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Abstract. We consider a midpoint scheme to approximate analytical solutions to a
white noise driven BBM equation that reads

du—duyy+u,odW+uPu,dt=0.

We prove the well-posedness of the time-discrete approximation scheme and we pro-
vide the strong error order, which is 1.
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1 Introduction

1.1 Dispersive equations with white noise modulation

The regularized long wave equation, also known as Benjamin-Bona-Mahony (BBM) equa-
tion has been introduced as an alternate model to Korteweg-de Vries equation for the
propagation of one-way long wave in shallow water. For general nonlinearities, the equa-
tion (gBBM) reads

Up—Uppy Uy +1uPu,,=0. (1.1)

These deterministic equations have been widely studied theoretically and numerically in
the mathematical literature; see for instance the initial value problem in [6,7,22], the decay
rate of solutions for small initial data in [1,2,28] or numerical computations in [3,21].
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Recent years have seen an ever increasing study about stochastic dispersive equa-
tions, whether for theoretical [8-10,13-17,20] or numerical aspects [5,11,18,19,26]. Here
we are interested in gBBM equations driven by white noise modulation. Quantities such
as the bathymetry, the air pressure on the surface, or the wind effect, are stochastic in na-
ture, it is therefore desirable to study stochastic shallow water wave equations [12]. We
are dealing with the stochastic model studied in [8]. Here x € T the one-dimension torus.

The study of dispersive equations with white noise modulation has latterly started
with nonlinear Schrodinger equations (NLS), see [13,20]; NLS equations model also the
propagation of water waves but in deep water. Such investigation furthers the study
where the dispersion is driven by a deterministic varying function [4]. Since the dis-
persive solutions are oscillating, choosing the appropriate method to solve this type of
stochastic PDE is of great interest, the approximation being generally of a lower order
than in the deterministic case [24, 25]. Typically, time derivatives of dispersive PDEs
are discretized by semi-implicit schemes [5], splitting methods [26], or exponential in-
tegrators [11]. These schemes have the advantage of solving the linear part uncondi-
tionally stable. Nonetheless, Euler-Maruyama scheme has been applied for the NLS
equation with multiplicative noise in [14]. Authors showed that the strong error order,
i.e. the mean-square order [24,25], is 1/2, while the weak order, i.e. in the distribution
sense [27,30], is 1.

In [5], the authors provide the strong error order for the Crank-Nicolson scheme ap-
proximating the NLS with white noise modulation. They proved that the strong order is
1 instead of 2 in the deterministic case. In this work we prove that for modulated stochas-
tic BBM equation we also have a strong order 1 for a midpoint scheme; this is expected
since, like the Crank-Nicolson scheme, the midpoint scheme has order 2 for deterministic
ODE. It is worth to point out that the arguments used for NLS and for BBM are different.

The article is organized as follows. We complete the introduction reminding some
important results about the generalized BBM equation with white noise modulation and
we set the mathematical framework. In Section 2 the numerical scheme is presented
and the main results are stated. In Sections 3 and 4, we provide the proofs of the main
theorems. We discuss some numerical computations in Section 5.

1.2 A BBM equation with white noise modulation

We address the generalized BBM equation with white noise dispersion introduced in [8].
This equation reads, for p integer > 1, x € T=IR/27Z the one-dimensional torus.

du—duye+uyodW+uPu,dt=0 (1.2)
in Stratonovich’s formulation. This stands for the stochastic differential equation in H'(T)
du+AuodW+AF(u)dt=0, (1.3)

where A is the bounded skew symmetric operator d,(1—92)~!, the nonlinear term reads

F(u)= ZP—J:, and W (t) is a standard real valued Brownian motion. Eq. (1.3) is a short-hand



