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Abstract. In this paper, we rigorously prove the convergence of fully discrete first-
and second-order exponential time differencing schemes for solving the Cahn-Hilliard
equation. Our analyses mainly follow the standard procedure with the consistency and
stability estimates for numerical error functions, while the technique of higher-order
consistency analysis is adopted in order to obtain the uniform L∞ boundedness of
the numerical solutions under some moderate constraints on the time step and spatial
mesh sizes. This paper provides a theoretical support for numerical analysis of expo-
nential time differencing and other related numerical methods for phase field models,
in which an assumption on the uniform L∞ boundedness is usually needed.
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1 Introduction

In this paper, we consider the Cahn-Hilliard equation [5],

ut=−ε2∆2u+∆ f (u), x∈Ω, t∈ (0,T] (1.1)

with f (u)=u3−u, where Ω is a rectangle in R2 or a cuboid in R3 and u :Ω×[0,∞)→R is
the unknown function subject to the periodic boundary condition. An important feature
of the Cahn-Hilliard equation (1.1) is that it can be regarded as the H−1 gradient flow
with respect to the Ginzburg-Landau energy functional

E(u)=
∫

Ω

( ε2

2
|∇u|2+F(u)

)
dx (1.2)
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with F(u)= 1
4(u

2−1)2, and thus the solution of (1.1) satisfies the energy law (noting that
f (u)=F′(u)):

dE(u)

dt
=−

∫

Ω
|∇(−ε2∆u+ f (u))|2 dx≤0, (1.3)

i.e., the energy E is decreasing along the time. As one of the typical systems for phase
field modeling, the Cahn-Hilliard equation has been widely used to model the phase
separations and accumulation occurring in mixtures of small molecules and some other
moving interface problems involving mass-conserved order parameters (see, e.g., [2, 3, 6,
10,33]). Thus, accurate and stable temporal discretizations for the Cahn-Hilliard equation
are important for large scale and long-time simulations of coarsening dynamics.

In recent years, numerous numerical methods have been proposed for solving the
Cahn-Hilliard equation and many other phase field models, in which the discrete ver-
sion of the energy law (1.3) attracts much attention in numerical analysis. The modified
Crank-Nicolson scheme [11,17,41] and the convex splitting scheme [14] are proven to be
unconditionally energy stable (see also [34, 35, 39]). These schemes are usually nonlinear
so that they are time-consuming due to the need of nonlinear solvers in each time step.

To avoid the nonlinear iterations, a first-order linear scheme was constructed in [21]
by adding an extra stabilization term to the classic semi-implicit scheme for the Cahn-
Hilliard equation. This stabilized scheme is unconditionally energy stable if the stabi-
lizing parameter satisfies some certain inequality which depends on the L∞ bound of
the numerical solutions. Such scheme has been also applied to some other phase field
models [8, 40] with the same assumptions needed. Later, the first- and second-order sta-
bilized schemes were studied more systematically in [16,37] under an assumption on the
Lipschitz continuity of the nonlinear term f (u). Since f (u) is a polynomial of degree
three in (1.1), the assumption on the Lipschitz continuity of f (u) is in fact equivalent to
the uniform L∞ boundedness of the numerical solutions. Recently, an exponential time
differencing (ETD) method for the Cahn-Hilliard equation was proposed in [28] based
on the same stabilizing technique, and the stabilizing parameter is also required to de-
pend on the numerical solutions to guarantee the energy stability. In addition, the classic
backward Euler scheme was analyzed in [13] and the error estimate was also derived by
assuming the uniform L∞ boundedness of the numerical solutions.

Since the energy law (1.3) in the PDE level holds without any extra requirements, it
is highly desired to remove the L∞ assumption on the numerical solutions for theoret-
ical completeness of stability and convergence analysis. By using advanced harmonic
analysis for the stabilized scheme, the authors of [32] removed the technical restrictions
and established the unconditional energy stability of the stabilized scheme for general
phase field models. The energy stability of the second-order stabilized scheme in 2D
and 3D spaces was analyzed in [30, 31] by using the similar approach. On the other
hand, some investigations were devoted to the theoretical justification of the uniform
L∞ boundedness. It was shown in [4] that for a truncated potential F(u) with quadratic
growth at infinities, the maximum norm of the solution of the Cahn-Hilliard equation is
bounded. The technique with a truncated potential was also considered in the literature,


