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Abstract: Machine learning force fields (MLFFs) offer a promising balance between quantum mechanical (QM) accuracy and 

molecular mechanics efficiency. While MLFFs have shown strong performance in modeling short-range interactions and 

reproducing potential energy surfaces, their ability to capture long-range cooperative effects remains underexplored. In this study, 

we assess the ability of three MLFF models — ANI, MACE-OFF, and Orb — to reproduce cooperative interactions arising from 

environmental induction and dispersion, which are essential for many biomolecular processes. Using a recently proposed 

framework, we quantify hydrogen bond (H-bond) cooperativity in N-methylacetamide polymers. Our results show that all MLFFs 

capture cooperativity to some extent, with MACE-OFF yielding the closest agreement with QM data. These findings highlight 

the importance of evaluating many-body effects in MLFFs and suggest that H-bond cooperativity can serve as a useful benchmark 

for improving their physical fidelity.  
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1. Introduction

Machine learning potentials (MLPs), sometimes also referred to as 
machine learning force fields (MLFFs), have emerged as a 
significant advancement in computational chemistry, offering a 
balance between the high accuracy of quantum mechanics (QM) and 
the computational efficiency of molecular mechanics (MM) [1,2]. 
By leveraging machine learning algorithms, MLPs learn the 
statistical relationship between molecular structures and their 
potential energies from large datasets. Various methodologies, 
including kernel-based approaches and neural network (NN) models, 
have demonstrated notable success in simulating and predicting the 
properties of complex chemical systems. 

NN potentials are particularly promising because deep NNs 
excel at fitting high dimensional data distributions, enabling them to 
capture intricate intra- and intermolecular interactions [3–8]. The 
seminal work of Behler and Parrinello introduced a scheme in which 
the total potential energy is decomposed into atomic contributions, 

each predicted by an NN that takes atom‑centered environment 
descriptors as input [9]. The field has progressed rapidly since then, 
with more advanced network architectures designed to better 
preserve physical symmetries and improve training efficiency [10–
14]. Whereas early MLPs were usually trained bespoke on data 
generated for the particular system studied, recent efforts have 
shifted toward pre‑training models for broad, off‑the‑shelf use — 
much like traditional force fields (FFs) that are carefully 
parametrized once and then distributed to end‑users. Resonating 
with the wider ML move toward “foundation models”, an increasing 
number of universal MLFFs covering substantial regions of 
chemical space are now becoming available. 

One of the most popular universal MLFFs is the ANI series 
developed by Roitberg and co-workers. The ANI-2x model, employs 
transfer learning: a network first trained on a large DFT dataset is 
fine‑tuned with a smaller, high‑level CCSD(T) dataset, achieving 
accuracy across a broad chemical space that includes C, H, N, O, S, 
F, and Cl [15], and performing well on a wide range of drug-like 



    Xinping Feng et al./ Commun. Comput. Chem., (2025), pp. 152-160 

molecules and small peptides. Another notable model, MACE, 
extends message-passing neural networks (MPNNs) by 
incorporating higher-order equivariant messages, boosting both 
efficiency and accuracy [13]. The MACE open force fields (MACE-
OFFs) were trained on diverse datasets including organic molecules, 
water clusters, small peptides and dipeptides, and have demonstrated 
state-of-the-art performance not only in reproducing potential 
energy surfaces (PES) and atomic forces, but also in predicting 
condensed-phase properties such as liquid densities and solvation 
free energies [16,17]. Meanwhile, the Orb model, designed for large-
scale simulations of inorganic and crystalline materials, employs a 
scalable graph NN architecture that preserves rotational invariance 
and allows efficient modeling of long-range dispersion interactions 
via diffusion pre-training and D3 correction 
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[14]. 
In classical FFs, non-bonded interactions are evaluated 

