35 Å, which yields an average coordination 
number of 4. An order parameter of q = 1 defines a perfect 
tetrahedral local environment, and q decreases as the structure of 
water becomes less ordered and tetrahedral. 

As shown in Fig.3, the experimental triplet angles show a weak 
shoulder at around 60◦ and a broad strong peak at around 100◦. We 
present the calculated Pooo at three different temperatures – 240 K, 
300 K, and 340 K. At the lower temperature of 240 K, NQEs strongly 
adjust the local environment of water, resulting in a less ordered 
water structure. The order parameter as estimated from quantum 
simulations is about 0.68 which is lower than that of 0.72 from 
classical simulations. The difference of local parameters becomes 
less with increasing the temperature. At room temperature, MP2 
predicts a local parameter of 6.15 for quantum simulations (6.17 for 
classical), which is higher than the prediction from the fragment-
based MP2/aug-cc-pVDZ simulation [85,86]. The inconsistency 
may come from the choice of basis sets and the employment of 
fragmentation methods. Beyond room temperature, the local 
parameter from classical and quantum simulations is almost identical 
(see Fig.3). The local order parameter at 340 K (quantum=0.577, 
qclassical=0.575) predict almost exact number compared to the 
experimental value of 0.570. The calculated triplet angles 
distributions predict an accurate line shape at around 100◦, but a 
weaker shoulder at 56◦ instead of 60◦. 
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3.2  Dynamical properties 

It is difficult to converge the diffusion coefficient using ab initio 
molecular dynamics due to its high computational cost, especially  

 

 
Figure 4. Temperature dependence of the diffusion coefficient after 
finte size correction as obtained from classical and quantum 
simulations, in comparison to the experimental values (black line) 
[88] and its shifted value by 40 K. 

 
when combined with high-level electronic structure theory beyond  
standard GGA. Diffusion coefficients from high-level electronic 
structure theory have been only made available by using a multiple 
time stepping (MTS) method. For instance, Marsalek and Markland 
carried out revPBE0-D3 calculations using ring-polymer contraction 
with MTS methods [39]. The calculated diffusion coefficient of 
liquid water at 300 K is determined to be 2.67 and 2.29×10−5 cm2/s 
from classical and quantum simulations respectively. The inclusion 
of NQEs decreases the diffusion co- efficient by 30% [39]. Del Ben 
and co-workers combined a hybrid functional (PBEW1- D3) with 
MP2, using fast (0.25 fs) and slow (2.5 fs) time steps to calculate the 
dynamical property of MP2 water [68]. Their analysis is based on 
two trajectories of each roughly 10 ps as obtained in the NVE 
ensemble, and the self-diffusion constant values obtained are 0.67 
and 0.77×10−5 cm2/s at 300 and 307 K, respectively. At room 
temperature, our simulations predict a diffusion constant of 0.629 
(0.693) and 0.996 (1.060)	×10−5 cm2/s from classical and quantum 
dynamics (the quantities in brackets are after finite-size correction 
[87]), which is in fair agreement with previous simulations [68]. 

In fact, a classical MD simulation with a limited timescale of 
10-20 ps may yield statistical error bars of more than 20% on 
dynamical quantities such as the diffusion coefficient. That may 
explain the minor inconsistency between our values and previous 
results [39,68]. Nevertheless, these values are below the 
experimental diffusion at room temperature, and more similar to a 
lower-temperature diffusion. We plot the temperature- dependent 
diffusion coefficient as obtained from classical and quantum 
dynamics in Fig.4. The diffusion constants are systematically 
underestimated by MP2 theory for both classical and quantum 
simulations. Previous studies show that NQEs contribute a 30% 
decrease to the self-diffusion of liquid water using revPBE0-D3 
functional [39]. Unlike the revPBE0-D3 functional, the diffusion of 
water upon including NQEs at the MP2 theory is enhanced by 10–

70% from 240 to 320 K, while a slow down of diffusion by 3–7% 
has been observed beyond 330 K.  

