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Abstract. In this paper, we extend the method (Fu et al., [1]) to anisotropic meshes
by introducing an adaptive SPH (ASPH) concept with ellipsoidal kernels. First,
anisotropic target feature-size and density functions, taking into account the effects of
singularities, are defined based on the level-set methodology. Second, ASPH is devel-
oped such that the particle distribution relaxes towards the target functions. In order
to prevent SPH particles from escaping the mesh generation regions, a ghost surface
particle method is proposed in combination with a tailored interaction strategy. Nec-
essary adaptations of supporting numerical algorithms, such as fast neighbor search,
for enforcing mesh anisotropy are addressed. Finally, unstructured meshes are gener-
ated by an anisotropic Delaunay triangulation conforming to the Riemannian metrics
for the resulting particle configuration. The performance of the proposed method is
demonstrated by a set of benchmark cases.
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1 Introduction

Anisotropic unstructured meshes conforming to given Riemannian metric tensor fields,
which often are constructed from solution error estimates [2–4], are widely used in scien-
tific computing [5–7]. In many engineering applications, fields that are to be discretized
by meshes vary in time and space, and may exhibit strong anisotropy. E.g. bound-
ary layer flows have distinct evolution in streamwise and wall-normal directions [8, 9].
For such scenarios, adaptive anisotropic meshes, consisting of triangles elongated along
preferred orientations, are much preferable to isotropic meshes [10, 11]. High-quality

∗Corresponding author. Email addresses: lin.fu@tum.de (L. Fu), xiangyu.hu@tum.de (X. Y. Hu),
nikolaus.adams@tum.de (N. A. Adams)

http://www.global-sci.com/cicp 1275 c©2020 Global-Science Press



1276 L. Fu, X. Y. Hu and N. A. Adams / Commun. Comput. Phys., 27 (2020), pp. 1275-1308

anisotropic unstructured mesh generation also is essential for surface modeling [12, 13],
image processing [14], and function interpolation [15]. Compared to isotropic meshes,
anisotropic meshes are more difficult to generate since size, shape and orientation of
mesh elements should be taken into account simultaneously. The anisotropic mesh qual-
ity highly depends on the distribution of vertices. Algorithms proposed for isotropic
mesh generation have been generalized to adaptive anisotropic mesh generation [16,17],
some of them available as open-source libraries, e.g. MMG3D [18] and Feflo.a [19].

A point placement algorithm based on the advancing-front concept has been devel-
oped by Marcum and Alauzet [20, 21] to align mesh elements with a solution based
metric field and has been successfully applied to complex interface-tracking problems,
e.g. shock-bubble interactions. The Delaunay-type mesh generation algorithm with in-
cremental point-insertion process has been validated to work effectively for anisotropic
mesh generation through replacing the usual metric by a Riemannian metric [22, 23].
Based on the local point insertion, e.g. Delaunay insertion of Steiner points [24], Do-
brzynski and Frey [25] propose a convergent algorithm to adapt mesh elements to an
anisotropic metric tensor locally. It is demonstrated that irregularly-shaped elements can
be prevented by slightly modifying the Delaunay kernel. However, the Delaunay crite-
rion is fulfilled only locally rather than globally.

With the definition of a directional distance function as simplification of the classical
Riemannian distance measure, the Centroidal Voronoi tessellations (CVT) mesh genera-
tion method in the Euclidean space is extended to Anisotropic CVT (ACVT) with respect
to a given Riemannian metric [26]. The corresponding definitions of Anisotropic Voronoi
region (AVR), Anisotropic Voronoi Tessellation (AVT) and Anisotropic Delaunay triangu-
lation (ADT) lead to a consistent description of mass centroids as well as ACVT. ACVT
reverts to standard CVT when the Riemannian metric degenerates to an isotropic ten-
sor. However, since the anisotropic Delaunay triangulation conforming to the Rieman-
nian metrics must be reconstructed for each Lloyd-iteration step, the ACVT method is
computationally expensive [26,27]. Some discrete approximate algorithms for the ACVT
construction have been proposed at the expense of quality degeneration [28]. Moreover,
orphan subregions, which may corrupt the result of ACVT, cannot be fully avoided if not
a certain minimum number of generators is involved [26].

Bossen and Heckbert [29] develop a flexible mesh generation algorithm, in which
mesh vertices are repositioned according to attraction/repulsion with their neighbors
and for which the Delaunay triangulation is maintained for convenient neighbor search,
vertex insertion and deletion. Anisotropic Delaunay triangulation at each iteration ren-
ders it time-consuming and complex. Furthermore, an inadequate guess of initial particle
quantity to fill the domain may induce convergence problems, and a mesh quality con-
forming to the anisotropic metrics is not guaranteed. Yamakawa and Shimada [30] pro-
pose the ”bubble packing” anisotropic tetrahedral meshing method. Ellipsoidal bubbles
are first packed in the domain and then iteratively migrated to a stable state according
to a mass-spring-damper model. At last, the mesh is reconstructed using the advancing-
front method. By first mapping the anisotropic space into a higher-dimensional isotropic