throughout the space. In particular, electrostatics are typically 
handled with the particle meshed Ewald (PME) method, and more 
recently the LJ-PME method has been adopted to fully account for 
the van der Waals interactions [18,19]. This contrasts with MLFFs, 
in which atomic energies are computed from the information 
contained within a direct cutoff (typically 4.0 Å to 6.0 Å). 
Interactions beyond this range are presumed to be captured indirectly, 
for example through multiple passes of message passing, yet the 
extent to which MLFFs reproduce full long range interaction 
remains to be systematically benchmarked [20]. Long-range 
interactions are essential in chemical and biological systems 
dominated by non-covalent forces, for example proteins. A prime 
example is the cooperative effects of hydrogen bonds (H-bonds) in 
stabilizing protein structures. Once a few H-bonds form between 
residues, subsequent H-bond formation becomes energetically more 
favorable, facilitating protein folding, assembly, and aggregation 
[21–23]. 

H-bond cooperativity arises mainly from electronic induction, 
reflecting the molecular polarizability in response to the surrounding 
environment. QM methods such as CCSD(T), MP2, and DFT can 
accurately capture these effects, as can polarizable MM force fields, 
which explicitly account for charge redistribution [24–27]. In 
contrast, additive force fields fail to reproduce such cooperative 
effects. The quantification of cooperative energy has historically 
varied due to differences in computational methods, model systems, 
and definitions of cooperativity. QM calculations of various H-
bonded polymers, including N-methylacetamide (NMA) [28], water 
[29], N-methylformamide (NMF) [30], formamide [31], and alanine 
peptides [32,33], have yielded cooperative energy estimates ranging 
from 3 to 26 kcal/mol, depending on the specific formulation used. 

Recent methodological advancements have enabled more 
rigorous quantification of cooperative effects and improved 
benchmark for classical MM force fields [34]. In this recent study, 
we introduced a general framework that defines cooperativity as the 
difference between the interaction energy of an isolated dimer (𝑉!-"!") 
and its interaction energy in the presence of a third molecule (𝑉!-"!"#) 
(Figure 1a). This cooperative energy is computed using the internal 
energies of optimized geometries (Equation 1). 

Δ𝑉!-" = −(𝑈!"#!"# − 𝑈"#!"# − 𝑈!#!"# + 𝑈#!"# − 𝑈!"!" + 𝑈!!" + 𝑈"!")	 (1) 

As the superscripts indicate, the first four terms (internal energies of 
ABC, BC, AC, and C) are computed using the geometry and basis set 
of complex ABC, while the remaining three terms (internal energies 
of AB, A, and B) are obtained using the geometry and basis set of 
complex AB. Here, A, B, and C represent any number of molecules. 

This framework accounts for the cooperative effects arising from 
both geometric distortion and electrostatic induction within 
molecules A and B in response to the addition of C, while explicitly 
excluding any contributions from the internal interactions or 
polarization of C itself. This formulation thus enables a systematic 
analysis of many-body effects in various molecular environments. 

Here, we apply this theoretical framework to evaluate the 
ability of MLFFs to capture H-bond cooperatives in MLFFs. We 
used the same model systems and QM references, where NMA 
chains were optimized at the ωB97XD/cc-pVTZ level and energies 
computed at the RI-MP2/aug-cc-pVTZ level. Our findings reveal 
that all MLFFs considered, including the ANI, MACE-OFF, and Orb 
models, capture cooperativity to some extent but with considerable 
variance in accuracy. Despite being trained on high-quality QM data 
covering chemical spaces, these MLFFs differ substantially in how 
they represent environment-dependent interactions. Our work 
provides a critical benchmark for MLFFs and sheds light on how 
these models capture complex cooperative effects. 
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Figure 1． The scheme of cooperativity calculation and models. 
(a) Cooperativity is the difference of dimer interaction between two-
body and three-body systems. (b) Two conformations of NMA dimer 
optimized at the ωB97XD/cc-pVTZ level of QM. (c) An arc decamer 
with exclusively syn conformation of dimer blocks. (d) A linear 
decamer with alternating syn and anti blocks. In (c) and (d), the water 
capping sites on termini are illustrated; and the cooperative energies 
calculated for the first, middle, and last H-bonds to evaluate the 
effect of NMAs extending on B-side, both sides and A-side, 
respectively, are highlighted with transparent boxes.