Surprisingly, when the experimental diffusion constant is 
shifted to a higher temperature by 40 K, the diffusion constant as 
calculated from our simulations matches with experimental values 

To understand the vibrational dynamics of MP2 water, we 
calculate the density of states (VDOS) from the Fourier Transform 
of the velocity-velocity auto-correlation function at different 
temperatures as shown in Fig. 5. The increase in temperature 
significantly optimizes the diffusion coefficient, while having the 
opposite effect on the vibrational density of states (VDOS). At 340 
K, the VDOS shows a greater blue shift compared to 300 K, 
observed in both classical and quantum simulations in the high-
frequency range.  This is because the strength of hydrogen bonds 
weakens as the temperature rises. Classical and Quantum 
simulations give qualitatively similar VDOS around the lower 
frequency librational band (˜500 cm−1), with a slight redshift 
compared to the experiment. The differences between the two 
simulations are primarily reflected in O–H stretching and H–O–H 
bending modes. Classical simulations predict the bend peak at ˜1693 
cm−1 at room temperature, overestimating the blue-shift by 
approximately 40 cm−1 compared to experiment, whereas NQEs 
shift the peak to 1624 cm−1, showing a smaller discrepancy with the 
experimental results stretching modes are predicted to experience a 
blue shift in both simulations, with peaks at 3685 and 3524 cm−1 in 
the classical and quantum simulations, respectively, which also 
shows that the quantum simulation results are also closer to the 
experimental data [89]. While MP2 calculations demonstrate 
excellent agreement with experimental data, that of revPBE0-D3 
water somewhat exhibits even superior concordance, particularly for 
the O–H stretching peak [45]. 

Figure 5. Temperature dependent vibrational density of states at 300 
K and 340 K. The blue lines are obtained from classical simulations, 
while the red lines are from TRPMD. Vertical lines show 
experimental vibrational frequencies at 300K. 
 

4. Conclusions 

In this work, we simulated MP2 water using an NNP at different 
temperatures using classical and quantum dynamics. MP2 theory, 
though belonging to the fifth rung of the electronic structure “Jacob’s 
ladder”, is unable to predict accurately the static and dynamical 
properties of liquid water. This may be because an insufficiently 
large basis set causes MP2 theory to overestimate the Van der Waals 
interaction. This may be im- proved upon by increasing the basis set 
to quadruple-ζ and larger, or by estimating the difference between 
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the results of small and large basis sets using cluster models and de- 
composing the error into two- and three-body interaction terms, 
which can be used to further cancel the basis-set error. Alternatively, 
double-hybrid density functionals based on MP2 and random-phase 
approximation may be used to train the NNP: they exhibit faster 
convergence with basis set size at similar computational cost as the 
parent correlated methods [90]. 

 Although NQEs reduce the height of the first peak of the 
oxygen-oxygen radial distribution function at room temperature, the 
match with the experimental RDF is still not perfect [68]. However, 
a better agreement with experimental RDFs is observed at an 
elevated temperature of 340 K, at which MP2 predicts stratifying 
static properties of liquid water compared to the experimental data, 
as characterized by the RDFs, triplet angles distribution, and 
tetrahedral local order parameters. It is possible that the elevated 
temperature cancels the error due to an insufficient basis set, higher 
kinetic energy compensating for the overestimation of dispersion by 
MP2 theory. 

Our NNP accurately captures a range of static and dynamical 
properties, while many properties of water such as the dielectric 
constant and vibrational spectra are still not perfect. Future work will 
focus on the modelling of these properties using symmetry- adapted 
machine learning methods [91]. Other future prospects include 
clarifying the basis set effect on the computed properties, probing 
the performance of double-hybrid density functionals, and extending 
simulations to other important simple liquids such as ammonia and 
hydrogen sulfide. 

Acknowledgements 

This work was supported by the Swiss National Science Foundation 
(SNSF) Sinergia grant and the University Research Priority Program 
(URPP) “LightChEC” of the University of Zurich, focused on solar 
light to chemical energy conversion. Additional support was 
provided by the Swiss National Supercomputing Centre (CSCS) 
under Project IDs uzh1 and s1043. VRR acknowledges funding from 
the SNSF through an Ambizione grant (No. PZ00P2 174227). J.L. 
acknowledges support from the National Natural Science 
Foundation of China (Grant No. 22402128). 

