
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2016-0107

Vol. 22, No. 1, pp. 1-38
July 2017

PyCFTBoot: A Flexible Interface for the Conformal

Bootstrap

Connor Behan∗

Department of Physics and Astronomy, Stony Brook University, Stony Brook,
NY 11790, USA.

Received 15 July 2016; Accepted (in revised version) 7 November 2016

Abstract. We introduce PyCFTBoot, a wrapper designed to reduce the barrier to entry
in conformal bootstrap calculations that require semidefinite programming. Symengine
and SDPB are used for the most intensive symbolic and numerical steps respectively.
After reviewing the built-in algorithms for conformal blocks, we explain how to use
the code through a number of examples that verify past results. As an application, we
show that the multi-correlator bootstrap still appears to single out the Wilson-Fisher
fixed points as special theories in dimensions between 3 and 4 despite the recent proof
that they violate unitarity.

AMS subject classifications: 65Z05, 68W30, 81T80, 90C34

Key words: CFT, conformal bootstrap, python, semidefinite programming.

1 Introduction

The conformal bootstrap [1, 2] has joined holography [3] as one of the most important
tools for understanding strongly coupled conformal field theories (CFTs) in higher di-
mensions. Much of the progress comes from a numerical procedure initiated in [4], which
exploits the constraints of crossing symmetry and unitarity. This has been successfully
used to bound scaling dimensions and three point function coefficients in a wide range
of conformal [5–16] and superconformal [17–21] theories in dimensions between 2 and 6.
The first widely released code designed to perform these calculations was JuliBoots [22],
a conformal bootstrap package based around a linear program solver. Shortly afterward,
the solver SDPB [23] was released, giving the community access to the semidefinite pro-
gramming methods pioneered in [10, 18, 24]†.

∗Corresponding author. Email address: connor.behan@gmail.com (C. Behan)
†Readers interested in conformal blocks for their role in algebraic geometry might appreciate the [25] pack-
age.

http://www.global-sci.com/ 1 c©2017 Global-Science Press



2 C. Behan / Commun. Comput. Phys., 22 (2017), pp. 1-38

The advantages of the two are largely complementary. Semidefinite programming
has superior performance in systems with multiple crossing equations and it is currently
the only technique which extracts information from correlators of operators with dif-
ferent scaling dimensions [24]. As such, SDPB has become the standard code for most
numerical bootstrap studies in the last year [26–34]. Unlike JuliBoots however, it does
not provide simple methods for specifying important kinematics information. Included
in this are the crossing equations which depend on the type of CFT being studied and
conformal blocks, special functions that depend on the dimension of space and a number
of accuracy parameters. All of the above studies have performed these calculations using
customized scripts for Mathematica. A new program, aiming to reduce this duplication
of effort, is PyCFTBoot written in Python. Realizing a hope of [22], it handles the com-
puter algebra that goes into a numerical bootstrap entirely with free software. PyCFTBoot
may be downloaded from

https://github.com/cbehan/pycftboot,

where all future development is expected to take place. Besides SDPB, a few other depen-
dencies are required in order to use it.

In mathematical Python software, numpy [35] and sympy [36] are two widely used
packages that come to mind. Both of them are needed by PyCFTBoot. However, sympy
is not fast enough to generate large tables of conformal blocks. It is only used in a few
non-critical places that need to call Gegenbauer polynomials or the incomplete gamma
function. Instead, the bulk of the symbolic algebra is handled by a fast C++ library called
symengine. Python bindings have been chosen (over Ruby and Julia) because they are
the most mature at the time of writing. These less common packages are downloadable
from

https://github.com/symengine/symengine (last tested: 5427bbe),

https://github.com/symengine/symengine.py (last tested: 9d23ef7).

Surprises are most easily avoided by using PyCFTBoot with Python 2.7 on GNU / Linux,
but it has also been tested with Python 3.5. Descriptions of the important functions, in-
cluded in the source code, may be viewed with the Python documentation server. Addi-
tionally, readers who are anxious to try the bootstrap may follow the commented tutorial
distributed alongside the main file.

In Section 2 of this note, we describe the algorithms that have been chosen to generate
derivatives of conformal blocks and report some rough performance figures. Section 3
explains how semidefinite programs are formulated from these tables. In describing the
main SDP object, it contains a few parts that read like passages from a user manual. Some
examples, worked out in Section 4, demonstrate that most of the known bootstrap results
to date can in principle be reproduced with PyCFTBoot. Before we conclude, Section 5
extends a previous result in the literature by using PyCFTBoot to probe the ”islands” of
allowed critical exponents in dimensions between 3 and 4 [37].