Method 

Homogeneous NMA polymers identical to the previous study were 
used [34], where NMAs oriented in parallel configuration were 
arranged to form hydrogen bonds (H-bonds) in a head-to-tail way. 
As the fundamental H-bonded block, an NMA dimer was used, in 
which a hydrogen bond was formed between the carbonyl oxygen of 
molecule A (𝑂!) and the amide nitrogen of molecule B (𝑁"). The 
dimer was constrained to remain planar. 

The NMA dimer adopted two distinct conformations. In the syn 
conformation, atoms 𝑁! and 𝑁" are positioned on the same side of 
the 𝐶!-𝑂! axis, corresponding to dihedral 𝜙$ (𝑁!-𝐶!-𝑂!-𝑁") of 0∘. 
In contrast, in the anti conformation, 𝑁!  and 𝑁"  lay on opposite 
sides of the 𝐶! -𝑂!  axis, with 𝜙$  at 180∘  (Figure 1b). Two well-
ordered NMA polymer patterns were examined: one in which 
identical dimers formed an arc pattern and another where alternating 
syn and anti dimers resulted in a linear pattern. All polymer 
structures were built starting from a syn dimer and extended up to 12  
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Feature comparison of the MLFFs evaluated in this study.

Training dataset Architecture Long-range effect
       Elements Level of theory Dataset Model Input Cutoff (Å) Electrostatics

 
 

 
 

  
 

 

 
 

MACE 
-OFF

23-SC H, C, N, 
O, F, P, S, 
Cl, Br, I

ωB97M-D3(BJ)/ 
def2-TZVPPD

SPICE v1 (neutral 
charge)+ QMugs+ water 

cluster (⩽ 50)

Higher-order 
equivariant message 

passing (2-layer) 
GNN

Node with 
spherical 

harmonics

5 Not explicitly 
included  23-SMALL 4.5

 
 23-

MEDIUM
5

 
 23b-

MEDIUM
6

 

  

 24-
MEDIUM

SPICE v2 (updated 
PubChem molecules and 

amino acid-ligand pairs) + 
water cluster (⩽ 90)

6

  
 

 
 

  

 
 

ANI ANI-1ccx H, C, N, 
O

CCSD(T)*/CBS[a] Enhanced ANI-1x dataset 
(with active learning)

Feed-forward NN 
with modified BP 

symmetry

Atomic 
environment 

vectors

∼5 Not explicitly 
included

 

 

  ANI-2x H, C, N, 
O, F, S, 

Cl

ωB97x/631G* ANI-2x dataset

  
 

 
 

 
  

 
 

 Orb Orb-v2 89 
elements

DFT with PBE MPtraj + Alexandria 
dataset and diffusion 

pretraining
basis functions 10 Å 

(⩽ 20 
neighbors)

GNN with deep layer Node with radial Adjustable to Receptive field
 

 
Orb-d3-v2 DFT with PBE + 

D3
   Orb-v3 AIMD OMat24 dataset

 

 

  

  
   

 
   

 
  

 

 

 

 

   

 

 

  

 
 

[a] computationally efficient approximation of CCSD(T)/CBS.

NMAs. The head, middle, and tail H-bonds were calculated within 
each polymer to assess the cooperative effects of chain elongation 
on different sides (Figure 1c, d).

The cooperativity of H-bond interactions was evaluated for 
three families of MLFFs (Table 1), ANI models including 1ccx [35]
and 2x [15], Orb models [14] including d3-v2, v2, and v3-
conservative-20-omat [36], and MACE-OFF models including 23-S, 
23-M, 23b-M [16], 23-SC [37], and 24-M [17]. The energy terms of 
Equation 1 were calculated from the corresponding geometries that 
were energetically minimized. The initial conformations were taken 
from QM-optimized geometries. During minimization, torsions 𝜙$
and 𝜙& (𝐶! -𝑂! -𝑁" -𝐶" ) were constrained to maintain planarity 
across all NMA molecules. For Orb models, structure optimization 
using the L-BFGS algorithm and single-point potential energy 
calculations were performed via the ASE calculator interface [38]. 
For MACE-OFF and ANI models, structures were minimized using 
the L-BFGS algorithm, and potential energy calculations were 
carried out in OpenMM [39], employing a customized API 
(openmm-ml) designed for ML models in simulations 
(https://github.com/jharrymoore/openmm-ml/tree/main).