References 

[1] Pettersson L.G.M., Henchman R.H., Nilsson A., Water: the 
most anomalous liquid. Chem. Rev., 116 (2016), 7459-7462 

[2] Gallo P., Amann-Winkel K., Angell C.A., Anisimov M.A., 
Caupin F., Chakravarty C., Lascaris E., Loerting T., 
Panagiotopoulos A.Z., Russo J., et al., Water: a tale of two 
liquids. Chem. Rev., 116 (2016), 7463-7500 

[3] Cisneros G.A., Wikfeldt K.T., Ojamae L., Lu J., Xu Y., 
Torabifard H., Bartok A.P., Csanyi G., Molinero V., Paesani F., 
Modeling molecular interactions in water: from pairwise to 
many-body potential energy functions. Chem. Rev., 116 (2016), 
7501-7528 

[4] Bakker H.J., Skinner J.L., Vibrational spectroscopy as a probe 
of structure and dynamics in liquid water. Chem. Rev., 110 
(2010), 1498-1517 

[5] Smith J.D., Cappa C.D., Wilson K.R., Cohen R.C., Geissler 
P.L., Saykally R.J., Unified description of temperature-
dependent hydrogen-bond rearrangements in liquid water. 
Proc. Nat. Acad. Sci., 102 (2005), 14171-14174 

[6] Wernet P., Nordlund D., Bergmann U., Cavalleri M., Odelius 

M., Ogasawara H., Näslund L., Hirsch T.K., Ojamae L., 
Glatzel P., Pettersson L.G.M., Nilsson A., The structure of the 
first coordination shell in liquid water. Science, 304 (2004), 
995-999 

[7] Nilsson A., Pettersson L.G.M., The structural origin of 
anomalous properties of liquid water. Nat. Commun., 6 (2015), 
8998 

[8] Ropp J., Lawrence C., Farrar T.C., Skinner J.L., Rotational 
motion in liquid water is anisotropic: a nuclear magnetic 
resonance and molecular dynamics simulation study. J. Am. 
Chem. Soc., 123 (2001), 8047-8052 

[9] Rahman A., Stillinger F.H., Molecular dynamics study of 
liquid water. J. Chem. Phys., 55 (1971), 3336-3359 

[10] Morrone J.A., Car R., Nuclear quantum effects in water. Phys. 
Rev. Lett., 101 (2008), 017801 

[11] Laasonen K., Sprik M., Parrinello M., Car R., Ab initio liquid 
water. J. Chem. Phys., 99 (1993), 9080-9089 

[12] Yu Q., Qu C., Houston P.L., Conte R., Nandi A., Bowman J.M., 
q-AQUA: a many-body CCSD(T) water potential, including 
four-body interactions, demonstrates the quantum nature of 
water from clusters to the liquid phase. J. Phys. Chem. Lett., 
13 (2022), 5068-5074 

[13] Yu Q., Qu C., Houston P.L., Nandi A., Pandey P., Conte R., 
Bowman J.M., A status report on “gold standard” machine-
learned potentials for water. J. Phys. Chem. Lett., 14 (2023), 
8077-8087 

[14] Qu C., Yu Q., Houston P.L., Conte R., Nandi A., Bowman J.M., 
Interfacing q-aqua with a polarizable force field: the best of 
both worlds. J. Chem. Theory Comput., 19 (2023), 3446-3459 

[15] Lu Q., He X., Hu W., Chen X., Liu J., Stability, vibrations, and 
diffusion of hydrogen gas in clathrate hydrates: insights from 
ab initio calculations on condensed-phase crystalline 
structures. J. Phys. Chem. C, 123 (2019), 12052-12061 

[16] Liu J., Liu Y., Yang J., Zeng X.C., He X., Directional proton 
transfer in the reaction of the simplest Criegee intermediate 
with water involving the formation of transient H₃O⁺. J. Phys. 
Chem. Lett., 12 (2021), 3379-3386 

[17] Liu J., Lan J., He X., Toward high-level machine learning 
potential for water based on quantum fragmentation and neural 
networks. J. Phys. Chem. A, 126 (2022), 3926-3936 

[18] Liu J., Yang J., Zeng X.C., Xantheas S.S., Yagi K., He X., 
Towards complete assignment of the infrared spectrum of the 
protonated water cluster H⁺(H₂O)₂₁. Nat. Commun., 12 (2021), 
6141 

[19] Liu J., Zhang J.Z., He X., Probing the ion-specific effects at 
the water/air interface and water-mediated ion pairing in 
sodium halide solution with ab initio molecular dynamics. J. 
Phys. Chem. B, 122 (2018), 10202-10209 

[20] Liu J., He X., Zhang J.Z., Structure of liquid water – a 
dynamical mixture of tetrahedral and ring-and-chain-like 
structures. Phys. Chem. Chem. Phys., 19 (2017), 11931-11936 

[21] Hockney R.W., Eastwood J.W., Computer Simulation Using 
Particles, Hilger: Bristol, 1988. 

