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Abstract. Traditional two level upscaling techniques suffer from a high offline cost
when the coarse grid size is much larger than the fine grid size one. Thus, multilevel
methods are desirable for problems with complex heterogeneities and high contrast. In
this paper, we propose a novel three-level upscaling method for flow problems in frac-
tured porous media. Our method starts with a fine grid discretization for the system
involving fractured porous media. In the next step, based on the fine grid model, we
construct a nonlocal multi-continua upscaling (NLMC) method using an intermediate
grid. The system resulting from NLMC gives solutions that have physical meaning. In
order to enhance locality, the grid size of the intermediate grid needs to be relatively
small, and this motivates using such an intermediate grid. However, the resulting
NLMC upscaled system has a relatively large dimension. This motivates a further step
of dimension reduction. In particular, we will apply the idea of the Generalized Multi-
scale Finite Element Method (GMsFEM) to the NLMC system to obtain a final reduced
model. We present simulation results for a two-dimensional model problem with a
large number of fractures using the proposed three-level method.
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1 Introduction

A fast and accurate solution of flow problems in fractured porous media is an important
component in reservoir simulation. Direct numerical simulation requires using a very
fine grid that resolves all scales and heterogeneities. The resulting discrete formulation
on the fine grid leads to a very large system of equations that is computationally expen-
sive to solve. To reduce the dimension of the system, multiscale methods or upscaling
techniques are necessary [14, 17, 20, 25, 26, 32]. We will, in this paper, focus on a class of
multiscale methods based on local multiscale basis functions. In typical two level meth-
ods, multiscale basis functions are constructed locally, namely, within a coarse block or a
union of several coarse blocks of an underlying coarse mesh, which does not necessarily
resolve any scale. Constructing multiscale basis functions involves solutions, using the
fine grid, of some local problems, which can be expensive for the case when coarse grid
size is much larger than the fine grid size one [11]. Therefore, problems with very large
disparate scales require some coarsening techniques or multilevel methods [27]. The
commonly used techniques for such problems are the re-iterated homogenization meth-
ods or multilevel multiscale methods [3, 11, 24, 27–29, 34, 39]. In multilevel multiscale ap-
proaches, multiple levels of coarsening are constructed by a recursive application of the
basic two level method with the aim of improving computational efficiency. The main
advantage of multilevel methods is to avoid solving local problems of large dimensions.

In our previous works, we developed multiscale model reduction techniques based
on the Generalized Multiscale Finite Element Method (GMsFEM) for flow in fractured
porous media [1,2,7,18]. The general idea of GMsFEM is to design suitable spectral prob-
lems on some snapshot spaces to obtain dominant modes of the solutions. These domi-
nant modes are used to construct the required multiscale basis functions [5,6,15,16]. The
resulting multiscale space contains basis functions that take into account the microscale
heterogeneities as well as high contrast and channelized effects, and the resulting mul-
tiscale scale solution provides an accurate and efficient approximation of the fine scale
solution. We remark that the GMsFEM is related to the Proper Orthogonal Decomposi-
tion (POD) (c.f. [16]) in the way that the GMsFEM constructs multiscale basis functions
that optimize an appropriate error within a finite dimensional space. The error of the
GMsFEM has a spectral decay and is inversely proportional to the eigenvalues of the
spectral problems used for constructing basis functions.

Recently, the authors in [9, 12] proposed a new Constraint Energy Minimizing GMs-
FEM (CEM-GMsFEM) with the aim of finding a multiscale method with a coarse mesh
dependent convergence. Constructing the multiscale space starts with an auxiliary space,
which consists of eigenfunctions of a local spectral problem, and is defined for each
coarse element. Using the auxiliary space, one can obtain the required multiscale basis
functions by solving a constraint energy minimization problem. The resulting multiscale
basis functions have an exponential decay away from the coarse element for which the
basis functions are formulated. Therefore, the multiscale basis functions are only numer-
ically computed in an oversampled region defined by enlarging the target coarse element