3． Results

3.1．NMA dimer interaction and conformation

NMA serves as a model system for protein backbone interactions in 
the parametrization of classical force fields. The H-bond interaction 
between the amide and the carbonyl group stabilizes NMA dimer in 
a planar conformation (Figure 1b, c). For longer NMA polymers, 
however, the global energy minimum usually corresponds to 
irregular aggregated structures with different potential energy 

models. To systematically evaluate the cooperative effects of each 
elongating NMA that mimic the formation of secondary structures, 
planarity restraints were applied to all polymers during optimization, 
including the reference dimer. In our previous QM calculations, both 
syn and anti conformations were optimized using density functional 

Figure 2．Dimer interaction of each model. (a) syn conformation; 
(b) anti conformation. The x-axis indicates the group of force fields 
and legend of variants is shown on the right.

theory (DFT) at the ωB97XD/cc-pVTZ level, with interaction 
energies evaluated at the SCS-MP2/aug-cc-pVTZ level. These 
calculations indicated an energy difference of approximately 0.6 
kcal/mol between the two conformations. Among MLFFs, all 
MACE-OFF models provided consistent interaction energy 
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estimates, whereas ANI and Orb models exhibited greater variation 
across their respective variants (Figure 2). Most MLFF models 
overestimated the interaction energies, though the deviations for all 
models except ANI-2x and Orb-v2 remained within 2 kcal/mol, 
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which is comparable to those observed in MM force fields. 
Without restraints, geometric optimization using MACE-OFF 

and ANI still recovered the correct dimer conformations (Figure 1b, 
c), indicating that both force fields provide an adequate description 
of NMA interaction. In contrast, Orb-v2 models failed to reproduce 
the H-bonding conformation, instead favoring stacked structures 
(Figure S1a). This issue persisted for longer chains, where Orb-v2 
consistently failed to achieve H-bonded conformations, even under 
planarity restraints (Figure S1b). To enforce a regular polymer 
pattern capable of capturing H-bond cooperativity, a much looser 
convergence tolerance (4.6 kcal/mol/Å) had to be applied on Orb-v2 
compared to the 0.00024 kcal/mol/Å used for MACE-OFF and ANI. 
This limitation was partially addressed in the recently released Orb-
v3-conservative-20-omat, which showed improved recovery of the 
H-bonded dimer and better polymer geometry optimization under 
reasonable convergence criteria. Nonetheless, Orb-v3 models 
continued to exhibit challenges when applied to long polymers in the 
presence of water. As a result, the cooperative energy for Orb models 
were calculated using QM geometries rather than Orb optimized 
polymer structures (Figure S1c). 

 

 
 

3.2．  Cooperative energy of H-bonds 

Although the interaction energies of isolated dimers differ slightly 
between syn and anti conformations, the overall profile of 
cooperativity for arc and linear polymer patterns remains similar, as 
shown in the previous study. Such trend was also consistently 
observed across all MLFFs evaluated in this work. For clarity, the 
main text focuses on arc polymers composed of repeating syn dimers, 
while the corresponding results for linear polymers are provided in 
the Supporting Information (SI). 

Cooperativity was present across all three MLFFs, confirming 
their reproduction in polarizability. However, the addition of NMAs 
to either side of the dimer produced markedly different cooperative 
effects among these models (Figure 3, Figure S2 for linear polymers). 
The MACE-OFF models closely reproduced the MP2 reference, 
whereas ANI models substantially underestimated and Orb models 
significantly overestimated cooperative energies. Consistent with 
the QM reference, the maximum cooperative energies on both 
terminal H-bonds were equivalent, measuring 1.4-1.6 kcal/mol in 
MACE variants, 0.3-0.6 kcal/mol in ANI, 7.5-10 kcal/mol in Orb-v2 
models, and 3.5-4 kcal/mol in Orb-v3 model. The maximum 
cooperative energy for middle hydrogen bonds, as calculated by 
MP2, was 4.2 kcal/mol. This value was closely reproduced by 
MACE (2.8-3.2 kcal/mol), underestimated by ANI (0.4-1.0 
kcal/mol), significantly overestimated by Orb-v2 (18-20 kcal/mol), 
and partially corrected in Orb-v3 (7-8 kcal/mol). 