[22] Mahoney M.W., Jorgensen W.L., Diffusion constant of the 
TIP5P model of liquid water. J. Chem. Phys., 114 (2001), 363-
366 

[23] Horn H.W., Swope W.C., Pitera J.W., Madura J.D., Dick T.J., 
Hura G.L., Head-Gordon T., Development of an improved 
four-site water model for biomolecular simulations: TIP4P-Ew. 
J. Chem. Phys., 120 (2004), 9665-9678 



Quantum Dynamics of Water from Møller-Plesset Perturbation Theory via a Neural Network Potential 95 

[24] Berendsen H., Grigera J., Straatsma T., The missing term in 
effective pair potentials. J. Phys. Chem., 91 (1987), 6269-6271 

[25] Berendsen H.J., Postma J.P., van Gunsteren W.F., Hermans J., 
Interaction models for water in relation to protein hydration, in 
Intermolecular Forces, Springer, 1981, 331-342. 

[26] Babin V., Medders G.R., Paesani F., Development of a first-
principles water potential with flexible monomers. II: trimer 
potential energy surface, third virial coefficient, and small 
clusters. J. Chem. Theory Comput., 10 (2014), 1599-1607 

[27] Gillan M.J., Alfe D., Michaelides A., Perspective: how good is 
DFT for water? J. Chem. Phys., 144 (2016), 130901 

[28] Liberatore E., Meli R., Rothlisberger U., A versatile multiple 
time step scheme for efficient ab initio molecular dynamics 
simulations. J. Chem. Theory Comput., 14 (2018), 2834-2842 

[29] Yoo S., Zeng X.C., Xantheas S.S., On the phase diagram of 
water with density functional theory potentials: the melting 
temperature of ice Ih with the Perdew–Burke–Ernzerhof and 
Becke–Lee–Yang–Parr functionals. J. Chem. Phys., 130 
(2009), 221102 

[30] Forster-Tonigold K., Groß A., Dispersion corrected RPBE 
studies of liquid water. J. Chem. Phys., 141 (2014), 064501 

[31] Bankura A., Karmakar A., Carnevale V., Chandra A., Klein 
M.L., Structure, dynamics, and spectral diffusion of water 
from first-principles molecular dynamics. J. Phys. Chem. C, 
118 (2014), 29401-29411 

[32] Yoo S., Xantheas S.S., Communication: the effect of 
dispersion corrections on the melting temperature of liquid 
water. J. Chem. Phys., 134 (2011), 121105 

[33] Rybkin V.V., Sampling potential energy surfaces in the 
condensed phase with many-body electronic structure methods. 
Chem.–Eur. J., 26 (2019), 362-368 

[34] Sun J., Ruzsinszky A., Perdew J.P., Strongly constrained and 
appropriately normed semilocal density functional. Phys. Rev. 
Lett., 115 (2015), 036402 

[35] Chen M., Ko H.-Y., Remsing R.C., Andrade M.F.C., Santra B., 
Sun Z., Selloni A., Car R., Klein M.L., Perdew J.P., et al., Ab 
initio theory and modeling of water. Proc. Nat. Acad. Sci., 114 
(2017), 10846-10851 

[36] Dasgupta S., Lambros E., Perdew J.P., Paesani F., Elevating 
density functional theory to chemical accuracy for water 
simulations through a density-corrected many-body formalism. 
Nat. Commun., 12 (2021), 1-12 

[37] Wiktor J., Ambrosio F., Pasquarello A., Note: assessment of 
the SCAN+ rVV10 functional for the structure of liquid water. 
J. Chem. Phys., 147 (2017), 216101 

[38] Pestana L.R., Mardirossian N., Head-Gordon M., Head-
Gordon T., Ab initio molecular dynamics simulations of liquid 
water using high quality meta-GGA functionals. Chem. Sci., 8 
(2017), 3554-3565 

