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Abstract. We design and analyze an efficient GPU-accelerated hybridizable discon-
tinuous Galerkin method for linear elasticity. Performance analysis of the method is
done using the state-of-the-art Time-Accuracy-Size (TAS) spectrum. TAS is a new per-
formance measure which takes into account the accuracy of the solution. Standard
performance measures, like floating point operations or run-time, are not completely
appropriate for gauging the performance of approximations of continuum mechanics
problems, as they neglect the solutions accuracy. A standard roofline model demon-
strates that our method is utilizing computational resources efficiently, and as such,
significant speed ups over a serial implementation are obtained. By combining tradi-
tional performance measures and the novel time-accuracy measures [7] into our per-
formance model, we are able to draw more complete conclusions about which dis-
cretizations are best suited for an application. Several numerical experiments validate
and verify our numerical scheme.
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1 Introduction

Computer architecture is becoming more sophisticated at the node level, where individ-
ual core clock rates are reduced, but more cores are packed into a chipset; to the point
that floating point performance is greatly eclipsing memory operations. Efficiently uti-
lizing this type of computational hardware has already been shown to require different
programming models and parallel computing paradigms. This trend has consequences
for the planning and designing of next-generation high-performance computing soft-
ware [19, 45]. With this in mind, we design and analyze a GPU-accelerated hybridizable
discontinuous Galerkin (HDG) method for linear elasticity.
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HDG methods have several attractive properties, especially for problems where the
solution of linear systems is required. As the HDG method is a discontinuous finite
element method, it retains many of the features of discontinuous Galerkin (DG) meth-
ods that are celebrated, like local conservation, arbitrary order approximations, rigorous
mathematical foundation, hp-adaptivity, admits unstructured meshes, and so on [12].
One of the important properties of the HDG method that differentiates it from classi-
cal DG methods is its ability to use static condensation. This well-known technique in-
troduces additional unknowns on the mesh skeleton, and due to a judicious choice of
numerical trace and flux, the original unknowns can be eliminated in an element-by-
element fashion [13]. The total number of unknowns for the HDG method is thus re-
duced by a large amount for higher orders when compared to standard DG methods. As
a result, drastic savings for memory storage and computational time are feasible [33].

For the linear elasticity equations, several HDG methods have been proposed, e.g., [15,
17, 17, 25, 53, 57, 58]. These discretizations have variations in how the primal and mixed
variables are treated. We follow the discretization outlined in [43], as it is locking-free
(for any k≥0), and is easily extendible to other equations, like Stokes and nonlinear elas-
ticity. Related discretizations, like face centred finite volumes [56], the weak Galerkin
method [9, 62], and the hybrid high order method [14, 20] have also been studied. Rele-
vant applications can be found in [16, 34, 35].

The HDG method for linear elasticity presented in [43] has all approximate variables
(displacement, gradient of displacement, and hydrostatic pressure) converge at the opti-
mal rate of k+1 in the L2-norm for polynomials of degree k≥0. There are a few interesting
consequences of the gradient of displacement converging at the optimal rate. Quantities
of engineering interest, like vorticity, stress, and strain also all converge at the rate of k+1
in the L2-norm [43]. In addition, there exist local postprocessing schemes for the displace-
ment variable which result in a new displacement approximation that superconverges at
the rate of k+2 in the L2-norm [44]. As the postprocessing is performed in an element-
by-element manner, it is much cheaper than solving the full system at one polynomial
order higher.

GPU-accelerated numerical methods for partial differential equations (PDEs) have
received a great deal of attention. In particular, lattice Boltzmann and discontinuous
Galerkin finite element methods have been demonstrated to perform well for linear wave
problems and hyperbolic conservation laws [10,66,67]. However, few many-core or even
GPU-accelerated DG methods are considered for partial differential equations that are
inherently implicit in their nature, like PDEs that have elliptic or parabolic characteristics.
The dominant difficulty for this class of PDEs is that they require the solution of large
sparse linear systems. Efficient sparse linear solvers for high order DG methods are in
general bandwidth bound, and more sophisticated [24, 29]. Preconditioners that map
well to many-core architectures (e.g. [1, 3]) may not provide the best performance due to
their poor convergence rates [22].

A GPU-accelerated HDG method for the 2D Poisson problem is proposed in [37],
which analyzes in detail an efficient HDG assembly based on batch processing. The lin-