In ANI and MACE-OFF models, cooperativity reached a 
plateau immediately   after  adding  a  single  NMA  on   either   side,   

  

 
Figure 3． Comparison of H-bond cooperative energies in arc-shaped NMA polymers calculated using QM and MLFFs. The x-axis 
represents the number of NMA units in the polymer, while the y-axis shows cooperative energy in kcal/mol. Black dots and lines represent the 
QM reference, and colored dots and lines correspond to various MLFF predictions as indicated in the legends. (a-c) Cooperative energies for 
head, middle, and tail H-bonds using MACE-OFF models. Legend labels SC, S, and M denote the soft-core, small, and medium model variants, 
respectively. (d-f) Cooperative energies for head, middle, and tail H-bonds using ANI models. (g-i) Cooperative energies for head, middle, and 
tail H-bonds using Orb models. 
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with no further increase upon polymer elongation. MACE-OFF 
models therefore correctly reproduced the cooperative effect of 
adding one NMA, while underestimating the effect of further 
elongation. All the MACE-OFF variants performed equivalently in 
cooperative energy, except for 23-SC, which exhibited an observable 
drop, likely due to its modified repulsive atomic interactions that are 
specifically introduced for free energy perturbation calculations [37]. 
Different from ANI and MACE-OFF, cooperativity in Orb models 
increased progressively and converged after the addition of five or 
more NMAs, 
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closely resembling the QM profile. 

3.3． Cooperativity in presence of water molecules 

To further assess the impact of solvent, all polymer chain termini 
were capped with water molecules (Figure 4, Figure S3 for linear 
polymers). One water molecule formed a single H-bond with the 
amide group, while three additional water molecules interacted with 
the carbonyl group via two H-bonds and formed two additional H-
bonds among themselves (Figure 1d, e). In SCS-MP2 reference of 
NMA dimer H-bond, the cooperative contribution of this four-water 
flanking arrangement (2.5 kcal/mol, Figure 4a) was comparable to 
that of two NMA molecules (2.8 kcal/mol, Figure 3b). The MACE-
OFF models closely reproduced the contribution, yielding values in 
the range of 2.2-2.9 kcal/mol. ANI models continued to 
underestimate the cooperativity, suggesting a limited sensitivity to 
solvent-induced effects (Figure 4d). In contrast, the Orb models 
showed smaller deviations in cooperative energy for the water-
flanked dimers than for the NMA-flanked ones: Orb-d3-v2 predicted 
a value of 1.5 kcal/mol, while Orb-v2 yielded 2.8 kcal/mol, both in 
reasonable agreement with the QM reference (Figure 4g). 

Chain extension was performed by inserting additional NMA 
between the terminal NMA and the adjacent water molecule(s). Due 
to the contribution of terminal water molecules, the maximum 
cooperativity observed in SCS-MP2 calculations increased to 3.1 
kcal/mol at the head H-bond and 3.9 kcal/mol at the tail H-bond 
(Figure 4a, c), compared to 2.2 kcal/mol in the NMA-only system. 
Among the MLFFs, MACE-OFF models closely reproduced the QM 
reference values, predicting cooperativities of 2.2-2.4 kcal/mol at the 
head and 2.6-3.5 kcal/mol at the tail. These results suggest that the 
polarizability of both water and NMA in MACE-OFF aligns well 
with QM behavior. ANI models still consistently underestimated 
cooperativity upon elongation, indicating limited response to 
environmental effects. Orb models continued to overestimate 
cooperativity, and terminal values exceeded those of the NMA-only 
system by about 2 kcal/mol, suggesting the Orb water model is 
reasonably accurate, while the primary source of deviation lies in its 
NMA representation. Moreover, the trend of increasing cooperativity 
with NMA extension under the Orb models was qualitatively 
consistent with QM, which indicates Orb may effectively capture 
interaction effects of longer range than ANI and MACE-OFF. 