[39] Marsalek O., Markland T.E., Quantum dynamics and 
spectroscopy of ab initio liquid water: the interplay of nuclear 
and electronic quantum effects. J. Phys. Chem. Lett., 8 (2017), 
1545-1551 

[40] Cheng B., Engel E.A., Behler J., Dellago C., Ceriotti M., Ab 
initio thermodynamics of liquid and solid water. Proc. Nat. 
Acad. Sci., 116 (2019), 1110-1115 

[41] Ambrosio F., Miceli G., Pasquarello A., Structural, dynamical, 
and electronic properties of liquid water: a hybrid functional 
study. J. Phys. Chem. B, 120 (2016), 7456-7470 

[42] Del Ben M., Schönherr M., Hutter J., VandeVondele J., Bulk 

liquid water at ambient temperature and pressure from MP2 
theory. J. Phys. Chem. Lett., 4 (2013), 3753-3759 

[43] Willow S.Y., Zeng X.C., Xantheas S.S., Kim K.S., Hirata S., 
Why is MP2-water “cooler” and “denser” than DFT-water? J. 
Phys. Chem. Lett., 7 (2016), 680-684 

[44] Ceriotti M., Fang W., Kusalik P.G., McKenzie R.H., 
Michaelides A., Morales M.A., Markland T.E., Nuclear 
quantum effects in water and aqueous systems: experiment, 
theory, and current challenges. Chem. Rev., 116 (2016), 7529-
7550 

[45] Markland T.E., Ceriotti M., Nuclear quantum effects enter the 
mainstream. Nat. Rev. Chem., 2 (2018), 1-14 

[46] Li X., Walker B., Michaelides A., Quantum nature of the 
hydrogen bond. Proc. Nat. Acad. Sci. U.S.A., 108 (2011), 
6369-6373 

[47] Habershon S., Markland T.E., Manolopoulos D.E., Competing 
quantum effects in the dynamics of a flexible water model. J. 
Chem. Phys., 131 (2009), 024501 

[48] Li C., Paesani F., Voth G.A., Static and dynamic correlations 
in water: comparison of classical ab initio molecular dynamics 
at elevated temperature with path integral simulations at 
ambient temperature. J. Chem. Theory Comput., 18 (2022), 
2124-2131 

[49] Lan J., Rybkin V.V., Iannuzzi M., Ionization of water as an 
effect of quantum delocalization at aqueous electrode 
interfaces. J. Phys. Chem. Lett., 11 (2020), 3724-3730 

[50] Rybkin V.V., VandeVondele J., Nuclear quantum effects on 
aqueous electron attachment and redox properties. J. Phys. 
Chem. Lett., 8 (2017), 1424-1428 

[51] Parrinello M., Rahman A., Study of an F center in molten KCl. 
J. Chem. Phys., 80 (1984), 860-867 

[52] Behler J., Parrinello M., Generalized neural-network 
representation of high-dimensional potential-energy surfaces. 
Phys. Rev. Lett., 98 (2007), 146401 

[53] Zhang L., Han J., Wang H., Car R., Weinan E., Deep potential 
molecular dynamics: a scalable model with the accuracy of 
quantum mechanics. Phys. Rev. Lett., 120 (2018), 143001 

[54] Shepherd S., Lan J., Wilkins D.M., Kapil V., Efficient quantum 
vibrational spectroscopy of water with high-order path 
integrals: from bulk to interfaces. J. Phys. Chem. Lett., 12 
(2021), 9108-9114 

[55] Kapil V., Wilkins D.M., Lan J., Ceriotti M., Inexpensive 
modeling of quantum dynamics using path integral generalized 
Langevin equation thermostats. J. Chem. Phys., 152 (2020), 
124104 

[56] Yao Y., Kanai Y., Nuclear quantum effect and its temperature 
dependence in liquid water from random phase approximation 
via artificial neural network. J. Phys. Chem. Lett., 12 (2021), 
6354-6362 

[57] Lan J., Kapil V., Gasparotto P., Ceriotti M., Iannuzzi M., 
Rybkin V.V., Simulating the ghost: quantum dynamics of the 
solvated electron. Nat. Commun., 12 (2021), 1-6 

