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Abstract. In this paper, we study the multiscale computations for the Maxwell–
Schrödinger system with rapidly oscillating coefficients under the dipole approxima-
tion that describes light-matter interaction in heterogeneous nanostructures. The mul-
tiscale asymptotic method and an associated numerical algorithm for the system are
presented. We propose an alternating Crank–Nicolson finite element method for solv-
ing the homogenized Maxwell–Schödinger system and prove the existence of solutions
to the discrete system. Numerical examples are given to validate the efficiency and ac-
curacy of the algorithm.
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1 Introduction

The macroscopic Maxwell’s equations has been widely used to model the optical prop-
erties of materials since their advent. In the macroscopic electromagnetic theory, the
response of materials to incident electromagnetic fields is incorporated into linear or
nonlinear susceptibilities, also known as constitutive laws, and the microscopic charge
and current densities are smeared out. This theory has been quite successful for the
study of bulk materials irradiated by external electromagnetic fields of moderate inten-
sity. However, as the rapid development of laser and nanofabrication technologies, the
macroscopic Maxwell’s equations are facing challenges in some realistic applications. On
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one hand, the constitutive laws in the macroscopic electromagnetic theory, which are
built under the perturbation assumption of the incident fields, are often invalid in the
studies with intense and ultrashort laser pulses. On the other hand, the macroscopic
Maxwell’s equations fail to capture the microscopic induced polarization in physical de-
vices of nanoscale, which is usually crucial in nanophotonics. In view of these limitations,
in the past few decades, many researchers have attempted to couple the Maxwell’s equa-
tions with the Schrödinger equation describing the motion of charged particles to model
complex physical processes due to light-matter interaction, such as optical responses
of nanostructures [5], strong-field ionization of molecular gas [17], carrier dynamics in
nano-devices [21], and the interaction of electron wave packets with optical gratings [25].

The (macroscopic) Maxwell equations can be written as

∇×E=−
∂B

∂t
, ∇·B=0,

∇×H=
∂D

∂t
+J, ∇·D=ρ,

(1.1)

where E, H, J, and ρ are respectively the electric fields, the magnetic fields, the current
density, and the charge density. D and B denote the electric displacement and magnetic
flux density, respectively. In a linear medium, they are related to E and H by the consti-
tutive laws

D=ǫE, B=µH, (1.2)

with ǫ and µ being the electric permittivity and magnetic permeability, respectively.

When interacting with the incoming electromagnetic fields, the time-dependent Schrödinger
equation for an electron can be written as [13]

ih̄
∂Ψ

∂t
=
{ 1

2m
(−ih̄∇−qA)2+qφ+Vc

}
Ψ, (1.3)

where Ψ is the wave function, Vc is the confinement potential, h̄ is the reduced Planck’s
constant, m and q=−e respectively denote the effective mass and the charge of the elec-
tron. A and φ are respectively the vector potential and the scalar potential that satisfy

B=∇×A, E=−∇φ−
∂A

∂t
, (1.4)

where E and B are the electric fields and magnetic flux density, respectively. If the spatial
extent of the region where the electron can move is much smaller than the wavelength of
the incident fields, we can apply the dipole approximation, also known as length gauge,
in which case the Schrödinger equation can be transformed as

ih̄
∂Ψ

∂t
=
{
−

h̄2

2m
∇2+qE·x+Vc

}
Ψ. (1.5)