In addition to geometric failures observed in the Orb models, 
outliers in energetics were also identified for MACE-OFF and ANI 
due to imperfect geometry optimization. Compared to MM force 
fields, geometry optimization using MLFFs proved more 
challenging, especially for larger systems. This is consistent with the 
common assumption that the potential energy surfaces of MLFFs 
may be less smooth than those of classical FFs. As chain length 
increased, it became increasingly difficult to locate an energy  
minimum while maintaining the planarity required for analyzing H-
bond cooperativity. 

Figure 4． Cooperative energy in arc-shaped NMA polymers in the presence of water molecules. Data organization and representation 
are identical to those in Figure 3. 

 

3.4．H-bond distance in NMA polymers 

The H-bond distance serves as an indicator of interaction strength, 
with QM-optimized geometries showing progressively shorter bond 

lengths as cooperativity increases. Among the MLFFs, both ANI and 
MACE-OFF reproduced dimer H-bond distances in good agreement 
with QM, indicating their reliability in modeling direct interactions 
between two NMA molecules (Figure 5, Figure S4 for linear 



     

polymers). On the other hand, since the Orb models failed to produce 
stable H-bonded polymer geometries under standard energy 
minimization, QM-optimized geometries were directly used to 
compute the cooperative energies shown in Figure 3. As a result, Orb 
models were excluded from the analysis of hydrogen bond distance 
trends in Figure 5
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. 
Upon the addition of one NMA molecule on each side of a 

dimer, the H-bond distances predicted by MACE-OFF models, 
including 23-SC, correlated well with their corresponding 
cooperative energies (Figure 5a, b, c). Distance shortening was 
evident for both termini, with further reductions in the middle H-
bonds of the polymers, consistent with the QM trend. These results 
also indicate that M-sized MACE-OFF models offer a more accurate 
description of H-bond distances compared to the S counterpart. 
Furthermore, as with the energy profiles, the magnitude of distance 
reduction in MACE-OFF variant was no longer pronounced for 
further NMA chain extension. 

The cooperative effects on H-bond distance in ANI models 
were much weaker than MACE-OFF and notable deficiencies of 
optimization in longer polymer were also observed (Figure 5d, e, f). 
While ANI-1ccx captured a slight distance shortening consistent 
with cooperative effects, ANI-2x failed to reflect any significant 
trend. This discrepancy contrasts with their energy profiles, where 
ANI-2x exhibited more pronounced responses than ANI-1ccx. 

In summary, MACE-OFF variants provided the best agreement 
with QM data for both cooperative energy and H-bond distances. 
Notably, the polarizability of both NMA and water was correctly 
captured in MACE-OFF models, reproducing the expected QM 
trends. Among MACE-OFF variants, M-sized models outperformed 
S and 23-SC models, but no significant differences were observed 
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between MACE-OFF23 and MACE-OFF24. Although ANI models 
correctly reproduced NMA dimer H-bonding geometries, they failed 
to capture the cooperative effects on both energy and H-bond 
distance. Orb-v2 models were unable to reproduce the correct dimer 
geometry and drastically overestimated the cooperative energy for 
NMA, but the polarizability of water was better depicted. 
Additionally, while MACE-OFF and ANI captured cooperative 
effects only upon the addition of one NMA, Orb models more 
closely resembled the QM trend, where cooperative effects 
continued to accumulate with further NMA chain extension.

Discussion 

Quantifying cooperativity provides a sensitive metric for evaluating 
a force field’s ability to generalize across electrostatic environments 
and intermolecular interactions. In our previous study [34], we 
benchmarked classical MM force fields using the same NMA 
polymer systems. Additive force fields, by construction, yield 
strictly zero cooperativity due to the absence of polarization in their 
potential energy functions. In contrast, polarizable models such as 
Drude and AMOEBA explicitly incorporate electronic induction and 
showed clear improvements over additive FFs in reproducing 
cooperative effects. However, even these advanced FF models 
underestimated cooperative energy by approximately 20% and 40%, 
respectively, when compared to QM references. 