[58] Kapil V., Rossi M., Marsalek O., Petraglia R., Litman Y., Spura 
T., Cheng B., Cuzzocrea A., Meißner R.H., Wilkins D.M., et 
al., i-pi 2.0: a universal force engine for advanced molecular 
simulations. Comput. Phys. Commun., 236 (2019), 214-223 

[59] Ceriotti M., More J., Manolopoulos D.E., i-pi: a Python 
interface for ab initio path integral molecular dynamics 
simulations. Comput. Phys. Commun., 185 (2014), 1019-1026 

[60] Plimpton S., Fast parallel algorithms for short-range molecular 



 Mengxu Li et al./ Commun. Comput. Chem., (2025), pp. 88-96 96 

dynamics. J. Comput. Phys., 117 (1995), 1-19 
[61] Singraber A., Behler J., Dellago C., Library-based LAMMPS 

implementation of high-dimensional neural network potentials. 
J. Chem. Theory Comput., 15 (2019), 1827-1841 

[62] Bussi G., Donadio D., Parrinello M., Canonical sampling 
through velocity rescaling. J. Chem. Phys., 126 (2007), 014101 

[63] Rossi M., Ceriotti M., Manolopoulos D.E., How to remove the 
spurious resonances from ring polymer molecular dynamics. J. 
Chem. Phys., 140 (2014), 234116 

[64] Kapil V., Cuzzocrea A., Ceriotti M., Anisotropy of the proton 
momentum distribution in water. J. Phys. Chem. B, 122 (2018), 
6048-6054 

[65] Ceriotti M., Parrinello M., Markland T.E., Manolopoulos D.E., 
Efficient stochastic thermostatting of path integral molecular 
dynamics. J. Chem. Phys., 133 (2010), 124104 

[66] Benson R.L., Trenins G., Althorpe S.C., Which quantum 
statistics–classical dynamics method is best for water? 
Faraday Discuss., 221 (2019), 350-366 

[67] Dehaoui A., Issenmann B., Caupin F., Viscosity of deeply 
supercooled water and its coupling to molecular diffusion. 
Proc. Nat. Acad. Sci., 112 (2015), 12020-12025 

[68] Del Ben M., Hutter J., VandeVondele J., Probing the structural 
and dynamical properties of liquid water with models 
including non-local electron correlation. J. Chem. Phys., 143 
(2015), 054506 

[69] Sugita Y., Okamoto Y., Replica-exchange molecular dynamics 
method for protein folding. Chem. Phys. Lett., 314 (1999), 
141-151 

[70] Imbalzano G., Anelli A., Giofré D., Klees S., Behler J., Ceriotti 
M., Automatic selection of atomic fingerprints and reference 
configurations for machine-learning potentials. J. Chem. Phys., 
148 (2018), 241730 

[71] Del Ben M., Hutter J., VandeVondele J., Forces and stress in 
second-order Møller-Plesset perturbation theory for condensed 
phase systems within the resolution-of-identity Gaussian and 
plane waves approach. J. Chem. Phys., 143 (2015), 102803 

[72] Rybkin V.V., VandeVondele J., Spin-unrestricted second-order 
Møller–Plesset (MP2) forces for the condensed phase: from 
molecular radicals to F-centers in solids. J. Chem. Theory 
Comput., 12 (2016), 2214-2223 

[73] Del Ben M., Hutter J., VandeVondele J., Electron correlation 
in the condensed phase from a resolution of identity approach 
based on the Gaussian and plane waves scheme. J. Chem. 
Theory Comput., 9 (2013), 2654-2671 

[74] Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J., CP2K: 
atomistic simulations of condensed matter systems. Wiley 
Interdiscip. Rev. Comput. Mol. Sci., 4 (2014), 15-25 

[75] Kühne T.D., Iannuzzi M., Del Ben M., Rybkin V.V., Seewald 
P., Stein F., Laino T., Khaliullin R.Z., Schütt O., Schiffmann F., 
Golze D., Wilhelm J., Chulkov S., Bani-Hashemian M.H., 
Weber V., Borštnik U., Taillefumier M., Jakobovits A.S., 
Lazzaro A., Pabst H., Müller T., Schade R., Guidon M., 
Andermatt S., Holmberg N., Schenter G.K., Hehn A., Bussy 
A., Belleflamme F., Tabacchi G., Glöß A., Lass M., Bethune I., 
Mundy C.J., Plessl C., Watkins M., VandeVondele J., Krack M., 
Hutter J., CP2K: an electronic structure and molecular 
dynamics software package – Quickstep: efficient and accurate 
electronic structure calculations. J. Chem. Phys., 152 (2020), 
194103 