Leveraging the growing availability of high-level QM data and 
computational resources, MLFFs offer the potential to model 
complex systems with improved generality and accuracy. In this 
study, we assessed three representative MLFFs (ANI, MACE-OFF, 
and Orb) using the NMA benchmark system designed to probe 
electrostatic    induction     and     dispersion     contributions    across  

Figure 5． Comparison of H-bond distances in arc-shaped NMA polymers calculated using QM and MLFFs. The x-axis represents the 
number of NMA units in the polymer, while the y-axis shows the distance between 𝑂! and 𝑁". Other data organization and representation are 
identical to those in Figure 3. 
 
increasing chain lengths. Despite differences in architectures and 
training data, all three models were trained on QM-calculated 
energies and forces with the goal of achieving broad chemical 
transferability. A key aspect of comparison lies in their capacity to 
capture polarizability and long-range interactions — factors central 
to H-bond cooperativity. As such, the cooperativity trend in NMA 
polymers provides a stringent test of how well each MLFF models 
many-body electrostatics across molecular chains. 

To explain the performance of long-range cooperativity in 
MLFFs, we analyze the induced molecular energy changes in more 

detail. In machine learning potentials, the total energy of a system is 
expressed as the sum of atomic energies. Assuming molecule A 
contains m atoms, B contains n atoms, and C contains l atoms, the 
total energy of the three-body system is given by: 

𝑈!"#!"# =-.𝑢!,(!"#0
!"#

)

(*$

+-.𝑢",(!"#0
!"#

+

(*$

+-.𝑢#,(!"#0
!"#

,

(*$

	 (2) 

Here, 𝑢!,(!"#  denotes the atomic energy of atom i in molecule A 
calculated in the context of the ABC complex, and the bracket with 
superscript ABC indicates that the geometry corresponds to the full 
ABC system. This differentiates the notation from the total internal 
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energy 𝑈!!"# of molecule A at the same geometry, as introduced in 
Equation 1
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. 
Accordingly, the cooperative energy in Equation 1 can be 

rewritten in terms of atomic energy contributions as:  

𝛥𝑉!-" =012𝑢!,$!"% − 𝑢!,$!%5
!"% − 2𝑢!,$!" + 𝑢!,$! 5

!"7
&

$'(

+012𝑢",$!"% − 𝑢",$"%5
!"% − 2𝑢",$!" + 𝑢",$" 5

!"7
)

$'(

+012𝑢%,$!"% − 𝑢%,$!% − 𝑢%,$"% + 𝑢%,$% 5
!"%7

*

$'(

	

≈012𝑢!,$!"% − 𝑢!,$!%5
!"% − 2𝑢!,$!" − 𝑢!,$! 5

!"7
&

$'(

+012𝑢",$!"% − 𝑢",$"%5
!"% − 2𝑢",$!" − 𝑢",$" 5

!"7
)

$'(

	(3) 

The approximation holds because the third term, ∑ ,-𝑢#,%!"# − 𝑢#,%!# −&
%'(

𝑢#,%"# + 𝑢#,%# /
!"#0 , is close to zero. This is because, at an identical 

geometry, the total energy perceived by molecule C from molecules 
A and B is nearly equivalent whether considered as a whole (ABC) 
or in pairs (AC and BC). 

To examine the cooperativity change as more NMA units are 
added, we extend molecule C from N−1 to N units. The resulting 
change in cooperative energy is: 
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As a case study, we analyze the head H-bond in NMA polymers 
using the MACE-OFF 23-M model. Equation 4 can be rearranged 
into four components: 
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Figure 6． The atomic potential energy differences of A and B 
molecules relative to the A-B dimer, calculated along the arc 
polymers of 3,4,5 units using the MACE-OFF 23-M model. 