[76] Reddy S.K., Straight S.C., Bajaj P., Pham C.H., Riera M., 

Moberg D.R., Morales M.A., Knight C., Götz A.W., Paesani F., 
On the accuracy of the MB-pol many-body potential for water: 
interaction energies, vibrational frequencies, and classical 
thermodynamic and dynamical properties from clusters to 
liquid water and ice. J. Chem. Phys., 145 (2016), 194504 

[77] Wagner W., Pruß A., The IAPWS formulation 1995 for the 
thermodynamic properties of ordinary water substance for 
general and scientific use. J. Phys. Chem. Ref. Data, 31 (2002), 
387-535 

[78] Skinner L.B., Huang C., Schlesinger D., Pettersson L.G., 
Nilsson A., Benmore C.J., Benchmark oxygen-oxygen pair-
distribution function of ambient water from X-ray diffraction 
measurements with a wide Q-range. J. Chem. Phys., 138 
(2013), 074506 

[79] Soper A., Benmore C., Quantum differences between heavy 
and light water. Phys. Rev. Lett., 101 (2008), 065502 

[80] Kim J., Kim K.S., Structures, binding energies, and spectra of 
isoenergetic water hexamer clusters: extensive ab initio studies. 
J. Chem. Phys., 109 (1998), 5886-5895 

[81] Xantheas S.S., Burnham C.J., Harrison R.J., Development of 
transferable interaction models for water. II: accurate 
energetics of the first few water clusters from first principles. 
J. Chem. Phys., 116 (2002), 1493-1499 

[82] Xantheas S.S., Aprà E., The binding energies of the D2d and 
S4 water octamer isomers: high-level electronic structure and 
empirical potential results. J. Chem. Phys., 120 (2004), 823-
828 

[83] Temelso B., Archer K.A., Shields G.C., Benchmark structures 
and binding energies of small water clusters with 
anharmonicity corrections. J. Phys. Chem. A, 115 (2011), 
12034-12046 

[84] Miliordos E., Aprà E., Xantheas S.S., Optimal geometries and 
harmonic vibrational frequencies of the global minima of 
water clusters (H₂O)ₙ, n = 2–6, and several hexamer local 
minima at the CCSD(T) level of theory. J. Chem. Phys., 139 
(2013), 114302 

[85] Liu J., He X., Zhang J.Z., Qi L.-W., Hydrogen-bond structure 
dynamics in bulk water: insights from ab initio simulations 
with coupled cluster theory. Chem. Sci., 9 (2018), 2065-2073 

[86] Liu J., He X., Zhang J.Z., Zhang J.Z.H., Structure of liquid 
water – a dynamical mixture of tetrahedral and ring-and-chain-
like structures. Phys. Chem. Chem. Phys., 19 (2017), 11931-
11936 

[87] Yeh I.-C., Hummer G., System-size dependence of diffusion 
coefficients and viscosities from molecular dynamics 
simulations with periodic boundary conditions. J. Phys. Chem. 
B, 108 (2004), 15873-15879 

[88] Tofts P., Lloyd D., Clark C., Barker G., Parker G., McConville 
P., Baldock C., Pope J., Test liquids for quantitative MRI 
measurements of self-diffusion coefficient in vivo. Magn. 
Reson. Med., 43 (2000), 368-374 

[89] Chase M.W., NIST-JANAF Thermochemical Tables, J. Phys. 
Chem. Ref. Data Monograph 9, 1998. 

[90] Stein F., Hutter J., Rybkin V.V., Double-hybrid DFT 
functionals for the condensed phase: Gaussian and plane 
waves implementation and evaluation. Molecules, 25 (2020), 
5174 

[91] Grisafi A., Wilkins D.M., Csányi G., Ceriotti M., Symmetry-
adapted machine learning for tensorial properties of atomistic 
systems. Phys. Rev. Lett., 120 (2018), 036002 