The superscripts were omitted for clarity, because in this case the 
geometric influence from 𝐶=  is small. These terms reflect the 
influence of the additional NMA in molecule C on the energies of A 
and B. Figure 6 presents these energy components for N=0,1,2,3, 
corresponding to NMA dimers, trimer, tetramer, and pentamers, 
respectively. The results indicate that when N=0, molecule A 
perceives a direct influence from B. At N=1, A receives minimal 
influence from C, while B is affected by both A and C. When N=2 or 
3, the induced effects sharply diminish. Notably, the shortest 
interatomic distance between molecule 𝐶&  and molecule B (or 𝐶$ 
and A) is approximately 6 Å, which lies at the cutoff boundary of the 
MACE-OFF 23-M model. This suggests that only nearest-neighbor 
NMAs significantly contribute to cooperative energy, while next-
nearest neighbors lie almost beyond the effective interaction range 
of the model. 

None of the MLFFs fully reproduced the cooperative energy 
across all chain lengths with quantitative fidelity. Both ANI and 
MACE-OFF failed to capture the growth of cooperative effects as 
the number of NMA units exceeded two, highlighting limitations in 
modeling long-range polarization. ANI, while successful in 
modeling small molecules, consistently underestimated cooperative 
energy, reflecting its lack of explicit electrostatic induction. MACE-
OFF, by contrast, achieved better agreement at short to medium 
ranges, likely due to its rotationally equivariant architecture and 
exposure to peptide-like fragments and solvated molecular 
complexes during the training. Nonetheless, its sensitivity plateaued 
beyond trimer systems, suggesting a finite non-bonded perception 
range. 

Orb demonstrated the clearest monotonic rise in cooperativity 
with chain length, indicating a strong response to long-range 
correlations. This performance likely arises from its attention-based 
architecture that incorporate receptive field. However, Orb 
significantly overestimated the magnitude of cooperative energy, 
implying an over-polarizable potential. This may result from its pre-
training strategies that prioritize data diversity and generalization but 
do not sufficiently sample bio-organic environments. While Orb 
captures the qualitative trend of cooperativity, its quantitative 
predictions deviates substantially from QM references. 

These findings highlight a broader challenge in MLFF 
development: while modern architectures can encode complex 
spatial correlations, accurately capturing cooperative effects 
requires more than architectural sophistication or transfer learning. 
The large discrepancies between ML models reflect a combination 
of architectural biases, training data gaps, and the difficulty of 
learning subtle many-body polarization phenomena from general-
purpose datasets. 

Our results point to the need for better benchmarks and 
descriptors of cooperativity. Current MLFF evaluations often focus 
on local accuracy metrics (e.g., forces, energies, torsion scans), 
which may overlook systematic deficiencies in long-range 
interactions. As cooperative H-bonding is ubiquitous in 
biomolecular systems, we propose that quantifying cooperativity in 
controlled model systems should become a standard component of 
MLFF validation. Adopting this approach can help pinpoint force 
field limitations and inform the development of next-generation 
neural network potentials that incorporate inductive and many-body 
effects in a physically meaningful way. 
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Conclusion 

This study evaluated the capability of MLFFs to reproduce 
cooperative H-bonding interactions in NMA polymers, a 
representative system for biomolecular noncovalent interactions. By 
quantifying the cooperative energy and structural changes, we 
assessed three state-of-the-art MLFFs — ANI, MACE-OFF, and Orb 
— against high-level QM calculations. Significant differences were 
observed among the models, demonstrating that H-bond 
cooperativity can serve as a critical benchmark for evaluating the 
accuracy and transferability of MLFFs. 

Universal MLFFs have rapidly evolved with the general aim of 
simulating complex chemical and biological systems. The 
benchmark results presented in this work underscore the importance 
of evaluating MLFFs not only in terms of pairwise accuracy but also 
in their treatment of collective many-body phenomena. H-bond 
cooperativity provides a rigorous and physically interpretable 
benchmark for assessing long-range induction and dispersion effects, 
which are crucial for accurately modeling biomolecules. Our 
findings suggest that while current MLFFs show promising accuracy 
for isolated interactions, further development is needed to better 
account for cooperative behavior across extended systems, 
particularly in biological and condensed-phase applications. 
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